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Abstract

Today, operating systems set—up process images from executable files using fixed rules.

Programs are

restricted to run in essentially the same environment at every execution. However, we believe that this
behavior is not always convenient, and that many times it is interesting to make variations to the execution
environment, either to introduce new functionality or to specialize critical services, even when their source
code is not available. This problem can be mitigated through application—level extensibility and flexible

composition of binary modules.

In this paper, we describe DIToOLS an application—level tool that supports dynamic interposition on
dynamically-linked procedure—call boundaries. This tool enables both global and per-module dynamic
interposition. We also present a detailed use of DITOOLS and various short examples of extensions.

1 Introduction

Modifying programs, libraries and operating sys-
tems becomes a difficult problem when the source
code is not available, and this is a common situa-
tion. Vendors are quite reticent to give away the
source code of their applications and/or operating
systems. On the other hand, there are many situ-
ations in which these modifications would be very
useful. Let us examine some examples.

Tracing and monitoring applications is a common
technique used to learn the behavior of applications.
To perform this task, some code has to be added to
the program to trace or monitor the desired events.
If the source code is not available, there is no easy
way to do it.

Another problem arises when trying to enhance pro-
prietary applications to take advantage of parallel
resources such as multiple CPUs. Let us suppose
an application that invokes many time—consuming
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operations from a sequential mathematical library,
for example large FFTs. If we do not have the source
code, changing the implementation of the FFT to
make it a parallel one, would probably mean to write
a whole new library. If we only want to enhance
the FFT, it is going to be very difficult without the
source code of the application or the library.

If we focus our attention on the operating system
execution environment, it is very difficult to modify
its functionality (for instance, to build a new file
system) without OS support. Even if there is some
OS support, we will probably need the help of the
system administrator to install our enhancement.
There is no easy way to do a rapid prototyping that
is being used by many applications without the help
of the system administrator.

Finally, sometimes we would like to modify an appli-
cation to send and receive the data in an encrypted
form. If we do not have the source code of the ap-
plication or library, this modification will be a big
problem.

In this paper, we present a tool that can be used
to solve all the above problems. This tool pro-
vides transparent user—level extensibility and flex-



ible composition within applications. This allows
any user to load new code and to interpose it be-
tween the call and the definition of functions, mak-
ing possible to modify or extend programs without
rebuilding them. We also describe several examples
in which we use the tool to solve the aforementioned
problems.

This paper is structured as follows. Section 2 gives
an overview of our approach to dynamic extension
and flexible composition, describing the framework
and the tool. Section 3 discusses performance is-
sues and presents an evaluation. Section 4 contains
the examples. Section 5 reviews related work and,
finally, Section 6 summarizes and concludes the pa-
per.

2 Dynamic Extension and
Flexible Composition

In order to build the process image for a given exe-
cutable file, modern operating systems need to glue
together multiple modules (dynamically-linked li-
braries) at program load time. This happens be-
cause programs are not self-contained in terms of
functionality.

The system provides service definitions to complete
the image. These definitions are located using fixed
resolution policies. This results in essentially the
same execution environment at every run of the
same program. However, as we illustrate in the
introduction, there are situations in which it can
be very helpful to make variations in this image.
Moreover, these variations should not be limited by
source code availability, nor by arbitrary rules em-
bedded in operating system components. This moti-
vates our interest on making the process of building
the runnable image more controllable by users and
programs themselves.

The goal of our research is to enable ‘ad-hoc’ ex-
ecution environments, by allowing applications to
build appropriate execution environments for them-
selves, according to performance requirements, effi-
ciency concerns and functionality needs. This covers
the improvement or tuning of services (e.g. service
specialization or result ‘memoization’ — see [17]),
the addition of new functionality to do data stream
processing (e.g. encryption or compression) or to
perform new tasks (e.g. cooperation with resource
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Figure 1: Usual and extended execution stages

managers), and even restructuring the execution en-
vironment (e.g. code co—location and distribution).

In Figure 1 we show the phases in which we concep-
tually divide the process of executing a program.
Two scenarios are shown: the usual one (left side)
and the extended one (right side). The meaning
of each stage is as follows: loading brings all the
required modules into the address space, reference
resolution finds definitions for unresolved references,
extension introduces new modules in the address
space, binding allows to customize bindings, execu-
tion enters application code, termination exits appli-
cation code and cleanup shuts down extensions. For
each stage, we show which inputs determine its be-
havior. The stages shaded and surrounded by thick
lines are provided by our tools.

