Proceedings of 2000 USENIX Annual Technical Conference

San Diego, Cdlifornia, USA, June 18-23, 2000

SCALABLE CONTENT-AWARE
REQUEST DISTRIBUTION IN
CLUSTER-BASED NETWORK SERVERS

Mohit Aron, Darren Sanders, Peter Druschel,
and Willy Zwaenepod

USENIX

ssssssssssssssssssssssssssssssssss

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Scalable Content-aware Reauest Distribution in Cluster-based
Network Servers

Mohit Aron

Darren Sanders

Peter Druschel

Willy Zwaenepoel
Department of Computer Science, Rice University, Houston, TX 77005

Abstract

We present a scalable architecture for content-aware
request distribution in Web server clusters. In this
architecture, a level-4 switch acts as the point of
contact for the server on the Internet and distributes

the incoming requests to a number of back-end nodes.

The switch does not perform any content-based dis-
tribution. This function is performed by each of the
back-end nodes, which may forward the incoming
request to another back-end based on the requested
content.

In terms of scalability, this architecture compares
favorably to existing approaches where a front-end
node performs content-based distribution. In our
architecture, the expensive operations of TCP con-
nection establishment and handoff are distributed
among the back-ends, rather than being centralized
in the front-end node. Only a minimal additional
latency penalty is paid for much improved scalabil-

ity.

We have implemented this new architecture, and we
demonstrate its superior scalability by comparing
it to a system that performs content-aware distri-
bution in the front-end, both under synthetic and
trace-driven workloads.

1 Introduction

Servers based on clusters of workstations or PCs
are the most popular hardware platform used to
meet the ever growing traffic demands placed on
the World Wide Web. This hardware platform com-
bines a cutting edge price—performance ratio in the
individual server nodes with the promise of perfect
scalability as additional server nodes are added to

meet increasing demands. However, in order to ac-
tually attain scalable performance, it is essential
that scalable mechanisms and policies for request
distribution and load balancing be employed. In this
paper, we present a novel, scalable mechanism for
content-aware request distribution in cluster based
Web servers.

State-of-the-art cluster-based servers employ a spe-
cialized front-end node, which acts as a single point
of contact for clients and distributes requests to
back-end nodes in the cluster. Typically, the front-
end distributes requests such that the load among
the back-end nodes remains balanced. With content-
aware request distribution, the front-end addition-
ally takes into account the content or type of ser-
vice requested when deciding which back-end node
should handle a given request.

Content-aware request distribution can improve
scalability and flexibility by enabling the use of a
partitioned server database and specialized server
nodes. Moreover, previous work [6, 26, 31] has
shown that by distributing requests based on cache
affinity, content-aware request distribution can af-
ford significant performance improvements com-
pared to strategies that only take load into account.

While the use of a centralized request distribution
strategy on the front-end affords simplicity, it can
limit the scalability of the cluster. Very fast layer-
4 switches are available that can act as front-ends
for clusters where the request distribution strate-
gies do not consider the requested content [11, 21].
The hardware based switch fabric of these layer-
4 switches can scale to very large clusters. Un-
fortunately, layer-4 switches cannot efficiently sup-
port content-aware request distribution because the
latter requires layer-7 (HTTP) processing on the
front-end to determine the requested content. Con-
ventional, PC/workstation based front-ends, on the
other hand, can only scale to a relatively small num-

jel

ber of server nodes (less than ten on typical Web
workloads [26].)

In this paper, we investigate scalable mechanisms
for content-aware request distribution. We propose
a cluster architecture that decouples the request dis-
tribution strategy from the distributor, which is the
front-end component that interfaces with the client
and that distributes requests to back-ends. This has
several advantages: (1) it dramatically improves the
scalability of the system by enabling multiple dis-
tributor components to co-exist in the cluster, (2)
it improves cluster utilization by enabling the dis-
tributors to reside in the back-end nodes, and (3)
it retains the simplicity afforded by a centralized
request distribution strategy.

The rest of the paper is organized as follows. Sec-
tion 2 presents some background information for
the rest of the paper. In Section 3, we discuss
the cluster configurations currently used for sup-
porting content-aware request distribution and we
provide experimental results that quantify limita-
tions in their scalability. Section 4 describes our
scalable cluster design for supporting content-aware
request distribution. We discuss our prototype im-
plementation in Section 5 and Section 6 presents
experimental results obtained with the prototype.
Related work is covered in Section 7 and Section 8
presents conclusions.

2 Background

This section provides background information on
content-aware request distribution and the existing
mechanisms that support it.

2.1 Content-aware Request Distribu-
tion

Content-aware request distribution is a technique
employed in cluster-based network servers, where
the request distribution strategy takes into account
the service/content requested when deciding which
back-end node should serve a given request. In con-
trast, the purely load-based schemes like weighted
round-robin (WRR) used in most commercial high
performance cluster servers [11, 21] distribute in-
coming requests in a round-robin fashion, weighted

by some measure of load on the different back-end
nodes.

The potential advantages of content-aware request
distribution are: (1) increased performance due to
improved hit rates in the back-end’s main mem-
ory caches, (2) increased secondary storage scala-
bility due to the ability to partition the server’s
database over the different back-end nodes, and (3)
the ability to employ back-end nodes that are spe-
cialized for certain types of requests (e.g., audio and
video). Locality-aware request distribution (LARD)
is a specific strategy for content-aware request dis-
tribution that focuses on the first of the advantages
cited above, namely improved cache hit rates in the
back-ends [6, 26]. LARD improves cluster perfor-
mance by simultaneously achieving load balancing
and high cache hit rates at the back-ends.

In order to inspect the content of the requests, a
TCP connection must be established with the client
prior to assigning the request to a back-end node.
This is because, with content-aware request distri-
bution, the nature and target! of the client’s request
influences the assignment. Therefore, a mechanism
is required that allows a chosen back-end node to
serve a request on a TCP connection that was es-
tablished elsewhere in the cluster. For reasons of
performance, security and interoperability, it is de-
sirable that this mechanism be transparent to the
client. We discuss such mechanisms in the next sub-
section.

