Proceedings of 2000 USENIX Annual Technical Conference

San Diego, Cdlifornia, USA, June 18-23, 2000

PANDORA: A FLEXIBLE
NETWORK MONITORING PLATFORM

Simon Patarin and Mesaac Makpangou

USENIX

ssssssssssssssssssssssssssssssssss

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Pandora: A Flexible Network Monitoring Platform

Simon Patarin and Mesaac Makpangou
INRIA SOR Group

Rocquencourt, France

Simon.Patarin@inria.fr, Mesaac.Makpangou@inria.fr

Abstract

This paper presents Pandora, a network monitoring platform that captures packets using purely passive

techniques.

Pandora addresses current needs for improving Internet middleware and infrastructure by

providing both in-depth understanding of network usage and metrics to compare existing protocols. Pandora
is flexible and easy to use and deploy. The elementary monitoring tasks are encapsulated as independent
entities we call monitoring components. The actual packet analysis is performed by stacking the appropriate
components. Pandora also preserves user privacy by allowing control of the “anonymization” policy. Finally,
the evaluation we conducted shows that overheads due to Pandora’s flexibility do not significantly affect
performance. Pandora is fully functional and has already been used to collect Web traffic traces at INRIA

Rocquencourt.

1 Introduction

Network monitoring is essential for the improvement
of Internet performance. It serves to capture usage
profiles, to evaluate the impact of Internet services
(e.g. replication and cooperative caching), to com-
pare the overheads of different implementations, and
to help debug complex distributed applications.

In recent years, several network monitoring tools
have been proposed. These include naturally tcp-
dump [11], and specialized software like BLT [2] and
HttpFilt [21] for HTTP extraction, and mmdump [1]
for multimedia monitoring. One must also men-
tion more generic platforms like IPSE [6] and Wind-
mill [12].

As the Internet grows, the demand for a flexible
monitoring system increases. Such a system can
be used to ensure good performance while keeping
pace with the rapid evolution of Internet protocols
and services by enabling rapid implementation of
dedicated monitoring tools.

Unfortunately, existing network monitoring tools re-
main too specific. They are designed to collect infor-
mation required for some particular analysis. They
often depend on a particular version of a protocol,
or a particular configuration of the underlying in-

frastructure. For instance, HttpFilt only works for
HTTP/1.0. TPSE assumes the existence of a gate-
way where one observes the entire traffic within the
monitored organization. Such dependencies make
most existing tools redundant if the targeted pro-
tocol evolves or the assumed configuration changes.
Also, it makes them difficult to adapt and cope with
new problems.

1 a flexible and ex-

This paper presents Pandora,
tensible network monitoring platform that can be
easily adapted to monitor new Internet protocols
or application-specific ones, while still offering good
performance. Pandora uses passive network moni-
toring to reconstruct high level protocols while keep-
ing track of lower level events. It provides basic
building blocks implementing the commonly used

analysis.

The rest of the paper is organized as follows: Sec-
tion 2 presents our design goals for Pandora. Sec-
tion 3 describes the architecture of the system, while
Section 4 describes how it is realized. Then, Sec-
tion 5 focuses on the implementation. Next, we con-
sider two examples of use of Pandora in Section 6;
then we discuss the performance of the system in
Section 7. Finally, we compare Pandora to related
work in Section 8 and present some concluding re-

1QOur platform is called Pandora to recall the potential
dangers of overly intrusive curiosity.

marks in Section 9.

2 Design Goals

Our design has four main goals: monitoring a sys-
tem should not affect the system’s behavior; the tool
should be fast enough to monitor high-bandwidth
links; user privacy must be preserved; and the tool
must be flexible and simple enough to allow reuse
in diverse applications.

2.1 Preserving the Quality of Service

A monitoring tool should perform its work without
being noticed by the system or its users. In partic-
ular, 1t should not introduce artificial perturbations
into the environment. It should also not degrade
the quality of service provided to the users of the
system.

Although easier to realize, we decided not to imple-
ment the tool as an active element of the system: a
proxy, for example, could be used to intercept the
traffic and to log information. However, such an ac-
tive tool necessarily has an impact on the system’s
performance; in the case of a failure, for example,
the monitored service could be interrupted.

Therefore, we decided to use passive network mon-
itoring. Such a tool captures the packets on the
network and treats them without interfering with
the actual traffic. This choice implies in particu-
lar that we must be able to deal with packet losses,
without the opportunity to request the sender for
packet re-transmission.

2.2 Performance Issues

A monitoring tool can be used to trigger a fast re-
action to certain events. For example, one could
decide to modify a Web cache’s configuration be-
cause of a decrease in the observed quality of ser-
vice. Therefore, the monitoring tool must be able
to process all packets in real-time; this means that
it cannot be designed only to store packets and pro-
cess them off-line.

Our system must be able to monitor medium-speed
links, such as a 100 Mb/s Ethernet and a T3 wide-
area link. Therefore, the design of the tool must be
light enough to accommodate such a traffic. More-
over, it should be able to deal with load peaks which
can occur frequently in networking systems.

2.3 Preserving User Privacy

A serious concern when monitoring a system is to
preserve user privacy. Therefore, we should not out-
put personal information such as which Web pages a
particular user has accessed. Yet, to have enough in-
sight into the system’s behavior to provide interest-
ing results, we often need precise information about
user behavior.

We consider that there must be a tradeoff between
user privacy and the level of details that are pro-
vided by the monitoring tool. Depending on the
planned use of the collected information, different
levels of trace “anonymization” must be used.

Therefore we consider that privacy should be treated
as a policy (hence flexible) and that the system
should only enforce a level of privacy compatible
with the study to be done.

2.4 Ease of Use and Deployment

We anticipate that the monitoring system will be
used for various purposes: gathering traffic traces for
several Internet protocols (e.g. HT'TP, DNS or ICP),
comparing network overheads for different protocols
stacks, or debugging distributed applications. This
list of possible uses of the system is of course not,
exhaustive.

