
FlexFS: A Flexible Flash File System for
MLC NAND Flash Memory

School of Computer Science and Engineering

Seoul National University

* Samsung Advanced Institute of Technology

Samsung Electronics

Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim*

USENIX Annual Technical Conference 2009

Outline

• Introduction

• Background

• Flexible Flash File System

• Experimental Results

• Conclusion

Introduction

• NAND flash memory is becoming an attractive storage solution

• Two types of NAND flash memory
• Single-Level Cell (SLC) and Multi-Level Cell (MLC) NAND flash memory
• They are distinctive in terms of performance, capacity, and endurance

NAND flash memory

Mobile phones

Laptops

Server storage

Desirable characteristics
(high perf. & low power)

Density increases

Comparisons of SLC and MLC flashes

Performance

Capacity

Endurance

SLC Flash Memory
(1 bit / cell)

High performance

Low capacity

MLC Flash Memory
(2 bits / cell)

Performance

Capacity

Endurance

Low performance

High capacity

Comparisons of SLC and MLC flashes

Performance

Capacity

Endurance

Ideal NAND flash memory

• However, consumers want to have a storage system with high
performance, high capacity, and high endurance

• How to take the benefits of two different types of NAND flash
memory

Flexible Cell Programming

• A writing method of MLC flash memory that allows each memory
cell to be used as SLC or MLC

• Makes it possible to take benefits of two different types of NAND
flash memory

MLC Flash Memory (2 bits / cell)

Performance

Capacity

Endurance

High performance
High capacity

Flexible cell
programming

Our Approach

• Proposes a flash file system called FlexFS
– Exploits the flexible cell programming of MLC flash memory
– Provides the high performance of SLC flash memory and the

capacity of MLC flash memory
– Provides a mechanism that copes with a poor wear characteristic

of MLC flash memory
– Designed for mobile systems, such as mobile phones

• Implements on a real system
– Implements FlexFS on a real mobile platform
– Evaluates FlexFS with real mobile workloads

Outline

• Introduction

• Background

• Flexible Flash File System

• Experimental Results

• Conclusion

NAND Flash Memory - Overview

• Flash memory organization
– A chip (e.g., 1 GB) ⇒ blocks (e.g., 512 KB)⇒ pages (e.g., 4 KB) ⇒ cells

• Flash memory characteristics
– Asymmetric read/write and erase operations

• A page is a unit of read/write and a block is a unit of erase
– Physical restrictions

• Erase-before-write restriction
• The number of erase cycles allowed for each block is limited

……

block 1 block 2 block n

page 1

page 2

page k

…

page 1

page 2

page k

…

page 1

page 2

page k

…
A chip

memory cell
(1 or more bits)

NAND Flash Memory - Cell

• Flash memory cell : a floating gate transistor
– The number of electrons on the floating gate determines the threshold voltage Vt
– The threshold voltage represents a logical bit value (e.g., ‘1’ or ‘0’)

Threshold voltage distributionsFloating gate transistor

0 0
LSB bitMSB bit

MLC

Flexible Cell Programming

• The flexible cell programming is a writing method of MLC flash memory

• (1) MLC programming method
– Uses all four values of cell by writing data to both LSB and MSB bits
– Low performance / High capacity (2 bits per cell)

• (2) SLC programming method
– Uses only two values of cell by writing data to LSB bit (or MSB bit)
– High performance / Low capacity (1 bit per cell)

SLC

≈

Outline

• Introduction

• Background

• Flexible Flash File System

• Experimental Results

• Conclusion

Overall Architecture

• Flash Manager
– Manages heterogeneous cells

• Performance manager
– Exploits I/O characteristics
– To achieve the high performance

and high capacity

• Wear manager
– Guarantees a reasonable lifetime
– Distributes erase cycles evenly

MLC NAND Flash Memory

VFS Interface

Virtual File System

Performance
Manager

Flash Manager

Wear
Manager

FlexFS

Overall Architecture

MLC NAND Flash Memory

VFS Interface

Virtual File System

Performance Manager

Flash Manager

Wear Manager

FlexFS

How Flash Manager Handles Heterogeneous Cells

• Three types of flash memory block: SLC block, MLC block, and free block
• Manages them as two regions and one free block pool

SLC block 1
(256 KB)

SLC block 2
(256 KB)

SLC block 3
(256 KB)

MLC block 1
(512 KB)

MLC block 2
(512 KB)

Free block
(Unknown)

Free block
(Unknown)

