
Sprockets: Safe extensions for distributed file systems

Daniel Peek‡, Edmund B. Nightingale‡ , Brett D. Higgins‡, Puspesh Kumar†, and Jason Flinn‡

University of Michigan‡ and IIT Kharagpur†

Abstract

Sprockets are a lightweight method for extending the
functionality of distributed file systems. They specifi-
cally target file systems implemented at user level and
small extensions that can be expressed with up to sev-
eral hundred lines of code. Each sprocket is akin to a
procedure call that runs inside a transaction that is al-
ways rolled back on completion, even if sprocket exe-
cution succeeds. Sprockets therefore make no persis-
tent changes to file system state; instead, they commu-
nicate their result back to the core file system through
a restricted format using a shared memory buffer. The
file system validates the result and makes any necessary
changes if the validations pass. Sprockets use binary in-
strumentation to ensure that a sprocket can safely execute
file system code without making changes to persistent
state. We have implemented sprockets that perform type-
specific handling within file systems such as querying
application metadata, application-specific conflict reso-
lution, and handling custom devices such as digital cam-
eras. Our evaluation shows that sprockets can be up to
an order of magnitude faster to execute than extensions
that utilize operating system services such as fork. We
also show that sprockets allow fine-grained isolation and,
thus, can catch some bugs that a fork-based implemen-
tation cannot.

1 Introduction

In recent years, the file systems research community has
proposed a number of new innovations that extend the
functionality of storage systems. Yet, most production
file systems have been slow to adopt such advances. This
slow rate of change is a reasonable precaution because
the storage system is entrusted with the persistent data of
a computer system. However, if file systems are to adapt
to new challenges presented by scale, widespread storage
of multimedia data, new clients such as consumer elec-
tronic devices, and the need to efficiently search through
large data repositories, they must change faster.

In this paper, we explore a method called sprockets that
safely extends the functionality of distributed file sys-

tems. Our goal is to develop methodologies that let third-
party developers create binaries that can be linked into
the file system. Sprockets target finer-grained extensions
than those supported by Watchdogs [3] and user level file
system toolkits [6, 17], which offer extensibility at the
granularity of VFS calls such as read and open. Sprock-
ets are intended for smaller, type-specific tweaks to file
system behavior such as querying application-specific
metadata and resolving conflicts in distributed file sys-
tems. Sprockets are akin to procedure calls linked into
the code base of existing file systems, except that they
safely extend file system behavior.

While one might think that extending the behavior of a
distributed file system requires one to alter kernel func-
tionality, many distributed file systems such as AFS [10],
BlueFS [20], and Coda [13] implement their core func-
tionality at user level. It is these file systems that we tar-
get; extending file system functionality in the kernel can
be accomplished through other methods [2, 5, 22, 25]. In
many ways, extending user level code is easier than ex-
tending kernel code since the extension implementation
can use operating system services to sandbox extensions
to user level components. However, we have found that
existing services such as fork are often prohibitively ex-
pensive for commonly-used file system extensions that
are only a few hundred lines of code. Further, isolation
primitives such as chroot can be insufficiently expres-
sive to capture the range of policies necessary to support
some file system extensions.

The sprocket extension model is based upon software-
fault isolation. Sprockets are easy to implement since
they are executed in the address space of the file sys-
tem. They may query existing data structures in the file
system and reuse powerful functions in the code base
that manipulate the file system abstractions. To ensure
safety, sprockets execute inside a transaction that is al-
ways partially rolled back on completion, even if an ex-
tension executes correctly. A sprocket may execute ar-
bitrary user level code to compute its results, but it must
express those results in a limited buffer shared with the
file system. Only the shared buffer is not rolled back at
the end of sprocket execution. The results are verified by
the core file system before changes are made to file state.

1
2007 USENIX Annual Technical ConferenceUSENIX Association 115



We have used sprockets to implement three ideas from
the file systems research community: transducers [7],
application-specific resolvers [14], and automatic trans-
lation of file system operations to device-specific proto-
cols. Our performance results show that sprockets are up
to an order of magnitude faster than safe execution us-
ing operating system services such as fork, yet they can
enforce stricter isolation policies and prevent some bugs
that fork does not.

2 Design goals

What is the best way to extend file system functionality?
To answer this question, we first outlined the goals that
we wished to achieve in the design of sprockets.