In the extension stage, we check for the need of
extending the image using configuration informa-
tion that can change at every run. If extensions
are needed, the right modules are introduced in the
process image. Then, the binding stage arranges
these modules to be executed by setting up bind-
ings appropriately. This stage is independent from
the previous one. Therefore, it is possible to modify
bindings without loading extensions.

The tools described in this paper introduce an ex-
tension to the runtime loader and linker. This ex-
tension provides basic functionality to load and bind
unforeseen modules and services, as well as to re-



consider actual bindings. This functionality works
entirely at user—level and complements the tradi-
tional dynamic loading and linking services. This
is achieved by means of additional stages after pro-
gram loading, devoted to adapt/extend the execu-
tion environment. These tools also export services,
making them available during execution, to allow
on—the—fly adaptation.

These tools are being used by various projects in
our department for trace collection, scheduling re-
search and I/O research. They have helped us to
test the stability and validity of our services and
abstractions.

2.1 Environment

Modern operating systems promote the use of
shared libraries for efficiency. Linking against
shared libraries results in smaller program sizes on
disk, and also requires less physical memory at run
time. Moreover, shared libraries can be fixed and
improved without rebuilding executables.

The use of shared libraries leads to executable files
containing unresolved references. At program load-
ing time, the system should load the libraries upon
which executable files depend, and then it should
fix unresolved references to point to the right defi-
nitions. This is called dynamic linking.

Dynamic linking requires cooperation between de-
velopment tools, object file formats and operating
system components. For example, a common tech-
nique for supporting dynamic linking is by making
indirections through linkage tables, which are placed
in the executable file by the static linker, and then
used by the dynamic linker at load time. Usually,
the system’s Application Binary Interface (ABI) de-
fines the object file format and these data struc-
tures.

During the last years, many vendors are adopting
the System V r4d ABI [4], or at least parts of it.
IRIX, Solaris, Linux, FreeBSD or HP-UX currently
support ELF as the object file format and use sim-
ilar dynamic linking conventions. ELF is the file
format originally introduced in System V r4.

The standardization of binary interfaces makes pos-
sible to take a generic approach for extending the
available functionality (we currently have a running

version for IRIX and Linux sharing a 70% of source
code), as well as for manipulating bindings both at
program loading time or at run time.

2.2 Exploiting dynamic loading

Shared libraries make dynamic loading of code eas-
ier. In fact, many operating systems provide in-
terfaces to load this kind of binary modules at run
time. We exploit these services to introduce exten-
sion code in the process image (although we improve
some aspects of conventional dynamic loading, as
explained in following sections).

The mechanisms used to gain control at program
startup can vary from system to system, but they
are reasonably uniform and widespread in the UNIX
world. In most cases, this is as simple as setting an
environment variable (LD_.PRELOAD in Linux and So-
laris or _RLD_LIST in IRIX, for example) pointing to
the module to be loaded, and to declare an ‘init rou-
tine’ in this module. At program startup, this mod-
ule will be loaded within the process image, and the
init function will be executed before the program it-
self. For security reasons, the system loader disables
this feature when loading setuid programs.

2.3 Dynamic interposition

Conceptually, ‘interposition’ is the addition of func-
tionality at the midst of an existing interface bound-
ary. This mechanism is appropriate for binding
extensions, because it exploits existing interface
boundaries to attach new services while preserving
old ones.

We deal with interposition at procedure—call bound-
aries. That is, we add functionality in the program
execution path, between references to procedures
and the procedures themselves.

To achieve this kind of interposition dynamically,
at run time, we need to detect references to pro-
cedures and to be able to change their target defi-
nitions within the process image. Dynamic linking
draws a clean boundary between external references
and their definitions, by means of the linkage tables
and other data structures described above. In this
work we exploit these data structures for interposi-
tion purposes.



2.4 DITooLs

The infrastructure required to manage dynamic
loading of extensions and interposition is provided
by DITooLs (our Dynamic Interposition Tools).
DITooLs allows modifying the execution environ-
ment of dynamically—-linked executables at every
run, either to select among different service imple-
mentations, as well as to accommodate unforeseen
functionality. Using this infrastructure, program-
mers are allowed to change bindings, redefine sym-
bols, load new modules or remap global variables.