An administrator should be able to use the same
monitoring tool for numerous different purposes eas-
ily. Therefore, the system must provide useful de-
fault options while being easily customizable. More-
over, it should not require specific hardware, and 1t
should be portable across several, widely used, plat-
forms. Finally, new protocols arise every day that
people might want to analyze. Also, it should be
easy to add new protocol-specific elements to the
system.

3 Architecture

Pandora is designed as a stack of monitoring compo-
nents. Each component encapsulates an elementary
monitoring task (e.g. IP layer reassembly, TCP layer
resequencing, etc.). We first illustrate the problem
and 1ts solution with the example of HT'TP moni-
toring; then, we describe the general design of the
platform.

3.1 Example of HTTP Extraction

This example consists of gathering the Web traffic
generated by a given user community. Such traces
can lead to a better understanding of traffic pat-
terns, and hence to the design of better protocols
and tools.

The protocol we need to monitor here is HTTP /1.1
[5]. HTTP follows a request/response model. Meta-
data carried by headers are line-oriented and use
textual attributes and values. Version 1.1 of the
protocol introduces the possibility of making persis-
tent connections between clients and servers and of
pipelining requests and responses (not waiting for
the other endpoint to reply before sending addi-
tional data on the same connection).

The libpcap [10] library is used to capture any
packet which passes through the network. It pro-
vides raw network packets, 1.e. arrays of bytes. To
extract the useful information from such packets, we
need to reconstruct the HT'TP sessions. First, we
remove the link layer headers (the Ethernet head-
ers, for example). This provides an IP packet. TP
packets can be fragmented when traveling through
the networks. Therefore, we need to reassemble
the fragments (based on the TP headers). Once
the reassembling is done, we can extract a TCP
packet. Based on the TCP headers, we can deter-
mine which TCP stream it is part of, its proper
place in the stream, etc. After demultiplexing and
ordering TCP packets, we obtain the HT'TP stream.
We finally have to parse the HT'TP header fields in
order to obtain the HT'TP meta-data. Finally, the
request meta-data must be matched with the corre-
sponding response meta-data before being output.

3.2 Basic Components

As one may notice from the above example, a few el-
ementary tasks appear, namely: IP reassembly, TCP
resequencing and HTTP request/response match-
ing. The only dependence between those tasks is
the order in which they are performed. These tasks
operate on packet flows rather than on individual
packets. A packet flow is a sequence of packets re-
lated to the same higher-level entity (an TP packet
for TP fragments, or a connection for TCP packets
for example) exhibiting temporal locality.

The notion of temporal locality depends on the na-
ture of the flow itself, and can be seen as a threshold
beyond which the flow is considered to be closed (a
similar but more restrictive definition is given in [4]).
In our example, a packet flow could be the set of all
fragments — including duplicated ones — forming
a single IP packet, or the set of all TCP packets sent
from a browser to a Web server, containing HTTP
requests.

To capture the separate tasks that must be per-
formed to produce the trace, and the order in which
they must be proceeded, we define two basic notions:
monitoring components and component stacks. A
monitoring component (or simply, component) is re-
sponsible for a specific elementary task, while the
stack is the structure where these components are
chained together.

A component may be considered as an operator on
packet flows: it takes some flow as input, performs
its work on it and then produces a flow of a differ-
ent nature as output. Thus a component designed
to perform IP reassembly transforms a flow of IP
fragments into a flow of TP packets.

A component relies only on the properties of its in-
put. In particular, it does not have to know about
the other components in its stack. This lets us re-
place a component by an equivalent one, or to intro-
duce new components into the stack with no effect
on the rest of the stack. For example, imagine that
we want to encrypt the data collected (a perfectly
legitimate issue); we have only to add a component
that will encrypt IP addresses and URLs, after the
HTTP protocol has been parsed.

Many different monitoring experiments can be con-
ducted without effort, if all the required components
exist, or at minimal cost concerning only the de-

velopment of the missing ones. Using components
makes it easier to debug the monitoring path; effort
can be concentrated on the optimization of compo-
nents that constitute bottlenecks.

The stack determines how components are chained.
It represents an ordered set of components through
which packets flow from one end to the other. It 1s
important to notice that, in such a structure, each
component has exactly one input and one output;
in other words, there i1s a single, linear data flow
for the entire stack. Such a simple stack model has
two drawbacks. First, packets that belong to dis-
tinct connections are merged into an unique flow.
This implies that every components that operates
on separate packet flows will have to perform the
demultiplexing on its own, since having only a sin-
gle output is equivalent to re-multiplexing every-
thing before passing packets to the next component.
With respect to our example, packets coming from
all HTTP connections are captured and delivered
to the system interleaved, and demultiplexing must
occur at IP, TCP and HTTP level. Second, this sim-
ple stack model (with a unique data flow) makes it
impossible to shortcut some of the processing com-
ponents, even if we know a prior: that this will not
be necessary: all packets must pass through each
component. For example, we stated that IP packets
could be fragmented, yet rather few are. Given that
this property can be determined early (by simply
looking at TP flags), why should we make them all
pass through the reassembly components (demulti-
plexing and effective reassembly)?

These may look like straight-forward, standard prob-
lems, but it requires some careful thought to fit
them easily into the component framework.

3.3 Generalized Stacks

The two limitations of the simple stack model we
mentioned above have led us to extend this model
by introducing control components. They allow sev-
eral data flows to coexist in a single stack. This ap-
proach permits us to save resources and avoids un-
necessary component traversals. Furthermore, tak-
ing flow control mechanisms out of processing com-
ponents permits component developers to concen-
trate their efforts on the precise functionality they
want to implement.

The control components are the following;:

Switch component: It permits packets to follow
along different processing paths: configured
with a fixed number of alternative paths, it
can forward a packet to any of them, accord-
ing to some hard-coded internal logic. In our
case-study, it may be used with the IP re-
assembly component: routing IP fragments
to the reassembly sub-stack but routing com-
plete packets directly to TCP packet extrac-
tion component.