2.1 Safety

Our most important goal is safe execution of potentially
unreliable code. The file system is critical to the reliabil-
ity of a computer system— it should be a safe repository
to which persistent data can be entrusted. A crash of the
file system may render the entire computer system unus-
able. A subtle bug in the file system can lead to loss or
corruption of the data that it stores [27]. Since the file
system often stores the only persistent copy of data, such
errors are to be avoided at all costs.

We envision that many sprockets will be written by third-
party developers who may be less familiar with the in-
variants and details of the file system than core devel-
opers. Sprockets may also be executed more rarely than
code in the core file system, meaning that sprocket bugs
may go undetected longer. Thus, we expect the incidence
of bugs in sprockets to be higher than that in the core file
system. It is therefore important to support strong isola-
tion for sprocket code. In particular, a programming error
in a sprocket should never crash the file system nor cor-
rupt the data that the file system stores. A buggy sprocket
may induce an incorrect change to a file on which it oper-
ates since the core file system cannot verify application-
specific semantics within a file. However, the core file
system can verify that any changes are semantically cor-
rect given its general view of file system data (e.g., that
a file and its attributes are still internally consistent) and
that the sprocket only modifies files on which it is enti-
tled to operate.

Like previous systems such as Nooks [25], our design
goal is to protect against buggy extensions rather than
those that are overtly malicious. In particular, our de-
sign makes it extremely unlikely, but not impossible, for
a sprocket to compromise the core file system. Our de-
sign also cannot protect against sprockets that intention-
ally leak unauthorized data through covert channels.

2.2 Ease of implementation

We also designed sprockets to minimize the cost of im-
plementation. We wanted to make only minimal changes
to the existing code of the core file system in order to
support sprockets. We eliminated from consideration any
design that required a substantial refactoring of file sys-
tem code or that added a substantial amount of new com-
plexity. We also wanted to minimize the amount of code
required to write a new sprocket. In particular, we de-
cided to make sprocket invocation as similar to a proce-
dure call as possible.

Sprockets can call any function implemented as part of
the core file system. Distributed file systems often con-
sist of multiple layers of data structures and abstractions.
A sprocket can save substantial work if it can reuse high-
level functions in the core file system that manipulate
those abstractions.

We also let sprockets access the memory image of the
file system that they extend in order to reduce the cost of
designing sprocket interfaces. If a sprocket could only
access data passed to it when it is called, then the file
system designer must carefully consider all possible fu-
ture extensions when designing an interface in order to
make sure that the set of data passed to the sprocket is
sufficient. In contrast, by letting sprockets access data
not directly passed to them, we enable the creation of
sprockets that were not explicitly envisioned when their
interfaces were designed.

2.3 Performance

Finally, we designed sprockets to have minimal perfor-
mance impact on the file system. Most of the sprockets
that we have implemented so far can be executed many
times during simple file system operations. Thus, it is
critical that the time to execute each sprocket be small so
as to minimize the impact on overall file system perfor-
mance. Fortunately, most of the sprockets that we envi-
sion can be implemented with only a few hundred lines
of code or less. These features led us to bias our choice of
designs toward one that had a low constant performance
cost per sprocket invoked, but a potentially higher cost
per line of code executed.

An alternative to the above design bias would be batch
processing so that each sprocket does much more work
when it is invoked. Batching reduces the need to
minimize the constant performance cost of executing a
sprocket by amortizing more work across the execution
of a single sprocket. However, batching would consider-
ably increase implementation complexity by requiring us
to refactor file system code wherever sprockets are used.

2
2007 USENIX Annual Technical Conference USENIX Association116



3 Alternative Designs

In this section, we discuss alternative designs that we
considered, and how these led to our current design.

3.1 Direct procedure call

There are many possible implementations for file system
extensions. The most straightforward one is to simply
link extension code into the file system and execute the
extension as a procedure call. This approach is similar to
how operating systems load and execute device drivers.
Direct execution as a procedure call minimizes the cost
of implementation and leads to good performance. How-
ever, this design provides no isolation: a buggy extension
can crash the file system or corrupt data. As safety is our
most important design goal, we considered this option no
further.

3.2 Address space sandboxing

A second approach we considered is to run each exten-
sion in a separate address space. A simple implemen-
tation of this approach would be to fork a new process
and call exec to replace the address space with a pristine
copy for extension execution. This type of sandboxing is
used by Web servers such as Apache to isolate untrusted
CGI scripts. A more sophisticated approach to address
sandboxing can provide better performance. In the spirit
of Apache FastCGI scripts, the same forked process can
be reused for several extension executions.