Architecture

DITooLs is structured around a runtime module
(DI runtime) that cooperates with the dynamic
loader and linker to support extension and flexible
composition. Once the program, together with all
its dependencies, has been loaded by the system, the
DI runtime gains control and performs some post—
load processing (see figure 1), according to the needs
for this individual run. This is done using existing
mechanisms, as mentioned in section 2.2.

It is interesting to note that this tool works entirely
at user level, without kernel support, and without
administrator privileges. The scope of the tool can
be easily controlled, so it can manage from single
programs to entire sessions and multiple users.

DITooLSs processing can be driven by a configura-
tion file or it can be driven using a programming
interface, or some combination of both approaches.
DITooLs allows two main classes of operations:
loading of new functionality and manipulation of
bindings. Both kinds of operations will be explained
in detail in the following sections.

Loading of new functionality

During the extension stage, as well as at run time,
DITooLs can load arbitrary extension modules
(also called backends in our framework) within the
process image. These modules can be declared in a
configuration file, to keep the executable file isolated
from this kind of ‘volatile’ decisions.

We have adopted the shared—library model for these
extensions, which means that our extensions are

shared libraries themselves. This has two basic ad-
vantages. The first one is that we can use the exist-
ing development tools. And second, as our exten-
sions are also shared libraries, we can use DIT0OOLS
recursively to extend them.

The support provided by DITooLs allows modules
to be loaded multiple times within the same process
(i.e. replicated) without symbol collisions.

Rebinding and redefinition

We exploit the dynamic-linking data structures for
interposition purposes. DITOOLS supports explicit
manipulation of bindings between dynamically—
linked references and definitions exported by mod-
ules. It currently implements two mechanisms: the
first one allows changing the target for a given refer-
ence (we call it rebinding), and the second one allows
‘wrapping’ (i.e. mediate all the uses of) a given def-
inition (we call it redefinition). While the effects of
the first mechanism are selective and leave the orig-
inal definition untouched, the second one affects all
the uses of a definition, effectively hiding it to the
outside. Using rebinding we can achieve selective
overriding of definitions, while using redefinition we
are doing global overriding of definitions.

References and definitions are identified by a pair
(module, name). So, a single rebinding can be spec-
ified as follows:

(program,read) -> (mymodule,myread)

Meaning that references to ‘read’ done by the mod-
ule ‘program’ should point to the definition ‘myread’
in the module ‘mymodule’.

As can be observed, this mechanism is independent
of conventional resolution policies based on name
matching. This makes possible the coexistence of
definitions with the same name in different loaded
modules.

Acting over references and definitions individually
also proves to have its advantages. On the one
hand, we can avoid affecting all the uses of a def-
inition when inserting new functionality. On the
other hand, we do not require to subclass the entire
library in order to interpose on its interface.
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Interposition on top of DITooLS

Figure 2 shows some possible scenarios after re-
binding. The upper one (A) depicts how bindings
are by default, in which pointers in the reference
side make possible to reach definitions residing in
another module. The central one (B) shows how
changing bindings in the reference side can be used
to override definitions in a per—module basis. The
lower one (C) shows how to achieve interposition, by
changing the binding while providing another one to
invoke the previous definition.

Therefore, DITOOLS can be used for interposition
of extensions. This requires changing a binding on
the reference side to point to the extension, and an-
other one within the extension code to point to the
original definition. For example:

(program,read) -> (mymodule,myread)
(mymodule,read) -> (libc,read)

The above lines add ‘mymodule.myread’ as the tar-
get for references to ‘read’ being done by the module
‘program’. References to ‘read’ coming from ‘my-
module’ are conveyed to ‘libc.read’. Although this
last rebinding is unnecessary in the case in which it
refers to the conventional definition, we show it for
clarity.
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Figure 3: Wrapper and callback modes of extension
execution

Extension execution modes

To simplify design and implementation of exten-
sions, DITooLs allows two modes of extension ex-
ecution: wrapper and callback. The wrapper mode
can be seen as ‘plain interposition’. This mode re-
quires providing routines that match the interface
on which they will be interposed. The callback mode
is a refinement that allows a routine to be invoked
regardless of the interface being intercepted. This
refinement is especially convenient when building
extensions for monitoring purposes, as well as when
the interface is not known.