SLC region

Free block pool

MLC region

SLC block 1
(256 KB)

MLC block 1
(512 KB)

SLC block 2
(256 KB)

Free block
(Unknown)

Free block
(Unknown)

MLC block 2
(512 KB)

SLC block 3
(256 KB)

Physical Flash Memory View

Free block pool

Logical Flash Memory View

Overall Architecture

MLC NAND Flash Memory

VFS Interface

Virtual File System

Performance Manager

Flash Manager

Wear Manager

FlexFS

Performance Manager

• Manages SLC and MLC regions
– To provide the SLC performance

and MLC capacity
– Exploits I/O characteristics, such as

idle time and locality

• Three key techniques
– Dynamic allocation
– Background migration
– Locality-aware data management

MLC region

Dynamic Allocation

Requested data

SLC region

Background Migration

HotCold

Cold

Baseline Approach

SLC block
(256 KB)

SLC regionMLC region

SLC programming

Free block pool

Free block
(Unknown)

Requested data

MLC block
(512 KB)

MLC block
(512 KB)

MLC programming

Incoming I/O requests should be suspended,
incurring performance degradation

Incoming data is written to SLC region

Moves data to MLC region
when free space is exhausted

SLC block
(256 KB)

SLC block
(256 KB)

Background Migration

MLC region

SLC programming

Requested data

MLC block
(512 KB)

MLC block
(512 KB)

Background Migration

Exploit idle times to hide migration overhead
from end-user

SLC region

Free block pool

Free block
(Unknown)

SLC block
(256 KB)

SLC block
(256 KB)

SLC block
(256 KB)

Background Migration

• Triggers data migrations in background, not doing it on-demand
– Generates enough free blocks for SLC programming if idle time is sufficient

User I/O request

Data migration
(SLC →MLC)

SLC programming SLC programming

Time

MLC programming

Detect idle time &
Trigger data migration

Try to suspend
data migration

I/O request Response time delay !!!

Idle time

Background Migration

• Triggers data migrations in background, not doing it on-demand
– Generates enough free blocks for SLC programming if idle time is sufficient

User I/O request

Data migration
(SLC →MLC)

SLC programming SLC programming

Time

Stop data migration

I/O request

Detect idle time &
Start data migration

• Utilizes a small fraction of all the available idle time (e.g., 10%)
– Reduces the probability that I/O request is issued while migration is running

Idle time

Dynamic Allocation

SLC block
(256 KB)

SLC block
(256 KB)

SLC regionMLC region

Free block pool

Free block
(Unknown)

Requested data

MLC block
(512 KB)

MLC block
(512 KB)

Background Migration

SLC block
(256 KB)

SLC block
(256 KB)

If system has insufficient idle times,
it cannot generate enough free blocks

SLC programming

Dynamic Allocation

SLC block
(256 KB)

SLC block
(256 KB)

SLC region
(1.0 MB)

MLC region
(1.0 MB)

Free block pool

Free block
(Unknown)

Requested data

MLC block
(512 KB)

MLC block
(512 KB)

Background Migration

SLC block
(256 KB)

SLC block
(256 KB)

Writes part of data to MLC region
depending on the amount of idle time

Dynamic Allocation

Dynamic Allocation

• Divides the time into several time windows
– Time window presents the period during which Np pages are written

– Predicts the idle time Tpredict for the next time window

• Calculates the allocation ratio, α
– Determine the amount of data destined for the SLC or MLC region

Np Np

Previous
time window

…

Previous
time window

Next
time window

TpredictIdle Busy

α =
Tpredict

Np · Tcopy

(If Tpredict ≥ Np · Tcopy , then α = 1.0)

Where Tcopy is the time required to copy a single page from SLC to MLC

Dynamic Allocation

• Distributes the incoming data across two regions depending on α

SLC block
(256 KB)

SLC block
(256 KB)

SLC region
(512 KB)

MLC region
(1.5 MB)

Dynamic Allocation

MLC block
(512 KB)

MLC block
(512 KB)

Background Migration

MLC block
(512 KB)

α = 0.6

10 pages

6 pages4 pages

Locality-aware Data Management

• Hot data will be invalidated shortly; it has a high temporal locality

• Data migration for hot data is unnecessary
– Reduce the amount of data to move to MLC region from SLC region

– Increase the value of α for the same amount of idle times

α =
Tpredict

(Np - Np
hot) · Tcopy

Where Np
hot is the number of hot pages for a time window

↑
↓

Locality-aware Data Management

SLC block
(256 KB)