2.2 Mechanisms

A simple client-transparent mechanism for support-
ing content-aware request distribution is a relaying
front-end depicted in Figure 1. An HTTP proxy
running on the front-end accepts client connections,
and maintains persistent connections with all the
back-end nodes. When a request arrives on a client
connection, the connection is assigned according to
a request distribution strategy (e.g., LARD), and
the proxy forwards the client’s request message on
the appropriate back-end connection. When the re-
sponse arrives from the back-end node, the front-
end proxy forwards the data on the client connec-
tion, buffering the data if necessary. The principal
advantage of this approach is its simplicity and the

!The term target refers to a Web document, specified by
a URL and any applicable arguments to the HTTP GET
command.

V77%/Back-End
[] Client
B Front-End

—= request
—— response

Relaying front-end

w\\

TCP Handoff

Figure 1: Mechanisms for request distribution

ability to be deployed without requiring any modi-
fication of the operating system kernel on any clus-
ter node. The primary disadvantage, however, is
the overhead incurred in forwarding all the response
data from the back-ends to the clients, via the proxy
application.

TCP splicing [15, 12] is an optimization of the front-
end relaying approach where the data forwarding at
the front-end is done directly in the operating sys-
tem kernel. This eliminates the expensive copying
and context switching operations that result from
the use of a user-level application. While TCP
splicing has lower overhead than front-end relay-
ing, the approach still incurs high overhead because
all HTTP response data must be forwarded via the
front-end node. TCP splicing requires modifications
to the OS kernel of the front-end node.

The TCP handoff [26] mechanism was introduced
to enable the forwarding of back-end responses di-
rectly to the clients without passing through the
front-end as an intermediary. This is achieved by
handing off the TCP connection established with
the client at the front-end to the back-end where
the request was assigned. TCP handoff effectively
serializes the state of the existing client TCP con-
nection at the front-end, and instantiates a TCP
connection with that given starting state at the cho-
sen back-end node. The mechanism remains trans-
parent to the clients in that the data sent by the
back-ends appears to be coming from the front-end
and any TCP acknowledgments sent by the client
to the front-end are forwarded to the appropriate
back-end. TCP handoff requires modifications to
both the front-end and back-end nodes, typically via
a loadable kernel module that plugs into a general-

purpose UNIX system.

While TCP handoff affords substantially higher
scalability than TCP splicing by virtue of eliminat-
ing the forwarding overhead of response data, our
experiments with a variety of trace-based workloads
indicate that its scalability is in practice still limited
to cluster sizes of up to ten nodes. The reason is
that the front-end must establish a TCP connection
with each client, parse the HTTP request header,
make a strategy decision to assign the connection,
and then serialize and handoff the connection to a
back-end node. The overhead of these operations is
substantial enough to cause a bottleneck with more

than approximately ten back-end nodes on typical
Web workloads.

3 Scalability of a single Front-end

Despite the use of splicing or handoff, a single front-
end node limits the scalability of clusters that em-
ploy content-based request distribution. This sec-
tion presents experimental results that quantify the
scalability limits imposed by a conventional, single
front-end node.

To measure the scalability of the splicing and TCP
handoff mechanisms, we conducted experiments
with the configurations depicted in Figure 1. Our
testbed consists of a number of client machines, con-
nected to a cluster server. The cluster nodes are
300MHz Intel Pentium IT based PCs with 128MB
of memory. All machines are configured with the
FreeBSD-2.2.6 operating system.

The requests were generated by a HT'TP client pro-
gram designed for Web server benchmarking [8].
The program generates HTTP requests as fast as
the Web server can handle them. Seven 166 MHz
Pentium Pro machines configured with 64MB of
memory were used as client machines. The client
machines and all cluster nodes are connected via
switched 100Mbps Ethernet. The Apache-1.3.3 [3]
Web server was used at the server nodes.

For experiments with TCP handoff, a loadable ker-
nel module was added to the OS of the front-end and
back-end nodes that implements the TCP handoff
protocol. The implementation of the TCP handoff
protocol is described in our past work [6, 26]. For
splicing, a loadable module was added to the front-
end node. Persistent connections were established
between the front-end node and the back-end web-
servers for use by the splicing front-end.

4000

+—+ Handoff
60— Splicing

3000}

20001

Apache Throughput (conn/s)

1 2 3 4 5 6 7 8
back-end nodes in cluster

Figure 2: Throughput, 6 KB requests

4000

+—+ Handoff

3000} ©—©. Splicing

20001

1000

Apache Throughput (conn/s)

1 2 3 4 5 6 7 8
back-end nodes in cluster

Figure 3: Throughput, 13 KB requests

In the first experiment, the clients repeatedly re-
quest the same Web page of a given size. Under this
artificial workload, the LARD policy behaves like
WRR: it distributes the incoming requests among

all back-end nodes in order to balance the load.

Figures 2 and 3 compare the cluster throughput
with the handoff versus the splicing mechanism as
a function of the number of back-end nodes in the
cluster, and for requested Web page sizes of 6 KB
and 13 KB, respectively. These two page sizes corre-
spond to the extrema of the range of average HTTP
transfer sizes reported in the literature [24, 4]. Since
the requested page remains cached in the servers’
main memory with this synthetic workload, the
server displays very high throughput, thus fully ex-
posing scalability limitations in the front-end re-
quest distribution mechanism.

The results show that the TCP handoff mechanism
scales to four back-end nodes, while splicing is al-
ready operating at front-end capacity with only one
server node. In either case, the scalability is limited
because the front-end CPU reaches saturation.