Both modes are depicted in Figure 3. The wrapper
mode is shown in the left side of this figure. Observe
that the wrapper is invoked by the application as the
effective service definition. Therefore, the wrapper
should present the same interface to the application.
The callback mode appears in the right side of the
figure. In this mode, DITOOLS transparently in-
terposes a callback dispatcher instead of the exten-
sion routine. This dispatcher will invoke the rou-
tines ‘aside’ of the service definition, without need
of knowing the implied interface. Callback handlers
have a fixed interface (as illustrated in Section 4),
which is determined by the callback dispatcher that
calls them. The dispatcher is also the responsible of
invoking the original service definition, as if nothing
happened.

Extensions can provide their own dispatchers to en-
able different ways of invoking extension code, for
instance to allow multiple handlers for the same
event, as in other frameworks [14] [15].



Dynamic adaptation facilities

Once the application has been started, it is still pos-
sible to make changes in the execution environment,
given that both loading and bind manipulation fa-
cilities are available through the interface of the DI
runtime. By means of these dynamic facilities, we
can design lightweight extensions to watch for some
conditions before activating new functionality. At
run time, these extensions can also deactivate the
new service dynamically.

Let us suppose that we have installed an optimized
read path for files with read—only access. The fol-
lowing code illustrates how to deactivate the opti-
mization when conditions change. The wrapper has
been installed to be activated in response to refer-
ences to ‘open()’. It checks for the O_.RDONLY flag,
and deinstalls the new paths when a file is opened
with flags that can compromise the extension:

int rdopen_wrapper (char *file, int flags)
{
if (flags&0_RDONLY)
di_rebind ("program","read",

"extension",'"rdo_read");

else
di_rebind ("program","read",

"extension",'"rdwr_read");

return(open(file, flags));
}

The DITooLS interface provides rebinding, sym-
bol redefinition, interrogation about current bind-
ings and loaded modules, among other operations.
This interface is described in more detail in a re-
search report [18].

Process management facilities

Startup: When extension modules are loaded, DI-
TooLs allows them to initialize before being invoked
by the process. This can be used to allocate data
structures or to set—up some bindings dynamically.

Cleanup: At the end of execution (for instance,
when the process exits or execs another binary),
DITooLs gives a chance for doing cleanup work
within extension modules (e.g. write data struc-
tures to disk, close any private handle or free other

allocated resources). During extension cleanup, the
DI runtime shuts down rebindings and redefinitions
in order to guarantee that extensions do not indi-
rectly trigger themselves.

Image changes: Actions that cause image changes
(e.g. dynamic-loading requests) are captured by
the DI runtime in order to preserve the behavior
expected by extension modules. For example, DI-
TooLs checks that new modules do not affect exist-
ing rebindings.

Fork: A default behavior that can be deactivated if
required is that forked processes inherit the DI run-
time, as well as rebindings and redefinitions existing
in the forking process.

2.5 Considerations

The support described above has some natural lim-
itations. First of all, the mechanism cannot be used
in statically-linked binaries. On the other hand,
the set of available dynamically-linked procedure
calls may not be enough for some uses that require
customizing pieces smaller than functions. Also,
some bindings may not be available for manipu-
lation due to static optimizations. In these cases,
the scope of the tools can be complemented us-
ing binary rewriting techniques (e.g. Paradyn’s dy-
namic instrumentation [22]) to invoke the backend
for events other than dynamically-linked procedure
boundaries. However, some systems also use linkage
tables to support Position Independent Code. This
makes possible to use DITOOLS to control intra—
module bindings in addition to external references.

Finally, there are also not—so—obvious considera-
tions to take into account when using all the facil-
ities provided by DITooLS. The design of existing
library services may be inappropriate for dynamic
rebinding, because they may keep state between in-
vocations. On the other hand, there are situations
in which modules can shortcut linkage tables used
in cross—module invocations (e.g. by assigning an
address to a pointer and then invoking it directly).

3 Performance

The DITooLs infrastructure enables qualitative
benefits, namely richer functionality and ease of ex-



tension, that are hard to measure. In this section,
we will focus on the overhead of adding new func-
tionality, regardless of the beneficial counterparts,
and we found it quite reasonable. Nevertheless, we
believe that performance is not always the primary
concern.

We have designed a worst—case experiment (the
‘Forward’ experiment) that redefines all the avail-
able dynamically-linked definitions within a given
process to a simple extension that merely forwards
the call to the original definition. This includes all
definitions of the standard C run—time library as
well as those included in any other library used by
the program. By comparing the results to the ex-
ecution of the unmodified program (the ‘Baseline’
experiment), we evaluate the overhead of using DI-
Toors. Typical uses of DITooLs (like those de-
scribed in section 4) only need to interpose code to
very few calls.