SLC block
(256 KB)

SLC block
(256 KB)

MLC block
(512 KB)

SLC regionMLC region

MLC block
(512 KB)

Dynamic Allocation

Free block pool

Free block
(Unknown)

Free block
(Unknown)

Requested data

Hot dataCold data

Background Migration

Cold data

Overall Architecture

MLC NAND Flash Memory

VFS Interface

Virtual File System

Performance Manager

Flash Manager

Wear Manager

FlexFS

Wear Management

• Data migration incurs several block erase operations
– How to give a reasonable lifetime to end-users

• Our approach
– Controls the wearing rate so that total erase count is close to the

maximum erase cycles Nerase at a given lifetime Lmin

– Wearing rate : the rate at which flash memory wears out
– Nerase : the maximum number of erase cycles for flash memory
– Lmin : the lifetime of flash memory

Wearing Rate Control

• How FlexFS controls the wearing rate
• The wearing rate is directly proportional to the value of α

SLC block
(256 KB)

Free block
(Unknown)

SLC block
(256 KB)

Writing
512 KB of data

Data migration

α = 1.0

SLC block
(256 KB)

MLC block
(512 KB)

SLC block
(256 KB)

copy

3 blocks are used

MLC block
(512 KB)

α = 0.0

MLC block
(512 KB)

1 block is used

Wearing Rate Control : Example

Lmin

Actual erase count

Actual erase count is larger than expected erase count
⇒ Reduces the value of α

t1 t2 t3 t4

Expected erase count
Nerase

Wearing Rate Control : Example

Actual erase count is smaller than expected erase count
⇒ Increases the value of α

t1 t2 t3 t4

Expected erase count
Nerase

Lmin

Actual erase count

Outline

• Introduction

• Background

• Flexible Flash File System

• Experimental Results

• Conclusion

Experimental Environment

• Experimental setup
– OMAP2420 processor (400 MHz)
– Linux 2.6.25.14 kernel
– Samsung’s 1GB NAND flash memory

• 512 KB block (128 pages per block)
• 4 KB page

• Benchmarks
– Synthetic workloads
– Real mobile workloads

I/O Throughput

• Measure I/O throughputs with three synthetic benchmarks

• FlexFS configurations

Benchmark Description

Idle Sufficient idle times for data migrations

Busy Insufficient idle times for data migrations

Locality
Similar to the Busy benchmark, except for simulating locality of I/O
references (25% of data is rewritten)

Configurations Description

Baseline Uses no optimization techniques

BM Uses background migration

DA Uses background migration + dynamic allocation

LA Uses all the optimization techniques (default configuration)

I/O Throughput : Result

I/O Response Time

• Measure the worst-case response time
– Makes write requests while the background migration is running

• FlexFS configurations
– Uses all the optimization techniques while varying idle time utilizations

35

Configurations Description

OPT No background migration (No response time delay)

U10 Utilizes 10% of all the available idle times (default configuration)

U50 Utilizes 50% of all the available idle times

U100 Utilizes all the available idle times

I/O Response Time : Result

Endurance

• Uses a workload that generates 2638 of erase cycles when all
the data is written to SLC region

• FlexFS configuration
– Nerase: 2400 cycles (240 blocks / 10 cycles for each block)
– Lmin: 4000 seconds

• FlexFS should guarantee 4000 seconds of flash lifetime while
ensuring block erase cycles to be smaller than 2400 cycles

Endurance : Result

• Summary of results relevant to endurance after 4000 seconds

– With wearing rate control policy, we can guarantee the given lifetime of
flash memory

Configuration Total erase cycles Average value of α

wo/ wearing rate control 2638 cycles > 2400 cycles 1.0

w/ wearing rate control 2252 cycles < 2400 cycles 0.88

Real Mobile Workload

• Executes mobile applications using a representative usage profile

• FlexFS configurations
Configurations Description

JFFS2 Original JFFS2 with MLC NAND flash memory

FlexFSSLC Uses only LSB bit

FlexFSMLC Uses both LSB and MSB bits (default configuration)

Application Description

SMS Send short messages

Address book Register/modify/remove addresses

Memo Write short memos

Game Play a puzzle game

MP3 Download MP3 files (18 MB)

Camera Take pictures (18 MB)

- 5.7 MB of data is read / 39 MB of data is written

Real Mobile Workload : Result

• FlexFSMLC shows the write performance close to FlexFSSLC
– Small performance penalty is caused by ensuring the given lifetime