Demux component: Such a component dynam-
ically instantiates a dedicated sub-stack for
each new packet flow 1t detects. It then for-
wards the packets to their relevant stack. Once
a session is finished (e.g. a TCP connection is
closed), the sub-stack is removed.

Figure 1 shows one solution for the Web trace col-
lection example that uses switch and demux compo-
nents. The “connection demux” receives TCP pack-
ets from the IP to TCP extraction component. It
identifies which flow each packet belongs to. For
each flow, it dynamically creates a “direction de-
mux” which in turn identifies in which direction of
the flow each packet is going (from the client to the
server, or the other way round). TCP packets are
then passed to components performing TCP rese-
quencing and HTTP reconstruction. Finally, the
two opposite HTTP streams (i.e. a stream of re-
quests and the corresponding stream of responses)
are given to the HTTP matching component, which
determines which request corresponds to which re-
sponse.

3.4 Benefits of the Stacking Approach

Flexibility: One can easily replace one monitoring
component by an alternative implementation
to adapt to a specific situation, or to test new
algorithms.

Evolvability: Protocols are evolving rapidly and
independently from each others. The use of
components permits easy adaptation to these
changes.

Extensibility: It is straight-forward to add new
protocol extraction capability, just by adding
a new component to an existing (lower-level)
stack.

Modularity: Each task is encapsulated in its own
component which enforces a clear division be-
tween mechanism and policy, eases readability

. Fragment switch
IP addr. and
proto demux

. IPreassembly
IPto TCP

. LinktoIP

O Switch filter

|:| Processing filter

x
g
°
c
k=)
&
=
<
Q
O

. Direction demux
TCP resequencing
TCPtoHTTP

. HTTP matching

(] Demux filter

Figure 1: The component stack used in the Web traffic collection example. The shaded components are
those dynamically created by the “connection demux” when a new TCP flow is identified.

and has proven very valuable for maintaining
existing code and debugging. There are no
obscure side effects, nor hidden dependencies.

3.5 Configuration

Figure 2 presents a sample configuration file for an
application that logs packets in distinct log files ac-
cording to their transport layer protocol (TCP, UDP
or ICMP). In details: packets first flow through
the ipfragswitch switch component. This compo-
nent makes IP fragments go into the IP reassembly
sub-stack and let the other not-fragmented pack-
ets skip this part. Inside the IP reassembly sub-
stack, packets are demultiplexed according to their
IP addresses, protocol number and identifier in the
ipfragdemux demux component. Then the ipreass
component reassembles demultiplexed IP fragments.
The timeout specified in the corresponding option
section tells the filter to flush any incomplete packet
after a 60 seconds inactivity period. At this point,
all TP packets reaching the ipproto component are
complete IP packets. This switch component for-
wards them to distinct sub-stacks according to their
transport protocol. The options it is given tells it
what are the actual branch indexes used. TCP pack-
ets go to the first one where they are parsed and
written to a log file. As are UDP and ICMP pack-
ets to the second and the third sub-stack, respec-
tively. Finally, all packets with a different protocol

skip this and are discarded.

The configuration file is made of several sections.
The stack section (beginning with a [stack] tag)
describes the components used and how they are
chained. We designed a small language to specify
this. Its grammar is presented in Figure 3. A stack
1s composed of a number of components. The simple
components are identified only with their name.?
The switch and demux components are described
by their name as well as the definition of their sub-
stacks: the demux is given the definition of the sub-
stack to instantiate when identifying a new session,;
the switch is given the list of sub-stacks to which it
can forward packets.

Other sections of the configuration file allow us to
set up options for any component mentioned in the
stack section. Such option sections start with the
name of the component enclosed in square brackets:
for example, [ipfragdemux]. In addition, compo-
nents of the same type are numbered from left to
right, starting at 0, in order of appearance. This is
needed in cases where several instances of the same
component are used, and one wants to set different
options for each instance. That is, one creates an
option section identified by this component name
followed by its rank (e.g. [output(0)]). Unnum-

2The “-” connector is optional and is used only for clarity
(e.g. one can alternatively use componentl - component2 or
componentl component?).

beginning of stack definition
[stack]
ipfragswitch (
ipfragdemux <
ipreass
>
) ipprotoswitch (
tcpscan output |
udpscan output |
icmpscan output
) discard
end of stack definition

beginning of options sections
[ipreass]
timeout = 60

[ipprotoswitch]
tcpbranch = 0
udpbranch = 1
icmpbranch = 2

[output(0)]
static file = tcp_pkts.dat

[output(1)]
static file = udp_pkts.dat

[output(2)]
static file = icmp_pkts.dat
end of option sections

Figure 2: Configuration file for a stack that reassem-
bles fragmented packets and logs TCP, UDP and
ICMP packet into different files. Packets of other
transport level protocols are discarded.

bered option sections apply to all components of
the specified type. Inside an option section, each
line describes the setting of an option according to
the following syntax:

optionname = option_value

Values can be of numeric or string type. String type
values are processed by a function defined by the
component developer. By default, this function is
evaluated each time the component is created. Yet,
this may not be always suitable; prefixing option
name with the keyword static guarantees that the
function will only be evaluated once.

4 Stack Instantiation

Once the stack and component options have been
parsed, one has to instantiate the stack. This in-
volves dynamically building the sequence of compo-
nents and linking them appropriately. The difficulty

stack ::= component+

component ::= simple | demux | switch
simple ::= fname ’-’7

demux ::= fname ’<’ stack ’>’

switch ::= fname ’(’ stack (’|’ stack)#* ’)’
fname c:= [a-zA-Z]+

Figure 3: Stack definition grammar.

stems from the fact that none of the components
know the topology of the processing graph. To ad-
dress this problem we need an independent entity
which holds this graph and the configuration pa-
rameters to be passed to different instances of com-
ponents. We call this entity the dispatcher.