The programs used in our tests come from the
SPEC95 benchmark suite, using the ‘train’ input
dataset. Our experimental environment is based
on a 64—processor Origin2000 system, from Silicon
Graphics Inc. This machine runs the IRIX Operat-
ing System, release 6.5.3.

In programs enhanced by our infrastructure we ex-
pect to observe two effects on performance: an in-
crease in startup time due to extra processing, and
some overhead during execution due to the addi-
tional indirection.

Results summarized in Table 1 come from the aver-
age of 4 executions of each benchmark, running on
a dedicated processor of the machine, to minimize
the effects of cold start and interferences from other
processes. This table shows, for each program, the
number of statically available dynamically—linked
references (static hooks), how many times these
hooks are triggered at runtime (dynamic activation
count), the elapsed time for the unmodified execu-
tion environment (baseline), and the elapsed time
when invoking the empty wrapper at every call.

The static hooks count column gives an idea of the
work done by the DI runtime at startup. As many
bindings as listed in this column are modified to in-
voke the extension. This classifies the benchmarks
in three groups, according to the number of exposed
hooks. Benchmarks that need the same libraries ex-
pose the same number of hooks. Given that the
startup time is basically constant (around 30 mi-
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Figure 4: Overhead vs. calls per millisecond

croseconds/hook), we do not show it in the table.
It ranges from 140 ms for the first five benchmarks
(3,500 exposed hooks) to 150 ms for the last 8 bench-
marks (5,600 exposed hooks).

Last three columns show the elapsed time for base-
line and forward, and the corresponding overhead.
The overhead of DITOOLS is proportional to the dy-
namic count of hook calls. In many cases it is less
than 10%. However, benchmarks that are making
a high number of calls to the extension, relative to
their execution time, become more affected by in-
terposition. This is simply the scaled effect of this
high number of calls per millisecond (c¢/ms). For
instance, if we compute this number for perl and
su2cor, we obtain 902 c¢/ms for perl and 621 c¢/ms
for su2cor. Both programs follow the correlation be-
tween calls per millisecond and overhead seen in the
other programs. Take, for instance, turb3d, which
has an overhead of 3%. It does 40 c¢/ms, so this
makes 1,013 c¢/ms for 76% and 613 for 46%, which
are close to the values observed for perl and su2cor.
The measured correlation coefficient between over-
head and calls per millisecond is 0.9 (see the regres-
sion plot in Figure 4). It is worth to mention that
we are describing a worst—case experiment, in which
the extension interposes to all the available hooks.

Table 2 depicts the space requirements of the DI
runtime and the other extensions used in this evalu-
ation, as well as the average size of the benchmarks.
This table shows, for each module, its static size in
disk as well as the size of all the virtual memory
regions required to hold its code and data within
the process address space at run—time. The ‘count’
extension has been used to compute the columns la-
beled ‘hook counts’ in Table 1, the ‘forward’ exten-
sion corresponds to the ‘forward’ experiment, and
the ‘monitoring’ extension to the ‘monitoring’ ex-
periment.



Hook counts (/1,000) Elapsed time (ms) Overhead
Benchmark Static Dynamic Baseline Forward %
Go 3.5 5.8  5,002.3  5,115.0 2%
M88ksim 3.5 4.8 864.6 858.8 0%
Gce 3.5 289.3  1,555.9  2,154.7 38%
Compress 3.5 0.7 181.5 202.2 11%
Ijpeg 3.5 123 2,385.6  2,486.7 4%
Li 3.9 4.3 975.8 991.6 2%
Perl 3.9 12,335.0 13,662.2 24,0514 75%
Tomcatv 5.6 3,412.1 39,599.9 42,582.3 8%
Swim 5.6 5,284.1  2466.2  2,836.9 15%
Su2cor 5.6 24,504.6  39,447.5 57,090.1 45%
Mgrid 5.6 319.0 23,107.2 23,425.7 1%
Applu 5.6 43 1,020.8 1,053.8 3%
Turb3d 5.6 1,600.7 39,8119 41,159.9 3%
Fpppp 5.6 50.1 676.9 728.2 8%
Waveb 5.6 2,002.2  8417.1 10,039.7 19%

Table 1: Impact of interposition on program execution

Module

Static size

Dynamic size

DI runtime
Count extension

Forward extension
Monitoring extension

SPEC average

64K
29K
30K
30K
430K

1.5M
0.5M
0.5M
1M
10M

Table 2: Space requirements of modules used in this evaluation
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The dynamic sizes have been obtained by measuring
the number of pages allocated in the virtual process
address—space, and then using the page size (16K)
to compute the dynamic size. The space overhead at
run-time is about 15%. We should take into account
that benchmarks are running with a relatively small
input (‘train’).