For the 6 KB files, the performance of splicing ex-
ceeds that of handoff at a cluster size of one node.
The reason is that splicing uses persistent connec-
tions to communicate with the back-end servers,
thus shifting the per-request connection establish-
ment overhead to the front-end, which results in a
performance advantage in this case. For larger clus-
ter sizes and large files size, this effect is more than
compensated by the greater efficiency of handoff,
and by the fact that splicing saturates the front-
end.

Additionally, it should be noted that with the larger
page size (13 KB), the throughput with splicing de-
grades more than that with handoff (27% versus 7%,
respectively). This is intuitive because with splic-
ing, the higher volume of response data has to pass
through the front-end, while with handoff, the front-
end only incurs the additional cost of forwarding
more TCP acknowledgments from the client to the
back-ends.

In general, the maximal throughput achieved by
the cluster with a single front-end node is fixed for
any given workload. For example, the throughput
with the handoff mechanism is determined by (a)
the rate at which connections can be established
and handed off to back-end nodes and (b) the rate
at which TCP acknowledgments can be forwarded
to back-end nodes. With slow back-end webservers
and/or with workloads that cause high per-request
overhead (e.g., frequent disk accesses) at the back-
end nodes, the maximum throughput afforded by a

4000

+—+ Handoff

3000} ©—©. Splicing

o

Apache Throughput (conn/s)
= N
o o
o o
el =]

1 2 3 4 5 6 7 8
back-end nodes in cluster

Figure 4: Throughput, IBM trace

back-end is lower and the front-end is able to sup-
port more back-end nodes before becoming a bot-
tleneck. With efficient back-end webservers and/or
workloads with low per-request overheads, a smaller
number of back-ends can be supported.

The results shown above were obtained with a syn-
thetic workload designed to expose the limits of scal-
ability. Our next experiment uses a realistic, trace-
based workload and explores the scalability of hand-
off and splicing under real workload conditions.

Figure 4 shows the achieved throughput using hand-
off versus splicing on a trace based workload derived
from www.ibm.com’s server logs (details about this
trace are given in Section 6). As in the previous
experiments, the handoff scales linearly to a cluster
size of four nodes. The splicing mechanism scales to
two back-end nodes on this workload. Thus, splicing
scales better on this workload than on the previous,
synthetic workload. The reason is that the IBM
trace has an average page size of less than 3 KB2.
Since splicing overhead is more sensitive to the aver-
age page size for the reasons cited above, it benefits
from the low page size more than handoff.

The main result is that both splicing and handoff
only scale to a small number of back-end nodes on
realistic workloads. Despite the higher performance
afforded by TCP handoff, its peak throughput is
limited to about 3500 conn/s on the IBM trace and
it does not scale well beyond four cluster nodes. In
Section 6 we show that a software based layer-4
switch implemented using the same hardware can

2This is substantially less than the average Web page size
reported by several studies. The likely reason is that the
content designers of this high-volume site have minimized
the size of the most popular pages for performance reasons.

afford a throughput of up to 20,000 conn/s. There-
fore, the additional overhead imposed by content-
aware request distribution reduces the scalability of
the system by an order of magnitude.

The limited scalability of content-aware request dis-
tribution cannot be easily overcome through the
use of multiple front-end nodes. Firstly, employ-
ing multiple front-end nodes introduces a secondary
load balancing problem among the front-end nodes.
Mechanisms like round-robin DNS are known to re-
sult in poor load balance. Secondly, many content-
aware request distribution strategies (for instance,
LARD) require centralized control and cannot easily
be distributed over multiple front-end nodes.

In Section 4 we describe the design of a scalable
content-aware request distribution mechanism that
maintains centralized control. Results in Section 6
indicate that this cluster is capable of achieving an
order of magnitude higher performance than exist-
ing approaches.

4 Scalable Cluster Design

This section addresses the scalability problem with
content-aware request distribution. We identify the
bottlenecks and propose a configuration that is sig-
nificantly more scalable.

LAN Back-End

Server

Dispatcher Server

Distributor

Front-End

Server

"

Figure 5: Cluster components

Figure 5 shows the main components comprising
a cluster configuration with content-aware request
distribution and a single front-end. The dispatcher
is the component that implements the request dis-
tribution strategy; its task is to decide which server
node should handle a given request. The distrib-

LAN Back-End

Front-End
Server

Distributor

Distributor Server

Dispatcher

=l
e

Distributor

Server

Figure 6: Multiple front-ends

utor component interfaces with the client and im-
plements the mechanism that distributes the client
requests to back-end nodes; it implements either a
form of TCP handoff or the splicing mechanism.
The server component represents the server running
at the back-end and is responsible for processing
HTTP client requests.

A key insight is that (1) the bulk of the overhead
at the front-end node is incurred by the distributor
component, not the dispatcher; and, (2) the distrib-
utor component can be readily distributed since its
individual tasks are completely independent, while
it is the dispatcher component that typically re-
quires centralized control. It is intuitive then, that
a more scalable request distribution can be achieved
by distributing the distributor component over mul-
tiple cluster nodes, while leaving the dispatcher cen-
tralized on a dedicated node.

Experimental results show that for TCP handoff,
the processing overhead for handling a typical con-
nection is nearly 300 usec for the distributor while
it is only 0.8 usec for the dispatcher. With splicing,
the overhead due to the distributor is larger than
750 psec and increases with the average response
size. One would expect then, that distributing the
distributor component while leaving only the dis-
patcher centralized should increase the scalability
of the request distribution by an order of magni-
tude. Our results presented in Section 6 confirm
this reasoning.

Figure 6 shows a cluster configuration where the
distributor component is distributed across several
front-end nodes while the dispatcher resides on a
dedicated node. In such a configuration with mul-
tiple front-end nodes, a choice must be made as

to which front-end should receive a given client re-
quest. This choice can be made either explicitly by
the user with strategies like mirroring®, or in a client
transparent manner using DNS round-robin. How-
ever, these approaches are known to lead to poor
load balancing [20], in this case among the front-
end nodes.