4.1 Component Creation

The dispatcher is responsible for creating compo-
nents — which includes properly setting any dy-
namic options it might need, and building the or-
dered sequence of components specified in the stack
description.

When created, a component does not know anything
about other components in the stack. If it wants to
pass a packet to its successor, it must first ask the
dispatcher for a pointer to its successor (which it
stores for future accesses). If the requested compo-
nent does not exist, the dispatcher instantiates it,
then returns its reference to the calling component.
This is the case for simple components: successors
are never created until they are accessed. This way,
the dispatcher does not need to keep track of previ-
ously created components.

However, this technique poses problems for demux
and switch components: the ending components of
every created branches must share the same succes-
sor (the multiplexing component). To address this
issue, we note that there is a one-to-one mapping be-
tween the demultiplexing and the multiplexing, and
that demultiplexing always occurs before multiplex-
ing in the graph. It is therefore sufficient to create
the multiplexing component along with the demul-
tiplexing one (be it demux or switch). Then, each
component in a demultiplexed branch carries a ref-
erence back to its demultiplexing component (this

reference is passed dynamically when the compo-
nent is created). When an ending component asks
the dispatcher for its successor, the dispatcher re-
trieves the reference to the multiplexing component
from the demultiplexing one, by following a back-
pointer to the branch point.

4.2 Memory Management

As with their creation, destruction of components
is performed incrementally. The process starts with
a component notifying the dispatcher of its inten-
tion to destroy its successor (or one of them, if this
is a demultiplexing component). This notification
is then propagated by the dispatcher. It first asks
the target component to prepare for destruction.
Upon completion of this request, the dispatcher ef-
fectively destroys the component (and resets the
caller’s pointer to a nil value). The process iterates
up to the component at which the initiator’s branch
is multiplexed, where it stops. For a multiplexing
component, destruction preparation involves recur-
sively initiating a new destruction process for each
of its branches. Other components simply flush all
their unprocessed packets.

We have two ways to trigger component collection:
active and passive. Active collection occurs when a
component determines autonomously that its pro-
cessing is finished. It then notifies its predecessor®
that it can start the destruction process. This is
the case when an IP reassembly component receives
the last fragment of an IP packet. Passive collection
occurs for inactive components whose processing re-
mains unfinished either because the component has
no way to know 1t, or because of a packet drop. This
process is based on predetermined timeouts.

Pandora provides a generic framework to timeout
inactive components. A global clock 1s maintained
according to the time-stamps of incoming packets.
Then, each component has the possibility to regis-
ter itself for a specific timeout. When no packets
are passed to the component during the specified
period, the destruction process for that component
(and all its successors) is triggered.

It must be noted that the choice of timeout value
1s the result of a delicate tradeoff: too short a time-
out may interrupt ongoing connections, while large

3By way of the return value of the function used to pass
a packet to a successor component, or via the dispatcher.

timeouts might dramatically increase the memory
footprint of the application. There is no canonical
value: it depends on the nature of the observed traf-
fic and of the type of link being monitored.

4.3 Concurrent Processing

Pandora allows components to be executed concur-
rently insofar as the logical flow of packets is re-
spected. More precisely, it offers the possibility of
running some parts of a stack in different threads
on the same machine or even on distinct machines,
forwarding packets over the network.

We could, for example, allocate a thread to fetch
packets, to limit the risk of kernel queue overflow
(for kernel structure has a fixed size, whereas our
buffers are only limited by the available memory). Tt
is also possible to perform some kind of load balanc-
ing or to correlate several observations made from
different vantage points in cases where information
is not fully available at a single location. For exam-
ple we may think of HTTP requests and responses
flowing through two distinct links. Two distinct
kinds of components may be used to achieve this:
thread and I/O components.

Each thread component creates a new thread of ex-
ecution in the component stack. All packets added
to such a component are forwarded to the newly
created thread. In other words, they split the stack
into two parts, each of them being executed in an
independent thread. A thread component manages
synchronization — packets are added in a shared,
mutex-protected, FIFO — but relies on other com-
ponents being fully reentrant.

I/0 components are used to exchange packets across
the network. A TCP connection is established be-
tween an output component (acting as a client) and
an input component (acting as a server, thus al-
lowing packets coming from different machines to
be merged). Input components dispatch incoming
packets to the remainder of the stack. An adminis-
tration facility allows easy use of these components:
it sets up the TCP server, performs the necessary
configuration on the client side of the connection
(setting the name and incoming port of the remote
host) and monitors clients for crashes, restarting
them if necessary (although no state recovery is per-
formed).

5 Implementation

The software consists currently of about 15,000 lines
of C++ code. Beyond the core system, described
Section 4, we have implemented various monitoring
components — grouped into a library.

The list of components included in this library 1is
presented in Table 1. The library also provides all
data structures by these components (packet types,
hash functions, etc.).

6 Examples of Use

Pandora has been used in two different, but related,
fields: Squid cache and Web traffic collection. These
two examples exercise the different features of Pan-
dora presented so far, and its ability to handle trans-
actional protocols. The cache monitoring example
was set up in very short amount of time (it took
only a few hours, starting from scratch).

6.1 Cache Monitoring

The Internet Cache Protocol [19] permits caching
proxies to cooperate (in particular Squid [18, 20]
caches).

Basically, for each miss, a cache emits ICP queries
to know if one of its siblings possess the requested
document. Each peer responds in turn with a hit,
a miss, or an error message. In a second phase, the
original cache forwards the request either to a sib-
ling that responded with a hit, or to the original
server. Each message is distinguished by an unique
32-bit identifier and uses UDP as the transport pro-
tocol.

Figure 4 shows the stack we use to evaluate the over-
heads caused by this protocol in terms of additional
delay and bandwidth usage.

The first part of the stack (up to ipcnxdemux) is
dedicated to IP reassembly and has the same struc-
ture we discussed in Section 3. The ipcnxdemux
component demultiplexes packet according to their
source and destination IP addresses, but no discrim-
ination is made on the direction of the connection

[stack]
ipfragswitch (
ipfragdemux <
ipreass
>
) ipcnxdemux <
scanudp - scanicp - icpdemux <
matchicp
>
> output

Figure 4: Cache monitoring stack definition.