However, both forms of address space sandboxing suf-
fer from two substantial drawbacks. First, they provide
only minimal protection from persistent changes made
by an extension through the execution of a system call.
In particular, a buggy extension could corrupt file sys-
tem data by incorrectly overwriting the data stored on
disk. Potentially, such modifications could even violate
file system invariants and lead to a crash of the file sys-
tem when it reads the corrupted data. While operating
systems do provide some tools such as the chroot sys-
tem call and changing the effective userid of a process,
these tools have a coarse granularity. It is hard to allow
an extension access to only some operations, but not oth-
ers. For instance, one might want to allow an extension
that does transcoding to access only an input file in read
mode and an output file in write mode. Restricting its
privilege in this manner using the existing API of an op-
erating system such as Linux requires much effort. Thus,
address space sandboxing does not provide completely
satisfactory isolation on current operating systems.

A second drawback of address space sandboxing is that
it considerably increases the difficulty of extension im-
plementation. If the extension and the file system exist
in separate address spaces, then the extension cannot ac-
cess the file system’s data structures, meaning that all

data it needs for execution must be passed to it when it
starts. Further, the extension cannot reuse functions im-
plemented as part of the file system. While one could
place code of potential interest to extensions in a shared
library, the implementation cost of such a refactoring
would be large.

3.3 Checkpoint and rollback

The above drawback led us to refine our design further
to allow extensions to execute in the address space of the
original file system. As before, the file system forks a
new process to run the extension. However, instead of
calling exec to load the executable image of the exten-
sion, the extension is instead dynamically loaded into the
child’s address space and directly called as a procedure.
After the extension finishes, the child process terminates.

One way to view this implementation is that each ex-
tension executes as a transaction. However, in contrast
to transactions that typically commit on success, these
transactions are always rolled back. Since fork creates
a new copy-on-write image, any modifications made to
the original address space by the extension are isolated
to the child process — the file system code never sees
these modifications.

Extensions may often make persistent changes to file sys-
tem state. Since it is unsafe to allow the extension to
make such changes directly, we divide extension execu-
tion into two phases. During the first phase, the exten-
sion generates a description of the changes to persistent
file state that it would like to make. This description is
expressed in a format specific to each extension type that
can be interpreted by the core file system. In the second
phase, the core file system reads the extension’s output
and validates that it represents an allowable modification.
This validation is specific to the function expected of the
extension and may be as simple as checking that changes
are made only to specific files or that returned values fall
within a permissible range.

If all validations pass, the core file system applies the
changes to its persistent state. This approach is similar to
that taken by an operating system during a system call.
From the point of view of the operating system, the ap-
plication making the call can execute arbitrary untrusted
code; yet, the parameters of the system call can be vali-
dated and checked for consistency before any change to
persistent state is made as a result of the call. This imple-
mentation relies on the fact that while the particular pol-
icy that determines what changes need to be made can
be arbitrarily complex (and thus is best described with
code), the set of changes that will be made as a result of
that policy is often limited and can be expressed using a
simple interface.

For example, consider the task of application-specific
resolution, as is done in the Coda file system [14]. A