Another drawback of the cluster configuration
shown in Figure 6 is that efficient partitioning of
cluster nodes into either front-end or back-end nodes
depends upon the workload and is not known a pri-
ori. For example, for workloads that generate sig-
nificant load on the back-end nodes (e.g, queries for
online databases), efficient cluster utilization can be
achieved by using a few front-end nodes and a large
number of back-end nodes. For other workloads, it
might be necessary to have a larger number of front-
end nodes. A suboptimal partitioning, relative to
the prevailing workload, might result in low cluster
utilization, i.e, either the front-end nodes become a
bottleneck when the back-end nodes are idle or vice
versa.

LAN

Distributor

Server

Distributor

Server

[]

Distributor

Server

Figure 7: Co-located distributors and servers

Figure 7 shows an alternate cluster design where
the distributor components are co-located with the
server components. As each cluster node hosts
both the distributor and the server components, the
cluster can be efficiently utilized irrespective of the
workload. As in the cluster of Figure 6, the replica-
tion of the distributor component on multiple clus-
ter nodes eliminates the bottleneck imposed by a
centralized distributor. In addition, a front-end con-
sisting of a commodity layer-4 switch is employed

3With mirroring, the clients are aware of the multiple
front-ends in the cluster and explicitly choose where to send
their requests.

that distributes incoming client requests to one of
the distributor components running on the back-end
nodes, in such a way that the load among the dis-
tributors is balanced.

Notice that the switch employed in this configura-
tion does not perform content-aware request distri-
bution. It merely forwards incoming packets based
on layer-4 information (packet type, port number,
etc.). Therefore, a highly scalable, hardware based
commercial Web switch product can be used for this
purpose [21, 11]. In Section 6, we present experi-
mental results with a software based layer-4 switch
that we developed for our prototype cluster.

A potential remaining bottleneck with this design is
the centralized dispatcher. However, experimental
results presented in Section 6 show that a central-
ized dispatcher implementing the LARD policy can
service up to 50,000 conn/s on a 300MHz Pentium II
machine. This is an order of magnitude larger than
the performance of clusters with a single front-end,
as shown in Section 3.

In the next section, we provide a detailed description
of our prototype implementation. In Section 6 we
present experimental results that demonstrate the
performance of our prototype.

5 Prototype Implementation

This section describes the implementation and oper-
ation of our prototype cluster. Section 5.1 gives an
overview of the various components of the cluster.
Section 5.2 provides details on the implementation
of a software based layer-4 switch that we imple-
mented for interfacing the cluster with the clients.
Section 5.3 describes the sequence of operations in
the cluster upon receiving a client request. Sec-
tion 5.4 discusses techniques employed in our im-
plementation to improve the scalability of the dis-
patcher by reducing the overhead of communicating
with other cluster nodes.

5.1 Overview

The cluster consists of a number of nodes connected
by a high speed LAN. As we mentioned in Section 4,
there are three main components in the cluster — dis-

patcher, distributor and server. The interface design
for these components is such that any cluster node
can contain one or more of these components. This
implies that any of the cluster configurations of Fig-
ure 5, Figure 6 or Figure 7 can be realized by placing
the components appropriately on the cluster nodes.

The communication between components on differ-
ent cluster nodes is realized using persistent TCP
control connections that are created during the clus-
ter initialization. A control connection, thus, ex-
ists between any two nodes of the cluster and mul-
tiplexes the messages exchanged between any two
components. These connections also serve to detect
node failures.

Owing to the superior performance afforded by the
TCP handoff protocol as compared to splicing, our
prototype distributor employs the handoff proto-
col. The server component consists of the user-level
server application and an enhanced network proto-
col stack in the kernel capable of accepting connec-
tions using the handoff protocol. The server ap-
plication can be any off-the-shelf web server (e.g.,
Apache [3], Zeus [30]) and requires no change for
operation in the cluster. The distributor is also im-
plemented as an enhanced protocol stack, and re-
sides wholly in the kernel. Similarly, the dispatcher
component also resides in the kernel for efficiency.
The kernel changes required to implement the clus-
ter components are added using a loadable kernel
module for the FreeBSD-2.2.6 OS.

Our prototype implementation supports both
HTTP/1.0 as well as HTTP /1.1 persistent connec-
tions (P-HTTP [24]). Support for P-HTTP is sim-
ilar to that described in our earlier work [6]. As
this paper focuses on scalability issues in the clus-
ter, we only consider HTTP /1.0 connections in the
experimental results presented in this paper.

A layer-4 switch is used that receives all requests
from clients and forwards them to the distributors.
With the switch, the distributed nature of the clus-
ter becomes completely transparent to the clients.
We next describe the implementation of this switch.

5.2 Layer-4 Switch

We implemented a fast software based layer-4 switch
to be used as the front-end node. Even though hard-
ware based, highly scalable layer-4 switches are com-

mercially available, we decided to implement a soft-
ware based switch for two reasons: we did not have
a commercial layer-4 switch available to us, and we
wanted to explore what level of scalability could be
achieved with a software based switch.

The switch maintains a small amount of state for
each client connection being handled by the clus-
ter. This state is used to determine the cluster node
where packets from the client are to be forwarded.
Additionally, the switch maintains the load on each
cluster node based on the number of client connec-
tions handled by that node.

Upon seeing a connection establishment packet
(TCP SYN packet), the switch chooses a distrib-
utor on the least loaded node in the cluster. Subse-
quent packets from the client are sent to the same
node unless an update message instructs the switch
to forward packets to some other node (update mes-
sages are sent by the distributor after a TCP con-
nection handoff). Upon connection termination, a
close message is sent to the switch by the cluster
node that handles the connection and is used for
discarding connection state at the switch.

All outgoing data from the cluster is sent directly
to the clients and does not pass through the switch.
Only the packets sent by the clients are received
and forwarded by the switch. To improve switch
performance, the forwarding module in the switch
avoids interrupts and uses soft timer based polling
to receive network packets [5, 25]. In Section 6, we
report the forwarding throughput of this switch.