• FlexFSMLC shows about 30% higher write performance compared to JFFS2

• There is no significant difference between read operations
– SLC and MLC blocks have a similar read performance

Response time
(usec)

Throughput
(MB/sec)

Capacity

Read Write Write

FlexFSSLC 34 334 3.02

FlexFSMLC 37 345 2.93 FlexFSSLC x 2.0

JFFS2 36 473 2.12 FlexFSSLC x 2.0

Conclusion

• Propose a new file system for MLC NAND flash memory
– Exploits the flexible cell programming to achieve the SLC

performance and MLC capacity
– Achieves both the SLC performance and MLC capacity for

mobile workloads while ensuring a reasonable lifetime

• Future works
– Deals with a trade-off between performance and energy
– Develops a new wear-management policy for SLC/MLC hybrid

storage architecture

Thank you

44

Backup Slides

45

Previous Approaches

• SLC/MLC hybrid storage [Chang et al (2008), Park et al (2008), Im et al (2009)]
– Composed of a single SLC chip and many MLC chips
– Uses the SLC chip as a write buffer for MLC chips

• Redirects frequently accessed small data into the SLC chip
• Redirects bulk data into the MLC chips

– Low cost and fast response time
– But low bandwidth

46

SLC chip

MLC
chip

MLC
chip

MLC
chip

MLC
chip

MLC
chip

MLC
chip

MLC
chip

MLC
chip

Co
nt

ro
lle

r
(f

ir
m

w
ar

e)

Flash Storage

H
os

t s
ys

te
m

ATA, MMC

Flexible Cell Programming

47

• How system software selectively uses a bit position of a bit pattern
– Two pages, LSB and MSB pages, share the same word line WL(k)
– LSB pages use LSB bit of cell, and MSB pages use LSB bit of cell
⇒ SLC programming can be easily made by writing data into LSB pages (or MSB pages)

Evaluation of Flexible Programming

48

SLC programming
(MLC flash memory)

MLC programming
(MLC flash memory)

Page size 4 KB 4 KB

Block size 256 KB (64 pages) 512 KB (128 pages)

• Performance comparison (* Measured at the device driver)

• Capacity comparison

– SLC programming improves the write speed close to SLC flash memory

– SLC programming reduces the capacity of a block by half (e.g., 512 KB ⇒ 256 KB)

Design Objectives of FlexFS

• Design goals
– Provides the maximum capacity of

MLC flash memory to end-users
– Provides the performance close to

SLC flash memory

• Our approaches
– Logically divides flash memory into

two regions, SLC and MLC regions
– Provides the several modules

managing two different regions to
give high performance and capacity

– Provides operating system with
homogeneous view of storage

49

FlexFS

SLC region MLC region

Operating System

MLC NAND Flash Memory

Manages heterogeneous cells

Provides homogeneous view of storage
(High performance & High capacity)

Write Operation

• Similar to other log-structured file systems, such as JFFS2 and YAFFS

• Uses a double-logging approach for writing data to flash memory
– Two write buffers reserved for SLC and MLC blocks
– Two log blocks reserved for SLC and MLC blocks

50

SLC write buffer
(4 KB)

MLC write buffer
(4 KB)

SLC programming MLC programming

Logging

Write requests

Physical NAND Flash Memory Layout

SLC block 1
(256 KB)

MLC block 1
(512 KB)

SLC block 2
(256 KB)

Free block
(Unknown)

Free block
(Unknown)

MLC block 2
(512 KB)

SLC block 3
(256 KB)

Read Operation

• Find a physical location of a given data from the inode cache
– Maintains physical locations for data associated with inodes in the inode cache

• Read data from the physical location, regardless of block type

51

Physical NAND Flash Memory Layout

Inode Cache

Read requests

Physical location

(inode, file offset)

SLC block 1
(256 KB)

MLC block 1
(512 KB)

SLC block 2
(256 KB)

Free block
(Unknown)

Free block
(Unknown)

MLC block 2
(512 KB)

SLC block 3
(256 KB)

Wear leveling of FlexFS

• Used two wear-leveling policies
– Swaps the most worn-out block with the least worn-out block
– Uses a free block with the smallest erased cycles for writing

• Distribution of block erase cycles

52

Overheads

• Overheads introduced by device driver and file system

2283 usec

994 usec

781 usec

MLC (LSB and MSB)

1809 usecMeasured at file system level

431 usecMeasured at device driver level

260 usecSpecification

MLC (LSB)