3
2007 USENIX Annual Technical ConferenceUSENIX Association 117



resolver might merge conflicting updates made to the
same file by reading both versions, performing some
application-specific logic, and finally making changes
that merge the conflicting versions into a single resolved
file. While the application logic behind the resolution
is specific to the types of files being merged, the pos-
sible result of the resolution is limited. The conflicting
versions of the file will be replaced by new data. Thus,
a extension that implements application-specific resolu-
tion can express the changes it wishes to make in a lim-
ited format such as a patch file that is easily interpreted
by generic file system code. That core file system then
verifies and applies the patch.
In the transactional implementation, the extension needs
some way to return its result so that it can be interpreted,
validated, and applied by the file system. We allow this
by making the rollback at the end of extension execu-
tion partial. Before the extension is executed, the parent
process allocates a new region of memory that it shares
with its child. This region is exempted from the rollback
when the extension finishes. The parent process instead
reads, verifies, and applies return values from this shared
region, and then deallocates it.
The transactional implementation still has some draw-
backs. Like address space isolation, we must rely on op-
erating system sandboxing to limit the changes that an
extension can make outside its own address space.
A second drawback occurs when the file system code be-
ing extended is multithreaded. The extension operates
on a copy of the data that existed in its parent’s address
space at the time it was forked. However, this copy could
potentially contain data structures that were concurrently
being manipulated by threads other than the one that in-
voked the extension. In that case, the state of the data
structures in the extension’s copy of the address space
may violate expected invariants, causing the extension
to fail. Ideally, we would like to fork an extension only
when all data structures are consistent. One way to ac-
complish this would be to ask extension developers to
specify which locks need to be held during extension ex-
ecution. We rejected this alternative because it requires
each extension developer to correctly grasp the complex
locking semantics of the core file system. Instead, the
extension infrastructure performs this task on behalf of
the developer by relying on the heuristic that threads that
modify shared data should hold a lock that protects that
data. We use a barrier to delay the fork of an extension
until no other threads currently hold a lock. This pol-
icy is sufficient to generate a clean copy as long as all
threads follow good programming practice and acquire a
lock before modifying shared data.
A final substantial drawback is that fork is a heavy-
weight operation on most operating systems: when an
extension consists of only a few hundred lines of code,
the time to fork a process may be an order of magnitude

greater than the time to actually execute the extension.
During fork, the Linux operating system copies the page
table of the parent process—this cost is roughly propor-
tional to the size of the address space. For instance, we
measured the time to fork a 64MB process as 6.3ms on
a desktop running the Linux 2.4 operating system [19].
This cost does not include the time that is later spent ser-
vicing page faults due to flushing the TLB and imple-
menting copy-on-write. Overall, while the transactional
implementation offers reasonably good safety and excel-
lent ease of implementation, it is not ideal for perfor-
mance because of the large constant cost of fork.

4 Sprocket design and implementation

Performance considerations led to our current design for
sprocket implementation, which is to use the transac-
tional model described in the previous section but to im-
plement those transactions using a form of software fault
isolation [26] instead of using address space isolation
through fork.

4.1 Adding instrumentation

We use the PIN [16] binary instrumentation tool to mod-
ify the file system binary. PIN generates new text as the
program executes using rules defined in a PIN tool that
runs in the address space of the modified process. The
modified text resides in the process address space and
executes using an alternate stack. The separation of the
original and modified text allows PIN to be turned on
and off during program execution. We use this function-
ality to instrument the file system binary only when a
sprocket is executing. Instrumenting and generating new
code for an application is a very expensive operation,
but the instrumentation must be performed only once for
each instruction. Unfortunately, since PIN is designed
for dynamic optimization, it does not support an option
(available in many other instrumentation tools) to stat-
ically pre-instrument binaries before they start running.
To overcome this artifact of the PIN implementation, we
can pre-instrument sprockets by running them once on
dummy data when the file system binary is first loaded.
We have implemented our own PIN tool to provide a safe
execution environment in which to run sprockets. When
a sprocket is about to be executed, the PIN instrumenta-
tion is activated. Our PIN tool first saves the context of
the calling thread (e.g., register states, program counter,
heap size, etc.). As the sprocket executes, for each in-
struction that writes memory, our PIN tool saves the orig-
inal value and the memory location that was modified to
an undo log.
When the sprocket completes execution, each memory
location in the undo log is restored to its original value
and the program context is restored to the point be-
fore the sprocket was executed. The PIN tool saves the

4
2007 USENIX Annual Technical Conference USENIX Association118



/* Arguments passed to sprocket */
help_args.buf = NULL;

help_args.len = 0;

help_args.file1_size = server_attr.size;
help_args.file2_size = client_file_stat.st_size;

/* Set up return buffer and invoke sprocket */
SPROCKET_SET_RETURN_DATA (help_args.shared_page, getpagesize());

rc = DO_SPROCKET(resolver_helper, &help_args);

if (rc == SPROCKET_SUCCESS) {

/* Verify and read return values */
get_needed_data(help_args.shared_page, &help_args,

NULL, fid, &server_attr, path);

} else {
/* handle sprocket error */

...

Figure 1. Example of sprocket interface

sprocket’s return code and passes this back to the core file
system as the return value of the sprocket execution. Like
the fork implementation, the sprocket infrastructure allo-
cates a special region of memory in the process address
space for results — modifications to this region are not
rolled back at the end of sprocket execution. If sprocket
execution is aborted due to an exception, bug, or timeout,
the PIN tool substitutes an error return code. Prior to re-
turning, the PIN tool disables instrumentation so that the
core file system code executes at native speed.