The second experiment (the ‘Monitoring’ experi-
ment) compares the performance of a fully—featured
extension using DITooLSs, against the same func-
tionality introduced by changing the source code.
The experiment introduces a performance monitor-
ing extension that collects the execution trace of a
parallel program. This trace contains thread cre-
ation, thread joining and synchronization events.
More information on this experience can be found
in another paper [10].

For this experiment, we use a parallelized version of
the turb3d benchmark. Figure 5 shows the impact
of both alternatives. The dashed line represents the
normalized execution time for the uninstrumented
version of this benchmark, using from 1 to 8 pro-
cessors. Solid lines represent the normalized execu-
tion time for the instrumented versions. As can be
observed, interposition—based instrumentation per-
forms comparably to the static code modification
approach. In both cases, the overhead is less than
5% of the execution time for any number of proces-
SOrSs.

At a first glance, one can think that all these en-
hancements always come at the price of perfor-
mance. In another experiment, we used interpo-
sition to enhance the performance by caching the

results of frequently used functions [17]. In this way
we were able to reduce the execution time by 8%
for those library functions. This demonstrates that
extending the execution environment not always de-
grades performance.

Finally, remember that, although this section fo-
cuses on the costs of adding new functionality using
DIToouLs, this infrastructure is intended to support
extension and flexible composition. Therefore, per-
formance will not always be the primary concern. In
many cases, the infrastructure will not be used to
add functionality but to select among multiple im-
plementations (thus, not adding extra indirections),
and it may even pay using it in terms of perfor-
mance.

4 Examples

In this section, we discuss how to build a couple of
useful modules using DITooOLS to facilitate a bet-
ter understanding of the framework. We begin with
a full example, and then we give short ideas about
how to use DIT0OOLS to build some additional ex-
tensions.

4.1 Program monitoring

Interposition can be used to understand the behav-
ior of programs by capturing information of ser-
vice invocations. In this example, we describe an
extension used to monitor interactions between a
program and its runtime. This extension will pro-
vide an execution profile containing function entry
and exit information, and the corresponding times-
tamps. Once processed, the output of the extension
can give a profile like the following one, coming from
the execution of the NAS BT benchmark on a SGI
Origin 2000:

2623262

+178 x_solve_
2623486 +175 lhsx_
2638509 -175
2638738 +186 x_solve_cell_
2673173 -186
2673412 +185 x_backsubstitute_
2674186 -185
2674361 -178
2674493 +191 y_solve_



2674630 +176 lhsy_

2678248 -176

2678449 +199 y_solve_cell_
2741176 -199

2741403 +198 y_backsubstitute_
2741949 -198

2742171  -191

The first column in this profile contains the event
timestamps in nanoseconds, followed by a sign (+/-
) indicating procedure entry/exit, then the event
identifier, and finally the event name (in this case, a
procedure name). Tabulation represents invocation
nesting.

In this extension, we decided to use the call-
back mode (see ‘Extension execution modes’ in sec-
tion 2.4), because it allows to capture all the refer-
ences using only two handlers.

The steps to be followed to build and install this
extension can be summarized as follows:

1-Write the event selector function. When
using the DIToOLS callback dispatcher, the user
should provide a routine (di_callback.required)
in the backend to select which hooks will trigger
the user—provided callback handlers, and to give an
identifier for each possible event. The function will
be invoked at extension time (see section 2 for a
description of the stages) once for each potential
event. A return value of zero can be used to ignore
the event. The event identifiers will be passed at
execution time to the callback handler.

int di_callback_required(char *func)
{

static int event_id=0;

event_id++;
funcs[event_id]=RECORD_FUNC_NAME (func) ;
return event_id;

}

2-Implement callback handlers and support
routines, i.e. the code which should record
the time and the event. Callback handlers
will be invoked by the callback dispatcher be-
fore (di_pre_handler) and after (di_post_handler)
dynamically—linked hooks selected by the event se-
lector function. Callback handlers receive two ar-
guments from the dispatcher: a virtual processor

identifier and an event identifier. In this exam-
ple, we use a macro (PUT_EVENT) to record time—
stamped events in a buffer managed by the exten-
sion code. This buffer is set—up at startup time
(di-init_backend), and processed at the end of ex-
ecution (di_fini_backend).