Using a front-end layer-4 switch (as opposed to us-
ing, for instance, DNS round-robin to distribute re-
quests among the server nodes) offers several im-
portant advantages. The first is increased security.
By hiding the back-end nodes of the cluster from
the outside world, would-be attackers cannot di-
rectly attack these nodes. The second advantage is
availability. By making the individual cluster nodes
transparent to the client, failed or off-line server
nodes can be replaced transparently. Finally, when
combined with TCP handoff, the use of a switch in-
creases efficiency, as ACK packets from clients need
not be forwarded by the server node that originally
received a request.

Of course, a front-end switch forms a single point of
failure in the cluster. There are, however, a number
of possible solutions to this problem, such as using
a hot-swappable spare.

5.3 Cluster Operation

User Level [Client]
4

P server)
Kernel | Distributor

(1) ©]
' (4) '

| Handoff ®) [Handoff | Y
TCPIP ‘ ‘ TCP/IP TCP/IP ‘

, connreq Tconn req handoff req
ack ack

response

Client host Distributor node Worker node

Figure 8: Operation with DNS round-robin

Figure 8 shows the operation of the cluster. For sim-
plicity, we assume here that clients directly contact
a distributor (for instance, via DNS round-robin).
The figure shows the user-level processes and proto-
col stacks at the client and the distributor and server
nodes. The client application (e.g., Web browser) is
unchanged and runs on an unmodified standard op-
erating system.

The figure illustrates the cluster operations from the
time the client sends the request, to the instant
when it receives a response from the cluster. (1)
the client process (e.g., Netscape) uses the TCP/IP
protocol to connect to the chosen distributor, (2)
the distributor component accepts the connection
and parses the client request, (3) the distributor
contacts the dispatcher (not shown in the figure)
for the assignment of the request to a server, (4)
the distributor hands off the connection using the
TCP handoff protocol to the server chosen by the
dispatcher, (5) the server takes over the connection
using its handoff protocol, (6) the server application
at the server node accepts the created connection,
and (7) the server sends the response directly to
the client. Any TCP acknowledgments sent by the
client to the distributor are forwarded to the server
node using a forwarding module at the distributor
node.

The operation in Figure 8 assumes that the server
component chosen by the dispatcher resides on a
different node than the distributor. If the server
is on the same node as the distributor, then the
handoff is accomplished efficiently using procedure
calls in the kernel.

The operation of the cluster with a layer-4 switch
is similar to that in Figure 8. However, there are
some important differences. First, the choice of the
distributor is made by the switch, using the WRR
strategy. Second, after a connection is handed off by
the distributor, the switch is notified and the sub-
sequent forwarding of TCP acknowledgments to the
corresponding server node is handled by the switch.

5.4 Batching Requests

As the dispatcher component is centralized, its per-
formance determines the scalability of the cluster.
We demonstrate in Section 6.1 that the bulk of
the overhead imposed on the dispatcher node is
associated with communication with other cluster
nodes. The key to achieving greater cluster scal-
ability, therefore, is to reduce this communication
overhead.

The communication overhead can be reduced in two
ways, (1) by reducing the size of the messages sent
to the dispatcher, and (2) by limiting the number
of network packets sent to the dispatcher. For (1),
the distributor compacts the request URL by hash-
ing it into a 32-bit integer before sending it to the
dispatcher. (2) is achieved by batching together sev-
eral messages before they are sent to the dispatcher.
This enables several messages to be put in the same
TCP packet and reduces interrupt and protocol pro-
cessing overheads at the dispatcher node.

An interesting design choice is the degree of batch-
ing, i.e., the number of messages collected together
before sending them to the dispatcher. Although
the overhead on the dispatcher node is lower with a
higher degree of batching, the response time is ad-
versely affected because messages might be held for
a long time before a batch of the requisite size is
formed.

Rather than fixing the degree of batching, our im-
plementation batches messages only as long as the
replies for messages in the previous batch are out-
standing. This has the beneficial effect of dynami-
cally adjusting the degree of batching based on the
load on the dispatcher node. If the dispatcher is
heavily loaded, the time taken by it to respond to
messages in an earlier batch is long, which in turn
causes high degree of batching of the next set of mes-
sages. Similarly, a lightly loaded dispatcher would
result in sets of messages where the degree of batch-

ing is low.

6 Experimental Results

In this section, we present performance results
obtained with our prototype cluster. Section 6
presents performance results of the software layer-
4 switch discussed in Section 5.2. In Section 6.1,
we present performance characteristics of our clus-
ter prototype such as scalability, throughput and
latency. Finally, Section 6.2 provides experimental
results on a real workload obtained from webserver
logs. For all cluster experiments we used the config-
uration shown in Figure 7. The experimental setup
used was the same as described in Section 3.

The first experiment determines the maximum
throughput of our software layer-4 switch used as
a front-end. The switch receives packets from seven
client machines. The packet processing in the switch
closely emulates the processing in actual operation
with the cluster. Each packet was forwarded to an-
other machine where it was discarded.

Our results show that the peak throughput afforded
by the switch running on a 300MHz Pentium II ma-
chine is about 128,000 packets/s. In actual cluster
operation, we have observed an average of about 5—
6 packets for a typical HTTP /1.0 connection where
the content size ranges from 5-13 KB. This im-
plies that the maximum throughput afforded by the
switch is about 20,000 conn/s.

Higher switch performance can be obtained by (1)
using faster hardware for the switch, (2) using an
SMP based machine for the switch, or (3) by using
a commercial layer-4 switch. Hardware implemen-
tations of layer-4 switches are reported to achieve
throughputs of over 70,000 conn/s [1].