The ability to dynamically enable and disable instrumen-
tation is especially important since sprockets often call
core file system functions. When the sprocket executes,
PIN uses a slow, instrumented version of the function
that is used during all sprocket executions. When the
function is called by the core file system, the original,
native-speed implementation is used. Instrumented ver-
sions are cached between sprocket invocations so that the
instrumentation cost need be paid only once.

Running the instrumented sprocket code, which saves
modified memory values to an undo log, is an order
of magnitude slower than running the native, uninstru-
mented version of the sprocket. However, since most
sprockets are only a few hundred lines of code, the to-
tal slowdown due to instrumentation can be substantially
less than the large, constant performance cost of fork.

We perform a few optimizations to improve the perfor-
mance of binary instrumentation. We observed that many
modifications to memory occur on the stack. By record-
ing the location of the stack pointer when the sprocket
is called, we can determine which region of the stack is

unused at the point in time when the sprocket executes.
We neither save nor restorememory in this unused region
when it is modified by the sprocket. Similarly, we avoid
saving and restoring areas of memory the sprocket allo-
cates using malloc. Finally, we avoid duplicate backups
of the same address.

Binary instrumentation also allows us to implement fine-
grained sandboxing of sprocket code. Rather than rely on
operating system facilities such as chroot, we use PIN
to trap all system calls made by the sprocket. If the sys-
tem call is not on a whitelist of allowed calls, described
in Section 4.3, the sprocket is terminated with an error.
Calls on the whitelist include those that do not change
external state (e.g., getpid). We also allow system calls
that enable sprockets to read files but not modify them.

4.2 Sprocket interface

Figure 1 shows an example of how sprockets are used.
From the point of view of the core file system, sprocket
invocation is designed to appear like a procedure call.
Each sprocket is passed a pointer argument that can con-
tain arbitrary data that is specific to the type of sprocket
being invoked. Since sprockets share the file system ad-
dress space, the data structure that is passed in may in-
clude pointers. Alternatively, a sprocket can read all nec-
essary data from the file server’s address space.

The SPROCKET SET RETURN DATA macro allocates a
memory region that will hold the return value. In the
example in Figure 1, this region is one memory page
in size. The DO SPROCKET macro invokes the sprocket
and rolls back all changes except for data modified in

5

2007 USENIX Annual Technical ConferenceUSENIX Association 119



the designated memory region. In the example code, the
core file system function get needed data parses and
verifies the data in the designated memory region, then
deallocates the region. As shown in Figure 1, the core
file system may also include error handling code to deal
with the failure of sprocket execution.

4.3 Handling buggy sprockets

Sprockets employ a variety of methods to prevent erro-
neous extensions from affecting core file system behav-
ior and data. Because changes to the process address
space made by a sprocket are rolled back via the undo
log, the effects of any sprocket bug that stomps on core
file system data structures in memory will be undone
during rollback. Similarly, a sprocket that leaks mem-
ory will not affect the core file system. Because the data
structures used by malloc are kept in the process address
space, anymemory allocated by the sprocket is automati-
cally freed when the undo log is replayed and the address
space is restored. Additional pages acquired by memory
allocation during sprocket execution are deallocated with
the brk system call.

Other types of erroneous extensions are addressed by
registering signal handlers before the execution of the
socket. For instance, if a sprocket dereferences a NULL
pointer or accesses an invalid address, the registered
segfault handler will be called. This handler sets the
return value of the sprocket to an error code and resets the
process program counter in the saved execution context
passed into the handler to the entry point of the rollback
code. Thus, after the handler finishes, the sprocket au-
tomatically rolls back the changes to its address space,
just as if the sprocket had returned with the specified er-
ror code. To handle sprockets that consume too much
CPU (e.g., infinite loops), the sprocket infrastructure sets
a timer before executing the extension.

The final type of errors currently handled by sprockets
are erroneous system calls. Sprockets allow fine-grained,
per-system-call capabilities via a whitelist that specifies
the particular system calls that a sprocket is allowed to
execute. We enforce the whitelist by using the PIN bi-
nary instrumentation tool to insert a check before the ex-
ecution of each system call. If the system call being in-
voked by a sprocket is not on its whitelist, the sprocket is
aborted and rolled back with an error code.