(i.e. we make no distinction between packets com-
ing from the requesting host or from the respond-
ing host). The scanudp component extracts UDP
packets from IP ones and passes them to scanicp
component. The latter in turn produces ICP pack-
ets. These are demultiplexed according to their re-
quest identifier in the icpdemux component. Then,
given our demultiplexing steps, only the two match-
ing ICP messages are finally passed to the matchicp
component, whose only work 1s to associate them in
a single ICP transaction packet.

6.2 Web Traffic Collection

We already introduced HTTP extraction in Sec-
tion 3. This application* is meant to help to char-
acterize the Web activity of a community of users.
This information can then be used to dimension
cache infrastructure for example (as in Saperlipo-
pette!l [15]), or to give hints about which sites are
worth mirroring.

Figure 5 shows the configuration file of the Web traf-
fic collection system.

[stack]
tcpscan - tcpcnxdemux <
tcpdirdemux <
tcpreseq - httpscan
> anonymize - httpmatch
> output

Figure 5: Web traffic collection stack definition.

The tcpenxdemux component demultiplexes packets
according to their connection identifier (the 4-tuple
IP address and port for the source and the destina-
tion) independent of the direction of the flow. The

4 A Web traffic collection experiment has actually been led
at INRIA for one month using this software.

Monitoring Components

PcapHandler Encapsulation of the libpcap library
ICMPScan Extracts ICMP packets from IP packets
TCPScan Extracts TCP packet from IP packet

UDPScan Extracts UDP packet from IP packet

ICPScan Extracts ICP packet from UDP packet
RPCScan Extracts RPC packet from UDP packet
DNSScan Extracts DNS packet from UDP packet
HTTPScan Extracts HT'TP message from TCP packet flow
IPReassembly Reassemble IP fragments into IP packet
TCPResequence Resequence TCP packets in TCP packet flow
HTTPMatch Matches HTTP request and response into HTTP transaction

GenMatch (template)

Generic component allowing to produce transaction packets for “simple” protocols (cur-
rently used for ICP, RPC, DNS).

Passes to the first component of the stack the packets transmitted over the network between

Outputs packets to log file (dealing with file rotation), console or to another instance of

Demux Components
GenDemux (template)
TCPPortDemux

Switch Components
IPFragSwitch
IPProtoSwitch

Input

two instances of Pandora
Output

Pandora through the network
Discard Discards any packet it receives
Thread

Inserts a thread into the processing path

Generic demux component (given the input packet type and the hash function to apply)
Demultiplexes TCP packets according to their port number

Switches between fragmented and non-fragmented IP packets
Switches between transport level protocols of IP packets (currently TCP, UDP, ICMP)

Table 1: Existing components and packet types in Pandora.

separation of both flows is made by the tcpdirdemux
component. Once TCP packets are resequenced, the
httpscan components extract HTTP messages (re-
quests and responses) from each flow. Then, these
messages are multiplexed, so that requests and their
corresponding responses belong to the same flow.
After being anonymized, requests and responses are
matched to each other (without any interference
from messages of other connections).

7 Evaluation

Performance is a major issue that we set out to ad-
dress. Indeed, packets are buffered by the system
in a kernel queue which is emptied by the monitor-
ing process. When the queue is filled up,® packets
are discarded by the system. It is a common be-
lief that flexibility has a price: this could jeopardize
our performance goal. After having described our
experimental environment, we will show the results

5With the BSD Packet Filter [13] on a DEC OSF1 oper-
ating system, this queue has, by default, a maximum size of
256 packets.

of several tests meant to measure respectively the
overheads due to our flexible design, those related
to demultiplexing and Web traffic collection. Fi-
nally we will quantify the effective throughput of
Pandora when used to collect Web traffic in more
realistic conditions.

7.1 Experimental Environment

In order to stress our system we used several traces
collected by tcpdump on the link connecting INRIA
with the outside world. The traces were read from
a file on a local disk, and the results presented in
the following sections correspond to the arithmetic
mean of 50 runs of the same test (we always present
the standard error of these measurements).

The workstation used to run these tests was a DEC
Personal Workstation using a 21164A processor at
500 MHz, with 684 MB of RAM. We chose relatively
small trace files (500000 packets) so that their en-
tire content can remain in main memory between
successive runs.

All times measured are the sum of system and user
execution time (in seconds) as given by getrusage
on this workstation (still used for light office tasks
at the same time).

7.2 Flexibility Support Overhead

In this section we will quantify the overheads di-
rectly linked to our design: transforming layering
and demultiplexing into “first-class” entities.

7.2.1 Layering
4500
any
udp --=--
4000 Frop v
yn e
3500
3000
a
% 2500
T 2000
3
1500
1000
500
ok
0 5 10 15 20 25 30
#layers

Figure 6: Evaluation of layering overhead, using the

ANY, SYN, TCP and UDP traces.

To measure the cost of layering we ran Pandora
against four traces (whose characteristics are pre-
sented in Table 2) with a variable number of iden-
tical components that are only passing packets to
their successor component as soon as they receive
them. After traversing these identity components,
packets are silently discarded. This gives us the
minimal processing time per packet per component.
We also ran a test with no identity component; this
acts as a reference: its execution time represents the
amount of time spent in reading the trace file, and
in the creation and the destruction of packets.

Figure 6 plots the measured overhead (compared to
our reference) for each of the traces. This shows
approximatively 130 ms® per component overhead

6 We obtained this value by computing the mean overhead
by number of layers over each trace, and then performing
a linear regression analysis. The squared correlation factor
(r?) is equal to 0.9996.

for 500,000 packets (i.e. 260 ns per packet, per com-
ponent). As one might expect, this value does not
depend on the size of packets. This overhead is rel-
atively small, compared to the cost of effective com-
putation time. We can safely say that the layering
structure of Pandora has little impact on perfor-
mance.