6.1 Cluster Results

We repeated the experiments from Section 3 to
demonstrate the scalability of our proposed cluster
configuration. Figure 9 shows the throughput re-
sults with the Apache webserver as the number of
nodes in the cluster (other than the one running the
dispatcher) are increased. As shown in the figure,
the throughput increases linearly with the size of

6000 , ‘ :
+——+ 6 KB file |
5000/ - 0—o - 13-KB file

40001

20001

Apache Throughput (conn/s)
]
o
o

1000
¢

1 2 3 4 5 6 7 8
back-end nodes in cluster

Figure 9: Cluster Throughput

100
¢

801

60 F

401

c—o© 13 KB file
20¢ +—+ 6 KB file

Dispatcher CPU Idle time (%)

1 2 3 4 5 6 7 8
back-end nodes in cluster

Figure 10: Dispatcher CPU Idle Time

the cluster. Figure 10 depicts the CPU idle time on
the node running the dispatcher. The results clearly
show that in this experiment, the dispatcher node
is far from causing a bottleneck in the system.

A comparison with earlier results in Figure 2 and
Figure 3 shows that the absolute performance in
Figure 9 is less for comparable number of nodes in
the cluster. In fact, the performance with N nodes
in Figure 9 was achieved with NV —1 back-end nodes
in our earlier results with the conventional content-
based request distribution based on handoff. The
reason is that with the former approach, the front-
end offloads the cluster nodes by performing the re-
quest distribution task, leaving more resources on
the back-end nodes for request processing. How-
ever, this very fact causes the front-end to become
a bottleneck, while our proposed approach scales
with the number of back-end nodes.

Due to a lack of network bandwidth in our PIII clus-
ter, we were unable to extend the above experiment
so as to demonstrate when the dispatcher node be-

comes a bottleneck. However, we devised a different
experiment to indirectly measure the peak through-
put afforded by our system. We wrote a small pro-
gram that generated a high rate of requests for the
dispatcher node. Requests generated by this pro-
gram appeared to the dispatcher as if they were re-
quests from distributor nodes from a live cluster.
This program was parameterized such that we were
able to vary the degree of batching in each message
sent to the dispatcher. Two messages to the dis-
patcher are normally required per HTTP request—
one to ask for a server node assignment and one
to inform the dispatcher that the client connection
was closed. The degree of batching determines how
many of these messages are combined into one net-
work packet sent to the dispatcher.

x 10°

(53]

N

w

N

=
N

Dispatcher Throughput (conn/s)

o

5 10 15 20 25 30 35 40
messages in batch

=

Figure 11: Dispatcher Throughput

Figure 11 shows the peak throughput afforded by
the dispatcher as the degree of batching was in-
creased from one to forty. These results show that
the dispatcher node (300MHz PII) can afford a peak
throughput of more than 50,000 conn/s. This num-
ber determines the peak performance afforded by
our cluster and is an order of magnitude larger
than that afforded by traditional clusters that em-
ploy content-aware request distribution. At this
peak throughput, each HTTP connection imposes
an overhead of about 20 usec on the dispatcher
node. The bulk of this overhead is attributed to
the overheads associated with communication. The
LARD request distribution strategy only accounts
for 0.8 usec of the overhead. Repeating this exper-
iment using a 500MHz PIII PC as the dispatcher
resulted in a peak throughput of 112,000 conn/s.
Also, it is to be noted that the peak performance of
the dispatcher is independent of the size of the con-
tent requested. In contrast, the scalability of cluster
configurations with conventional content-aware re-
quest distribution decreases as the average content

size increases.

We also measured the increase in latency due to the
extra communication incurred as a result of the dis-
patcher being placed on a separate node. This extra
hop causes an average increase of 170 usec in latency
and is largely due to round trip times in a LAN and
protocol processing delays. When the layer-4 switch
is used for interfacing with the clients, an additional
8 usec latency is added due to packet processing de-
lay in the switch. This increase in latency is insignif-
icant in the Internet where WAN delays are usually
larger than 50 ms. Even in LAN environments, the
added latency is not likely to affect user-perceived
response times.

6.2 Real Workload

We now present results from our prototype to
demonstrate the scalability of the cluster when pre-
sented with real, trace-based workloads.

The workloads were obtained from logs of a Rice
University Web site and from the www.ibm.com
server, IBM’s main Web site. The data set for the
Rice trace consists of 31,000 targets covering 1.015
GB of space. This trace needs 526/619/745 MB of
cache memory to cover 97/98/99% of all requests,
respectively. The data set for the IBM trace con-
sists of 38,500 targets covering 0.984 GB of space.
However, this trace has a much smaller working set
and needs only 43/69/165 MB of cache memory to
cover 97/98/99% of all requests, respectively.

6000 T T T T
+—+ distributed r
50001 @0 single front-end

40001

20001

Apache Throughput (conn/s)
8
o
o

-
[S
S

&

(=)

1 2 3 4 5 6 7 8
back-end nodes in cluster

Figure 12: Throughput, IBM Trace

The results presented in Figures 12 and 13 clearly
show that our proposed cluster architecture for
content-aware request distribution scales far better

6000 T T
+—+ distributed
5000(=6 single front-end

4000

2000

Apache Throughput (conn/s)
]
o
o

1000

1 2 3 4 5 6 7 8
back-end nodes in cluster

Figure 13: Throughput, Rice Trace

than the state-of-the-art approach based on handoff
at a single front-end node, on real workloads.

Note that for cluster sizes below five on the IBM
trace, the performance with a single front-end node
exceeds that of our distributed approach. The rea-
son is the same as that noted earlier: with the
former approach, the front-end offloads the cluster
nodes by performing the request distribution task,
leaving more resources on the back-end nodes for re-
quest processing. However, this very fact causes the
front-end to bottleneck at a cluster size of five and
above, while the distributed approach scales with
the number of back-end nodes.

This effect is less pronounced in the Rice trace, ow-
ing to the much larger working set size in this trace,
which renders disk bandwidth the limiting resource.
For the same reason, the absolute throughput num-
bers are significantly lower with this workload.