We support per-call handling for some system calls. For
instance, we keep track of the file descriptors opened by
each sprocket. If a sprocket attempts to close a descriptor
that it has not itself opened, we roll back the sprocket
and return an error. Similarly, after the sprocket finishes
executing, our rollback code automatically closes any file
descriptors that the sprocket has left open, preventing it
from leaking a consumable resource.

One remaining way in which a buggy sprocket can af-
fect the core file system code is to return invalid data
via the shared memory buffer. Unfortunately, since the
return values are specific to the type of sprocket being
invoked, the sprocket execution code cannot automati-
cally validate this buffer. Instead, the code that invokes
the sprocket performs a sprocket-specific validation be-
fore using the returned values. For instance, one of our
sprockets (described in Section 5.2) returns changes to a
file in a patch-compatible file format. The code that was
written to invoke that particular sprocket verifies that the
data in the return buffer is, in fact, compatible with the
patch format before using it.

4.4 Support for multithreaded applications

Binary instrumentation introduces a further complication
for multithreaded programs: other threads should never
be allowed to see modifications made by a sprocket. This
is an important consideration for file systems since most
clients and servers are designed to support a high level of
concurrency. We first discuss our current solution to mul-
tithreaded support, which is most appropriate for unipro-
cessors, and then discuss how we can extend the sprocket
design in the future to better support file system code run-
ning on multiprocessors.

Our current design for supporting multithreaded appli-
cations relies on the observation that the typical time
to execute a sprocket (0.14–0.62ms in our experiments)
is much less than the scheduling quantum for a thread.
Thus, if a thread would ordinarily be preempted while
a sprocket is running, it is acceptable to let the thread
continue using the processor for a small amount of time
in order to complete the sprocket execution. If the
sprocket takes too long to execute, its timer expires and
the sprocket is aborted. Effectively, we extend our barrier
implementation so that sprockets are treated as a critical
section; no other thread is scheduled until the sprocket
is finished or aborted. Although our barrier implementa-
tion is slightly inefficient due to locking overheads, we
would require a more expressive interface such as An-
derson’s scheduler activations [1] to utilize a kernel-level
scheduling solution.

On a multiprocessor, the critical section implementation
has the problem that all other processorsmust idle (or ex-
ecute other applications) while a sprocket is run on one
processor. If sprockets comprise a small percentage of
total execution time, this may be acceptable. However,
we see two possible solutions that would make sprockets
more efficient on multiprocessors. One possibility would
be to also instrument core file system code used by other
threads during sprocket execution. If one thread reads
a value modified by another, the original value from the
undo log is supplied instead. This solution allows other
threads to make progress during sprocket execution, but
imposes a performance penalty on those threads since

6
2007 USENIX Annual Technical Conference USENIX Association120



they also must be instrumented while a sprocket exe-
cutes.

An alternative solution is to have sprockets modify data
in a shadow memory space. Instructions that read modi-
fied values would be changed to read the values from the
shadowmemory rather than from the normal locations in
the process address space. For example, Chang and Gib-
son [4] describe one such implementation that they used
to support speculative execution.

5 Sprocket uses

In order to examine the utility of sprockets, we have
taken three extensions proposed by the file systems re-
search community and implemented them as sprockets.
The next three subsections describe our implementation
of transducers, application-specific conflict resolution,
and device-specific protocols using sprockets.

For these examples, we chose to extend the Blue dis-
tributed file system [20] because we are familiar with its
source code and, like many distributed file systems, it
performs most functionality at user level. Further, its fo-
cus on multimedia and consumer electronic clients [21]
is a good opportunity to explore the use of sprockets to
support the type-specific functionality for personal mul-
timedia content.

5.1 Transducers

The first type of sprocket implements application-
specific semantic queries over file system data. The func-
tionality of this sprocket is similar to that of a trans-
ducer in the Semantic File System [7] or in Apple’s Spot-
light [24] in that it allows users to search and index type-
specific attributes contained within files. For example,
one might wish to search for music produced by a par-
ticular artist or photos taken on a specific date. This in-
formation is stored as metadata within each file (in the
ID3 tag of music files and in the JPEG header of pho-
tos). However, since the organization of metadata is
type-specific, the file system must understand the meta-
data format before it can search or index files of a given
type. Our sprocket transducers extend BlueFS by provid-
ing this type-specific knowledge.