7.2.2 Demultiplexing

We want to quantify the cost of demultiplexing pack-
ets according to their connection identifier. The test
consists of extracting TCP packets from traces with
various characteristics (presented in Table 3), de-
multiplexing them, passing them through the iden-
tity component and finally discarding them, while
timing out (with different timeout values) inactive
demultiplexed branches. Our reference is the time
taken to extract TCP packets from the traces.

The results are shown in Table 4. It appears that,
though the demultiplexing problem is very simple,
its cost is rather high. It ranges from 2.1 us to
more than 20 us per packet, and has an average
around 8 us for the two “realistic” traces: TCP and
WWW. First, this confirms that the “layering only”
overhead is small (only 0.26 us per packet) and high-
lights the importance of the algorithm and the data
structures used for demultiplexing. Second, it shows
that i1t 1s very difficult to predict what the cost of
demultiplexing will be: it depends on the size of the
demultiplexing table and the ratio of packets insert-
ing new entries in the map, and the quantities are
very hard to estimate a prior:.

7.3 Web Traffic Collection Overhead

As a final evaluation we use our HTTP reconstruc-
tion example. The tasks performed are only a subset
of those we previously described: we did not perform
TP reassembly (we filtered out fragmented packets),
nor the on-line anonymization. As for the previous
test, we timeout idle connections (with a timeout
value of 255 seconds). To compute the overhead, we
take for reference the time needed to reorder TCP
packets.

Results are shown in Table 6. It presents the cost
of some realistic processing. On average, we require
about 50 ps per packet. We see then that the layer-
ing cost (i.e. splitting into two steps what could be

Table 2:

Name ANY TCP UDP SYN
Packets 500000 | 500000 | 500000 | 500000
Size (MB) 288.9 268.0 181.2 29.6

Characteristics of traces used for layering overhead evaluation.

Trace SYN TCP WWW WWW-PP
Total Packets 500000 500000 500000 500000
Processed Pkts 500000 334771 317572 363107
Unique Connect. (%) unknown 11.9 9.8 0.7
Timeout Value (s) 2 30 255 2 30 255 2 30 255 2 30 255
Map Size (avg) 31 312 2486 780 5788 19736 47 307 1905 19 84 393
Insert/Total (%) 98.7 | 93.9 | 93.7 || 16.9 | 12.0 | 11.8 || 185 | 11.1 | 10.0 || 0.4 | 0.7 | 0.7

Table 3: Characteristics of traces used for demultiplexing evaluation. The SYN trace is a collection of
WWW-PP is a trace collected when repeatedly requesting the

connection establishment TCP packets.

same document from a Web server with an unique client host.
TCP and WWW traffic, respectively. The number of processed packets varies since we are discarding
acknowledgment-only packets in this experiment. The Map Size line is the mean map size in which a new
entry was to be inserted. The Insert/Total line indicates the ratio between the number of created entries

in the map over the total number of processed packets.

Tim. SYN TCP WWW WWW-PP
2 [13.22 (0.14%) | 8.21 (0.15%) | 7.98 (0.83%) | 2.76 (0.65%)

30 | 18.40 (0.10%) | 8.11 (0.20%) | 7.54 (0.26%) | 2.08 (0.40%)
255 | 20.3 (0.07%) | 7.1 (0.26%) | 9.1 (0.32%) | 3.8 (0.83%)

Table 4: Evaluation of demultiplexing overhead. Numbers show the average overhead in us per packet

demultiplexed, for the trace and timeout value specified.

Name WWWI1 | WWW2 | WWW3 | WWW-PP
Total Packets 500000 500000 500000 500000
Processed Packets 317572 315992 315826 363107
Unique Connections 31238 24443 21067 2422
Size (MB) 256.6 302.0 272.6 307.5
Requests 21155 21997 18636 119168

Table 5: Characteristics of traces used for HT'TP extraction experiments.

TCP and WWW are “real” traces of

Trace

WWWI1

WWWwW2

WWW3

WWW-PP

Overhead

278 (0.17%)

63.0 (0.09%)

486 (0.11%)

51.1 (0.12%)

Table 6: Average overhead (in pus per packet) for HT'TP extraction.

done in one) now represents only 0.52 % of the av-
erage time to process a packet. Differences between
execution time mainly comes from the different av-
erage length of requests.

7.4 Web Traffic Collection Throughput

Given that HTTP reconstruction is in fact a real
application, we also measure its global throughput.
Compared to other tests, this involves an additional
step: writing records to a log file. These runs, more
than per-packet costs, give us an idea of the max-
imum bandwidth such an application can monitor
without dropping packets. The packets are given to
the components at an almost constant rate, which
differs greatly from real network conditions.

Table 7 shows the results of these tests. This leads
us to think that Pandora can cope with most me-
dium bandwidth links (100 Mb/s), without suffer-
ing from too many packet losses. Indeed, except
for the WWW-PP trace (where we spent nearly 35
% of our time in writing records), the throughput
achieved represents three quarters of the maximum
bandwidth. Yet, these results show that Pandora is
not fast enough to monitor high bandwidth network,

dedicated to HTTP (like ISP backbones).

8 Related Work

We borrow the stacking approach from several plat-
forms, in various domains. Well known examples
include Ficus [8], #-Kernel [9], Horus [17] and En-
semble [7]. To the best of our knowledge, it has
never been used for network monitoring tools.

Some intrusion detection systems (IDS) have ad-
dressed similar issues. In particular, Network Flight
Recorder [16] and Bro [14]. Such tools are used to
detect network attacks in real-time, and allow fast
response. They both split their processing of incom-
ing packets into distinct stages, each being the re-
sponsibility of a specific component. This approach
gives such tools the flexibility and the extensibil-
ity they require (one cannot know what kind of at-
tack will have to be monitored in the future). They
also provide an advanced configuration language to
specialize the behavior of the engine. Compared to
them, Pandora, uses finer-grained components, and

its configuration relies more on the chaining of spe-
cialized components. IDS have a fixed-size stack
because packet processing to be performed is well-
known and is not likely to change. This allows bet-
ter performance (we saw Section 7.2 that layering
has still a cost), but prevents from using the tool
for a different goal.