event_t xbuffer;
char *funcs[MAX];

int di_init_backend()

{
buffer=ALLOCATE_BUFFERS () ;
return buffer!=NULL;

}

void di_pre_handler(long vpid, long event_id)
{

PUT_EVENT (vpid, event_id, START);
}

void di_post_handler(long vpid, long event_id)

{
PUT_EVENT (vpid, event_id, END);
}

void di_fini_backend()

{
int fd=open(tracefile, flags);
PROCESS_TRACE(fd, funcs, buffer);
close(fd);

}

Note that backend portability is determined only
by the extension code, since there are no platform—
specific details in the DIToOLS interface. Platform—
dependent pieces (e.g. the callback dispatcher) are
provided by the DIToOLS runtime.

3-Build the extension module, by compiling the
above code like a standard shared library.

cc -shared -o progmon.so progmon.c

4-Write the configuration file to be parsed by
DITooLs at extension time. It should declare which
backend should be loaded (1) and specify that our
backend routines should be invoked as callbacks at
every reference to dynamically—linked runtime ser-
vices (2).



// begin of backends section

// (1) request the module "progmon.so":
BACKEND backends/DIFlow/progmon.so

// end of backends section

#commands

// begin of commands section

// (2) request the installation of

// the callback dispatcher at every

// dynamically-linked reference done
// by the MAIN module

MAIN * DIRUNTIME callback_dispatcher
// end of commands section

5-Run your unmodified program. Specify your
config file and set—up the system to load the DI run-
time at program startup. This last step is system
dependent, as explained in 2.2.

$ setenv DI_CONFIG_FILE progmon.conf
$ setenv LD_PRELOAD diruntime.so
$ <your program>

4.2 Service improvement

In this example, we replace the definition of FFT
used by a program, by another one that makes
a more efficient computation exploiting multiple
CPUs. Given the new FFT service, the extension
should simply bridge differences in the interface:

void fft_bridge(float *data, long size)

{
n = get_num_processors();
new_data = reshape_data(n, data);
spawn(n, parallel_fft, new_data, size);
wait_for_end();

This routine computes the available number of pro-
cessors, prepares the data to be used by the threads,
and spawns threads to execute a parallel FFT using
the reshaped data. Once built, we should simply
override the old FFT service using the redefinition
facility, either through the config file or at run—time
(di_rebind).

4.3 Filesystem extension

The third example is a filesystem extension that
allows applications to transparently access remote

files. Requests corresponding to remote filesystems
are redirected to a server running elsewhere. The
extension should provide wrappers for filesystem
services, analyze the arguments and then choose
which underlying service should be invoked to com-
plete the request.

Usually, dynamically—linked programs do not trap
directly to the operating system for reading and
writing. Traps are usually encapsulated in a sys-
tem library (e.g. libc) and are exported as library
functions. Therefore, DITOOLS can interpose the
above routines to these functions to achieve the ex-
pected behavior, without the need of system—call
redirection functionality.

int fs_write(int fd, char *b, int s)
{
if remote_fd(fd) {
a = marshal(b,s);
r = send_request(server, WRITE, a);
} else
r = base_fs_write(fd,b,s);
return r;

}

4.4 Data stream processing

In this last example, we illustrate how to ex-
tend I/O services to encrypt and decrypt the data
stream. Given the appropriate encryption algo-
rithm, the extension should simply provide the rou-
tines that combine in the right order the encryp-
tion/decryption process and the I/O operation:

int crypt_read(int fd, char *b, int len)
{
int r;
r = read(fd, b, len);
if (encrypted_channel(fd))
decrypt (b, r);
return(r);

}

int crypt_write(int fd, char #b, int len)
{
int r;
if (encrypted_channel(fd))
crypt (b, len);
r = write(fd, b, len);
return(r);



These routines can be used to redefine previous
read/write services. To make encryption transpar-
ent to the program, channels to be encrypted can be
determined by the extension. For example, it can
decide to encrypt only those data streams that are
sent or received from the network.

5 Related work

In software environments that are built from sepa-
rate modules, interactions frequently happen to be
limited to well-defined interfaces between modules.
Being able to interpose functionality in the midst
of these boundaries, preserving physical encapsula-
tion, has been recognized as very convenient from
the extensibility point of view. This has motivated
many different approaches to the problem, which
are reviewed in this section.