We have implemented our transducer sprocket as an ex-
tension to the BlueFS persistent query facility [21]. Per-
sistent queries notify applications about modifications to
data stored within the file system. An application run-
ning on any client that is interested in receiving such noti-
fications specifies a semantic query (e.g., all files that end
in “.mp3”) and the set of events in which it is interested
(e.g., file existence and new file creation). The query
is created as a new object within the file system. The
BlueFS server evaluates the query and adds log records

for all matching events. For instance, in the above ex-
ample, the server would initially add a log record to the
query for every MP3 file accessible to the user who cre-
ated the query, and then incrementally add a new record
every time a newMP3 file is created. As in the above ex-
ample, a query can be used either statically (to evaluate
the current state of the file systems) and/or dynamically
(to receive notifications when modifications are made to
the file system).

In the existing BlueFS implementation, a persistent
query could only be specified as a semantic query over
file system metadata such as the file name and owner.
Such file metadata is generic, meaning that the file server
can easily interpret the metadata for all files it stores.
A generic routine in the server is called to evaluate the
query each time there is a potential match; the routine re-
turns true if the file metadata matches the semantic query
specified and false otherwise. However, this generic ap-
proach cannot easily be used for type-specific metadata
such as the ID3 tags in music files, because the format of
tags is opaque to the file server.

To support type-specific metadata, we extended the per-
sistent query interface to allow applications to optionally
specify a sprocket that will be called to help evaluate the
query. For each potential match, the server first performs
the generic type-independent evaluation described above
(for instance, the query might verify that the filename
ends in “.mp3”). If the generic evaluation returns true,
the server invokes the sprocket specified for the query.

The query sprocket reads the type-specific metadata from
the file, evaluates the contents, and returns a boolean
value that specifies whether or not the file matches the
query. If the sprocket returns true, the server appends a
record to the persistent query object; the server takes no
action if the sprocket returns false.

Reading data from a server file is a relatively complex
operation. File data may reside in one of three places: in
a file on disk named by the unique BlueFS identifier for
that file, in the write-ahead log on the server’s disk, or
in a memory cache that is used to improve read perfor-
mance. Executing the sprocket within the address space
of the server improves performance because the sprocket
can reuse the server’s memory cache to avoid reading
data from disk. Further, when the cache or write-ahead
log contains more recent data than on disk, executing the
sprocket in the server’s address space avoids the need to
flush cached data and truncate the write-ahead log. If the
sprocket were a stand-alone process that only read data
from the on-disk file, then it would read stale data if the
cache were not flushed and the write-ahead log truncated.

The sprocket design considerably reduces the complexity
of transducers in BlueFS. The sprocket can reuse existing
server functions that read data and metadata from the di-
verse sources (cache, log, and disk storage). These func-

7
2007 USENIX Annual Technical ConferenceUSENIX Association 121



tions also encapsulate BlueFS-specific complexity such
as the organization of data on disk (e.g., on-disk files are
hashed and stored in a hierarchical directory structure or-
ganized by hash value to improve lookup performance).
Due to this reuse, the code size of our transducers is rel-
atively small. For example, a transducer that we wrote to
search ID3 tags and return all MP3 files with a specific
artist required only 239 lines of C code.

5.2 Application-specific resolution

The second type of sprocket performs application-
specific resolution similar to that proposed by Kumar et
al. for the Coda file system [14]. Like Coda, BlueFS uses
optimistic concurrency and supports disconnected oper-
ation. Therefore, it is possible that concurrent updates
may be made to a file by different clients. When this oc-
curs, the user is normally asked to manually resolve the
conflict. As anyone who has used CVS knows, manual
conflict resolution is a tedious and error-prone process.

Kumar et al. observed that many types of files have an in-
ternal structure that can be used by the file system to au-
tomatically resolve conflicts. For example, if one client
adds an artist to the ID3 tag of an MP3 file, while another
client adds a rating for the song, a file systemwith knowl-
edge of this data type can determine that the two updates
are orthogonal. An automatic resolution for these two
updates would produce a file that contains both the new
artist and rating. However, like the transducer example in
the previous section, BlueFS cannot perform such auto-
matic resolution because it lacks the required knowledge
about the data type.