Among existing monitoring tools, tcpdump [11] was
the first to be widely used. Tts output (a line per
packet received) is invaluable for simple network
monitoring purpose. For complex cases, the soft-
ware offers the possibility of dumping a trace of com-
plete packet contents for off-line analysis. Yet, this
approach may not be acceptable in situations where
the volume of data is too big — on busy, high-speed
links, it 1s not uncommon to collect more than 1
Gigabyte of data within 15 minutes.

Tan Goldberg’s TPSE [6] is another recent approach
to network monitoring: built as Linux kernel mod-
ules, it promises good performance. Yet, such con-
struction does not allow portability and complicates
the development of the tool itself. Unfortunately,
this software has not been sufficiently documented,
preventing us from further investigation.

Windmill [12] is the closest tool to Pandora and
looks very similar in spirit to it. Windmill is a plat-
form designed to evaluate protocol performance, via
a set of dynamically loaded experiments. Its authors
focused on large set of such experiments, each using
possibly overlapping components to match their in-
put packets. This lead them to develop their own
packet filter (WPF) and to design their protocol
modules to avoid redundancy among experiments
(e.g. mnot reassembling twice TP fragments needed
by two distinct experiments). Windmill implements
protocol extraction through a set of modules stati-
cally chained to each other: the inner-most module
— 1.e. the higher protocol level — recursively calls
lower layers, first to let them update their internal
state, and then to ask for information they need.
For example, the BGP module first lets the TCP
module process the packet, and only then asks TCP
whether the packet is carrying a FIN flag. In con-
trast to Pandora, Windmill does not use a “pure”
stacking approach and thus perfectly illustrates ben-
efits and drawbacks of both techniques. For exam-
ple, with Pandora, adding or removing data encryp-
tion support, or changing of encryption algorithm is
a simple matter of configuration that can be done
at run time. Also, implementing an IPv6 module
in Windmill can be tricky. On one hand, if we

Trace WWWI1 WWW2 WWW3 WWW-PP
Mb/s | 88.3 (0.18%) | 75.2 (0.19%) | 75.1 (0.12%) | 44.8 (0.12%)
reqs./s 868 653 612 2600

Table 7: Throughput of HT'TP extraction.

use different interfaces from the IPv4 module, all
transport-layer modules have to be updated. On
the other hand, if the interface is the same, this
prevents from using both TPv4 and IPv6 layers in
the same program. However, Windmill should out-
perform Pandora when executing similar tasks.

With respect to Web traffic monitoring, which moti-
vated the development of Pandora in the first place,
several tools have been proposed in the recent past.

HttpFilt and HttpDump [21] were one of the first at-
tempts to construct such specialized tools. No other
tool have achieved such complete on-line process-
ing of packets. Unfortunately, their limited perfor-
mance have lead the authors to give up their devel-
opment, restricting them to only HTTP/1.0 trans-
actions.

BLT [2, 3] is the more promising one. It is meant
to provide on-line HTTP traces, related with lower-
layers events (TCP aborted connections, packet loss
rate or duplicated, etc.) at a high performance level.
With a machine comparable to ours (a 500-MHz Al-
pha workstation), BLT was able to capture a 12 day
trace on an FDDI ring, handling more than 150 mil-
lions packets a day (an average of about 1750 pack-
ets per second) with a packet loss rate of less than
0.3%. Compared to Pandora, BLT claims better
performance. However, unlike Pandora, BLT per-
forms HTTP request/response matching (which is
an essential stage in Web logging) off-line.

We regret that none of these recent monitoring tools
(namely TPSE, Windmill and BLT) have been pub-
licly released so far, which prevented us from further
comparing them with our tool and design choices.
This is also partly why we decided to develop Pan-
dora from scratch.

9 Conclusion and Future Work

We presented Pandora, a passive network monitor-
ing platform. We discussed its basic components

and how they could be used to set up different mon-
itoring systems at a very low cost. We presented a
performance evaluation that supports the claim that
Pandora is an efficient flexible continuous monitor-
ing tool, that is: it can run 24 hours a day, 7 days
a week. It allows true on-line analysis of network
protocols, up to the higher levels — including anal-
ysis beyond strict application level protocols, such
as HTTP matching. The use of components makes
it easy to extend the platform.

Nevertheless, Pandora still needs improvements at
various levels. First the stack configuration process
should benefit from a more user-friendly interface.
We also plan to implement a tool that can check
stack description validity, in order to avoid run-
time errors when feeding a component with pack-
ets it does not expect. Last but not least, we must
continue developing monitoring components and im-
proving the existing ones.

Pandora has already been used to retrieve HTTP
traces during a one month period (representing a to-
tal amount of more than six million requests). These
traces were then used in Saperlipopette! [15], a tool
designed to help dimension proxy cache infrastruc-
ture.

More generally, Pandora is meant to facilitate the
development of access infrastructure in the ever-
growing Internet. It can also be used as a way
to compare the various solutions offered to address
specific problems. The number and the diversity of
tools developed by the research community in the
recent past that are related to these issues prove
that it corresponds to a real need, and highlight as
well the lack of a flexible monitoring tool that could
satisfy these.

Acknowledgments

We owe to thank the anonymous reviewers and our
shepherds Vern Paxson and Greg Minshall for their
helpful comments. Also thanks to ITan Piumarta and

Thomas Colcombet for their useful suggestions from
the early beginning of this work.

Availability

The source code is publicly available under the GPL

license in a beta, undocumented version.

Docu-

mentation is planned to be written in the near fu-

ture.

See http://www-sor.inria.fr/projects/

relais/pandora/ for release information.