In the first place, many systems provide interposi-
tion facilities for the system—call interface. Clas-
sical microkernels like Mach[1] or recent kernels
like Pebble[7] are examples of it. It is possible to
use these facilities to enable profiling (like strace
in Linux) as well as functionality extension (like
UFO[2]). The usefulness of this kind of interposition
has been the motivation for developing extension—
enabling frameworks using system—call redirection,
like COLA[14], Interposition Agents[13] or SLIC[9].

Our approach differs from the above extension—
enabling frameworks in that we do not rely on
operating—system provided interposition services.
Moreover, we are providing these facilities for in-
terfaces between user—level modules.

Many of the techniques used inside operating—
system kernels in order to dynamically accommo-
date functionality (like device drivers, stackable file
systems [11] or other kernel modules) are work-
ing examples of extensibility and flexible compo-
sition. However, these techniques are focused to
specific kernel interfaces, and its use is typically re-
stricted to privileged users. There is a considerable
amount of research on building extensible systems,
a kind of systems that would allow generic, safe,
and application—specific extensions (e.g. SPINJ[5],
VINO[16]), although this research is biased towards
safety concerns of in—kernel extensions.

In contrast to the above techniques, we are taking a

generic approach. Our goal is to enable extensions
to be attached at any available interface, by pro-
viding convenient binding mechanisms for these ex-
tensions. In addition, we are looking at backwards—
compatible ways of extending the execution envi-
ronment of today programs, without new kernel ser-
vices.

Finally, there are also approaches to structured dy-
namic extension at user—level procedure—call bound-
aries. We can found it within advanced runtime
environments (also known as “component platform-
s”), like ORB implementations [8] and COM+ [21].
These platforms allow subclassing of binary compo-
nents, and their mechanisms (cross—component in-
heritance, containment or aggregation) can be seen
as specialized forms of interposition. These plat-
forms aim to provide component interoperability.

DITooLs derives its extension and dynamic load-
ing abilities directly from the system’s ABI, exploit-
ing physical encapsulation, and being largely inde-
pendent of language and program development is-
sues. In contrast, component platforms are tied to
language encapsulation, and they usually need to
enforce boundaries using object—oriented program-
ming and interface definition languages. They are
neither appropriate to extend nor to customize the
execution environment of each and every program
that runs in a given system.

We found also tools oriented to enable interposi-
tion aside of any object middleware, like Detours
for Win32 [12] and SLI for Solaris [6]. In Detours,
function calls are dynamically intercepted by re—
writing function images in order to redirect the con-
trol flow to different locations. In contrast, SLI in-
terposition is based on symbol preemption in the
resolution mechanism. In this way, SLI can dynam-
ically introduce profiling and tracing functionality
into dynamically—linked programs without changing
the program image. Last releases of Solaris include
support for modifying bindings done by the runtime
linker [19].

Tools like Detours and SLI are similar to DITOOLS
in that they work at application—level and provide
similar interposition facilities. However, they ex-
hibit limitations on their abilities to control defini-
tions and bindings that do not exist in our frame-
work. In particular, we allow selective rebinding of
references, while these tools can only do global re-
definitions. Detours requires altering the text pages
and performs very intrusive changes in the program



(e.g. it changes memory references for the original
definition). Symbols redefined by SLI will persist
until the program exits. On the other hand, the So-
laris runtime-linker support is a platform—specific
approach that focuses on process monitoring.

6 Conclusions

In this article, we describe DITOOLS, an infrastruc-
ture devoted to extend applications at run time,
and to tune execution environments by dynamically
changing bindings between binary modules.

DITools works at application level, and does not
require superuser intervention. Moreover, it uses
standard object file formats and common tools, and
preserves backwards compatibility. We believe that
DITooLs demonstrates to which point current load-
ing and execution services can be improved to ease
the job of researchers, developers and users.

We have also evaluated the overhead of DITOOLS.
The evaluation shows that it depends on the dy-
namic usage of extensions. We believe that this
overhead can be tolerated in the most common uses
of this tool.

DITooLs is currently being used for monitoring
and trace collection purposes, as well as to build
research prototypes for scheduling and I/O re-
search. A distribution of the tools is available for
research and academic purposes. Please consult
http://www.ac.upc.es/recerca/CAP/DITools.
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