14000

| +—+ distributed
| ©-© single front-end

3 10000+

Apache Throughput (
[e2]
o
o
o

2 4 6 8 10 12 14 16
back—end nodes in cluster

Figure 14: Throughput, Rice Trace on

800MHz Athlon

Finally, Figure 14 shows results obtained with the
Rice trace on a new, larger cluster. The hardware

used for this experiment consists of a cluster of
800MHz AMD Athlon based PCs with 256MB of
main memory each. The cluster nodes, the node
running the dispatcher, and the client machines
are connected by a single 24 port Gigabit Ethernet
switch. All machines run FreeBSD 2.2.6.

The results show that the performance of the cluster
scales to a size of 16 nodes with no signs of slowing,
despite the higher individual performance (faster
CPU and disk, larger main memory) of the clus-
ter nodes. The throughput obtained with 16 nodes
exceeds 13,000 conn/s on this platform, while the
single (800MHz) front-end based approach is limited
to under 7,000 conn/s. Limited hardware resources
(i.e., lack of a Gigabit Ethernet switch with more
than 24 ports) still prevent us from demonstrating
the scalability limits of our approach, but the mea-
sured utilization of the dispatcher node is consistent
with our prediction that the approach should scale
to at least 50,000 conn/s.

7 Related Work

A substantial body of work addresses the design
of high-performance, scalable Web server clusters.
The work includes cooperative caching proxies in-
side the network, push-based document distribution
and other innovative techniques [7, 10, 13, 22, 23,
28]. Our proposal addresses the complementary is-
sue of providing support for scalable network servers
that perform content-based request distribution.

Web servers based on clusters of workstations/PCs
are widely used [18]. Most commercial Web switch
products for cluster servers use a request distribu-
tion strategy that does not require examining the
content of the request [2, 20, 14, 9]. The most com-
mon such technique used for request distribution is
some variant of weighted round-robin. Resonate,
Inc. [27] is an exception in that their product offers
content-aware request distribution using a method
similar to TCP handoff.

Fox et al. [18] describe a layered architecture for
building cluster-based network services. The archi-
tecture has a centralized load manager and several
front-end and back-end nodes. This architecture is
similar to the one shown in Figure 6; however, the
request distribution strategy and the mechanisms
employed are purely load-based and do not consider

the content of the requests. Our work focuses on
scalable cluster configurations for content-aware re-
quest distribution.

In [26], Pai et al. explore the use of content-based
request distribution in a cluster Web server en-
vironment. This work presents an instance of a
content-aware request distribution strategy, called
LARD. The strategy achieves both locality, in or-
der to increase hit rates in the Web servers’ mem-
ory caches, and load balancing. Performance results
with the LARD algorithm show substantial perfor-
mance gains over WRR.

More recently, in [31], Zhang et al. explore another
content-based request distribution algorithm that
looks at static and dynamic content and also fo-
cuses on cache affinity. They confirmed the results
of [26] by showing that focusing on locality can lead
to significant improvements in cluster throughput.

The key to content-based request distribution is
that a client’s request is first inspected before a deci-
sion is made about which server node should handle
the request. The difficulty lies therein, that in order
to inspect a request, the client must first establish
a connection with a node that will ultimately not
handle the request. There are currently two known
viable techniques that can be used to handle this
situation. They are TCP splicing [15, 12, 29], and
TCP handoff [6, 26, 19]. Our proposed approach
offers a third alternative that scales well with the
number of back-end nodes.

As mentioned earlier, the switch component of our
cluster could easily be replaced by a commercial
layer-4 switch. A number of layer-4+ network
switch products [1, 16, 17, 11] are currently available
on the market. These commercial products use spe-
cialized hardware and advertise high performance.
A subset of these switches are also advertised to
be layer-7 switches, which means they can perform
URL-aware routing. We are not aware of any pub-
lished performance results for these switches when
used for URL-aware distribution. However, since
software processing is involved in layer-7 switching,
we expect that these products have similar limita-
tions to scalability as software based content-aware
front-ends when used for this purpose.

8 Conclusions

We have presented a new, scalable architecture for
content-aware request distribution in Web server
clusters. Content-aware distribution improves
server performance by allowing partitioned sec-
ondary storage, specialized server nodes, and re-
quest distribution strategies that optimize for local-
ity.

Our architecture employs a level-4 switch that acts
as the central point of contact for the server on the
Internet, and distributes the incoming requests to a
number of back-ends. In particular, the switch does
not perform any content-aware distribution. This
function is performed by each of the back-ends, who
may forward the incoming request to another back-
end based on the requested content. In order to
make their request distribution decisions, the back-
ends access a dispatcher node that implements the
request distribution policy.

In terms of scalability, the proposed architecture
compares favorably with existing approaches, where
a front-end node performs content-aware request
distribution. In our architecture, the expensive
operations of TCP connection establishment and
handoff are distributed over all back-end nodes,
rather than being centralized in the front-end node.
Only a minimal additional latency penalty is paid
for much improved scalability. Furthermore, the dis-
patcher module is so fast that centralizing it on a
single 300MHz PIII machine scales to throughput
rates of up to 50,000 conns/sec.

We have implemented this new architecture, and
we demonstrate its scalability by comparing it to a
system that performs content-aware distribution in
the front-end, both under synthetic and trace-driven
workloads.

9 Acknowledgments

We are grateful to the anonymous reviewers and our
shepherd, Liviu Iftode, for their helpful comments.
Thanks to Erich Nahum at IBM T.J. Watson for
providing us with the www.ibm.com trace. This
work was supported in part by NSF Grant CCR-
9803673, by Texas TATP Grant 003604, by an IBM
Partnership Award, and by equipment donations

from Compaq Western Research Lab and HP Labs.

References

[1] Alteon = WebSystems. ACEdirector.
http://www.alteonwebsystems.com.

[2] D. Andresen et al. SWEB: Towards a Scalable
WWW Server on MultiComputers. In Procced-
ings of the 10th International Parallel Process-
ing Symposium, Honolulu, HI, Apr. 1996.