References

(1]

(7]

(8]

Ramon Caceres, Cormac J. Sreenan, and J. E. van der
Merwe. mmdump - a tool for monitoring multimedia us-
age on the internet. Technical Report TR 00.2.1, AT&T
Labs-Research, February 2000. http://www.research.
att.com/“ramon/papers/mmdump.ps.gz.

Anja Feldmann. Continuous online extraction of HTTP
traces from packet traces. Position paper for the W3C
Web Characterization Group Workshop, November
1998. http://www.research.att.com/"anja/feldmann/
w3c98_httptrace.abs .html.

Anja Feldmann, Ramon Caceres, Fred Douglis, Gideon
Glass, and Michael Rabinovich. Performance of Web
proxy caching in heterogeneous bandwidth environ-
ments. In Proceedings of the INFOCOM ’99 con-
ference, March 1999. http://www.research.att.com/
“anja/feldmann/papers/infocom99_proxim.ps.gz.

Anja Feldmann, Jennifer Rexford, and Ramon Cac-
eres. Efficient policies for carrying web traffic over
flow-switched networks. IEEE/ACM Transactions, De-
cember 1998. http://www.research.att.com/"anja/
feldmann/papers/ton98_flow.ps.gz.

Robert Fielding, Jim Gettys, Jeffrey Mogul, Henrik
Frystyk, and Tim Berners-Lee. Hypertext Transfer Pro-
tocol — HTTP/1.1. Request for Comments 2068, Jan-
uary 1997. ftp://ftp.isi.edu/in-notes/rfc2068.txt.

Steven D. Gribble and Eric A. Brewer. System de-
sign issues for Internet middleware services: Deduc-
tions from a large client trace. In Proceedings of
the 1997 Useniz Symposium on Internet Technologies
and Systems (USITS-97), Monterey, CA, December
1997. http://www.cs.berkeley.edu/“gribble/papers/
sys_trace.ps.gz.

Mark Hayden. The ensemble system. Techni-
cal Report TR98-1662, Cornell University, January
1998. http://cs-tr.cs.cornell.edu/Dienst/UI/1.0/
Display/ncstrl.cornell/TR98-1662.

John S. Heidemann. Stackable layers: An architecture
for file system development. Technical Report UCLA-
CSD 910056, University of California, Los Angeles,
CA (USA), July 1991. http://www.isi.edu/"johnh/
PAPERS/Heidemann9ic.ps.gz.

(9]

10]

(11]

(12]

(13]

(14]

(18]

(16]

(17]

(18]

(19]

(20]

(21]

Norman C. Hutchinson and Larry L. Peterson. The z-
Kernel: An architecture for implementing network pro-
tocols. IEEE Transactions on Software Engineering,
17(1):64-76, January 1991. ftp://ftp.cs.arizona.
edu/xkernel/Papers/architecture.ps.

Van Jacobson, Craig Leres, and Steven McCane.
libpcap. software (latest release: version 0.4), June

1989. ftp://ftp.ee.1lbl.gov/libpcap.tar.Z.

Van Jacobson, Craig Leres, and Steven McCane.
tcpdump. software (latest release: version 3.4), June

1989. ftp://ftp.ee.lbl.gov/tcpdump.tar.Z.

G. Robert Malan and Farnam Jahanian. An exten-
sible probe architecture for network protocol perfor-
mance measurement. In Proceedings of ACM SIG-
COMM 98, Vancouver, British Columbia, Septem-
ber 1998. http://www.eecs.umich.edu/ " rmalan/

publications/mjSigcomm98.ps.gz.
Steven McCanne and Van Jacobson. The BSD packet

filter: A new architecture for user-level packet capture.
In Proceedings of the 1998 Winter USENIX conference,
San Diego, California, January 1993. http://www.ntua.
gr/rin/docs/bpf-usenix93.ps.

Vern Paxson. Bro: A system for detecting net-
work intruders in real-time. In Proceedings of
the 7th USENIX Security Symposium, San Antonio,
TX, January 1998. ftp://ftp.ee.lbl.gov/papers/
bro-usenix98-revised.ps.Z.

Guillaume Pierre and Mesaac Makpangou. Saper-
lipopette!: a distributed Web caching systems evalua-
tion tool. In Proceedings of the 1998 Middleware confer-
ence, pages 389—405, September 1998. http://www-sor.

inria.fr/publi/SDWCSET_middleware98.html.

Marcus J. Ranum, Kent Landfield, Mike Stolarchuk,
Mark Sienkiewicz, Andrew Lambeth, and Eric Wall. Im-
plementing a generalized tool for network monitoring.
In Proceedings of the Eleventh Systems Administration
Conference (LISA ’97), San Diego, California, October
1997. http://www.usenix.org/publications/library/
proceedings/lisa97/full_pape¥rs/O1.ranum/O1.pdf.

Robbert van Renesse, Kenneth P. Birman, Roy Fried-
man, Mark Hayden, and David A. Karr. A frame-
work for protocol composition in horus. In Proceed-
ings of Principles of Distributed Computing, August
1995. http://www.cs.cornell.edu/Info/People/rvr/
papers/podc/podc.html.

Wessels. The Squid
cache. National Laboratory for
work Research/UCSD, software,

//wwu.squid-cache.org/.

Duane Wessels and K. Claffy.
tocol (ICP), version 2. National Laboratory for Ap-
plied Network Research/UCSD, Request for Comments
2186, September 1997. ftp://ftp.isi.edu/in-notes/
rfc2186.txt.

Duane Wessels and K. Claffy. ICP and the Squid web
cache. IEEE Journal on Selected Areas in Communica-
tion, 16(3):345-357, April 1998. http://www.ircache.
net/"“wessels/Papers/icp-squid.ps.gz.

Roland Wooster, Stephen Williams, and Patrick Brooks.
Httpdump: Network HTTP packet snooper.

ing paper, April 1996. http://ei.cs.vt.edu/ " succeed/
96httpdump/final_paper/paper.ps.gz.

Duane Internet object

Applied Net-
1997. http:

Internet Cache Pro-

work-