[3] Apache. http://www.apache.org/.

[4] M. F. Arlitt and C. L. Williamson. Web Server
Workload Characterization: The Search for In-
variants. In Proceedings of the ACM SIGMET-
RICS ’96 Conference, Philadelphia, PA, Apr.
1996.

[5] M. Aron and P. Druschel. Soft timers: effi-
cient microsecond software timer support for
network processing. In Proceedings of the Sev-
enteenth ACM Symposium on Operating Sys-
tems Principles, Kiawah Island, SC, Dec. 1999.

[6] M. Aron, P. Druschel, and W. Zwaenepoel. Ef-
ficient Support for P-HTTP in Cluster-based
Web Servers. In Proceedings of the 1999
USENIX Annual Technical Conference, Mon-
terey, CA, June 1999.

[7] G. Banga, F. Douglis, and M. Rabinovich. Op-
timistic Deltas for WWW Latency Reduction.
In Proceedings of the 1997 USENIX Technical
Conference, Berkeley, CA, Jan. 1997.

[8] G. Banga and P. Druschel. Measuring the ca-
pacity of a Web server under realistic loads.
World Wide Web Journal (Special Issue on
World Wide Web Characterization and Perfor-
mance Evaluation), 2(1), May 1999.

[9] A. Bestavros, M. Crovella, J. Liu, and D. Mar-
tin. Distributed Packet Rewriting and its Ap-
plication to Scalable Server Architectures. In
Proceedings of the 6th International Conference
on Network Protocols, Austin, TX, Oct. 1998.

[10] A. Chankhunthod, P. B. Danzig, C. Neerdaels,
M. F. Schwartz, and K. J. Worrell. A Hier-
archical Internet Object Cache. In Proceedings
of the 1996 USENIX Technical Conference, San
Diego, CA, Jan. 1996.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Cisco Systems Inc. LocalDirector.

http://www.cisco.com.

A. Cohen, S. Rangarajan, and H. Slye. On the
Performance of TCP Splicing for URL-Aware
Redirection. In Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Sys-
tems, Boulder, CO, Oct. 1999.

P. Danzig, R. Hall, and M. Schwartz. A case
for caching file objects inside internetworks. In
Proceedings of the SIGCOMM 93 Conference,
San Francisco, CA, Sept. 1993.

D. M. Dias, W. Kish, R. Mukherjee, and
R. Tewari. A Scalable Highly Available Web
Server. In Proceedings of the IEEE Interna-

tional Computer Conference, San Jose, CA,
Feb. 1996.

K. Fall and J. Pasquale. Exploiting In-Kernel
Data Paths to Improve I/O Throughput and
CPU Availability. In Proceedings of the Win-
ter 1993 USENIX Conference, San Diego, CA,
Jan. 1993.

FORE Systems, Inc.
http://www.fore.com.

ESX-2400/4800.

Foundry Networks. ServerIron.

http://www.foundrynet.com.

A. Fox, S. D. Gribble, Y. Chawathe, E. A.
Brewer, and P. Gauthier. Cluster-based scal-
able network services. In Proceedings of the Siz-
teenth ACM Symposium on Operating Systems
Principles, San Malo, France, Oct. 1997.

G. Hunt, E. Nahum, and J. Tracey. Enabling
content-based load distribution for scalable ser-
vices. Technical report, IBM T.J. Watson Re-
search Center, May 1997.

G. D. H. Hunt, G. S. Goldszmidt, R. P. King,
and R. Mukherjee. Network Dispatcher: A
Connection Router for Scalable Internet Ser-
vices. In Proceedings of the 7th Internation
World Wide Web Conference, Brisbane, Aus-
tralia, Apr. 1998.

IBM Corporation. IBM interactive network
dispatcher. http://www.ibm.com/software/-
network/dispatcher.

T. M. Kroeger, D. D. Long, and J. C. Mogul.
Exploring the bounds of Web latency reduction
from caching and prefetching. In Proceedings of

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

the USENIX Symposium on Internet Technolo-
gies and Systems (USITS), Monterey, CA, Dec.
1997.

G. R. Malan, F. Jahanian, and S. Subrama-
nian. Salamander: A push-based distribution
substrate for Internet applications. In Proceed-
ings of the USENIX Symposium on Internet
Technologies and Systems (USITS), Monterey,
CA, Dec. 1997.

J. C. Mogul. The Case for Persistent-
Connection HTTP. In Proceedings of the ACM
SIGCOMM ’95 Symposium, Cambridge, MA,
1995.

J. C. Mogul and K. K. Ramakrishnan. Elim-
inating receive livelock in an interrupt-driven
kernel. ACM Transactions on Computer Sys-
tems, 15(3):217-252, Aug. 1997.

V. S. Pai, M. Aron, G. Banga, M. Svend-
sen, P. Druschel, W. Zwaenepoel, and
E. Nahum. Locality-Aware Request Distribu-
tion in Cluster-based Network Servers. In Pro-
ceedings of the 8th Conference on Architectural
Support for Programming Languages and Op-
erating Systems, San Jose, CA, Oct. 1998.

Resonate Inc. Resonate
http://www.resonateinc.com.

dispatch.

M. Seltzer and J. Gwertzman. The Case for
Geographical Pushcaching. In Proceedings of
the 1995 Workshop on Hot Topic in Operating
Systems (HotOS-V), Orcas Island, WA, 1995.

C.-S. Yang and M.-Y. Luo. Efficient Support
for Content-Based Routing in Web Server Clus-
ters. In Proceedings of the 2nd USENIX Sym-
posium on Internet Technologies and Systems,
Boulder, CO, Oct. 1999.

Zeus. http://www.zeus.co.uk/.

X. Zhang, M. Barrientos, J. B. Chen, and
M. Seltzer. HACC: An Architecture for
Cluster-Based Web Servers. In Proceedings
of the 8rd USENIX Windows NT Symposium,
Seattle, WA, July 1999.