To allow for automatic conflict resolution, we extended
the conflict handling code in the BlueFS client daemon
to allow for the optional invocation of a handler for spe-
cific data types. When the daemon tries to reintegrate an
update that has been made on its client to the server, the
server may detect that there has been a conflicting update
made by another client (BlueFS stores a version number
and the identifier of the last client to update the file in
order to detect such conflicts). The client daemon then
checks to see if there is a conflict handler registered for
the data type (specifically, it checks to see if the name
of the file matches a regular expression such as files that
end in “.mp3”). If a match is found, the daemon invokes
the sprocket registered for that data type.

Our original design had the sprocket do the entire reso-
lution by reading and fetching the current version of the
file stored at the server, comparing it to the version stored
on the client, and then writing the result to a temporary
file. However, this approach was unsatisfying for two
reasons. First, it violated our rule that sprockets should
never persistently change state. The design required the
sprocket to communicate with the server, which is an ex-
ternally visible event that changes persistent state on the

server. The communication increments sequence num-
bers and perturbs the next message if the stream is en-
crypted. Second, the design did not promote reuse. Each
resolution sprocket must separately implement code to
fetch data from the server, read data from the client, and
write the result to a temporary file.

Based on these observations, we refactored our design
to perform resolution with two separate sprockets. The
first sprocket determines the data to be fetched from the
server; it returns this information as a list of data ranges.
For example, anMP3 resolverwould return the bytes that
contain the ID3 tag. After executing the sprocket, the
daemon fetches the required data. The first sprocket may
be invoked iteratively to allow it to traverse data struc-
tures within a file. Thus, the work that is generic and
that makes persistent changes to file system state is now
done outside of the sprocket. A second benefit of this ap-
proach is that only a limited subset of a file’s data needs
to be fetched from the server; for large multimedia files,
this substantially improves performance.

The daemon passes the second sprocket the range of data
to examine that was output by the first sprocket, as well
as the corresponding data in the client and server versions
of the file to be resolved. The second sprocket performs
the resolution and returns a patch that contains regions of
data to add, delete, or replace in the server’s version of
the file. The daemon validates that the patch represents
an internally consistent update to the file (e.g., that the
bytes being deleted or replaced actually exist within the
file). It sends the changes in the patch file to the server
to complete the resolution. This design fits the sprocket
model well since the format of the patch is well under-
stood and can be validated by the file system before being
applied; yet, the logic that generates the patch can be ar-
bitrarily complex and reside within the sprocket. A bug
in the sprocket could potentially produce an invalid ID3
header; however, since the application-specific metadata
is opaque to the core file system, such a bug could not
lead to a subsequent crash of the client daemon or server.

We have written an MP3 resolver that compares two ID3
tags and returns a new ID3 tag that merges concurrent
updates from the two input tags. The first sprocket is in-
voked twice to determine the byte range of the ID3 tag in
the file. The second sprocket performs the resolution and
requests that the daemon replace the version of the ID3
tag at the server with a new copy that contains the merged
updates. Typically, the patch contains a single entry that
replaces the data in the original ID3 tag. However, if the
size of the ID3 tag has grown, the patch may also request
that additional bytes be inserted in the file after the loca-
tion of the original ID3 tag. These two sprockets required
a combined 474 lines of C code.

8
2007 USENIX Annual Technical Conference USENIX Association122



5.3 Device-specific processing

The final type of sprocket allows BlueFS to read and
write the data stored on different types of consumer elec-
tronic devices. Prior to this work, BlueFS already al-
lowed the user to treat devices such as iPods and digital
cameras as clients of the distributed file system. Files
on such devices are treated as replicas of files within the
distributed namespace. When a consumer electronic de-
vice attaches to a general-purpose computer running the
BlueFS client daemon, the daemon propagates changes
made on the device to the distributed namespace of the
file system. If the files in the distributed namespace have
been modified since the device last attached to a BlueFS
client, the daemon propagates those changes to the files
on the device’s local storage.

This previous support for consumer electronic devices
assumed that all such devices export a generic file system
interface through which BlueFS can read and write data.
This is not true for all devices: for example, many cam-
eras allow photos to be uploaded and downloaded using
the Picture Transfer Protocol (PTP), and digital media
players typically allow their data to be accessed through
the UPnP Content Delivery Service (CDS). For each new
type of interface, BlueFS must be extended to understand
how to read, write, and search through the data on a de-
vice using its device-specific protocol.

The required functionality is akin to that of device drivers
in modern operating systems. While the logic that allows
consumer electronic devices to interact with the file sys-
tem is generic, the particular interface used to read, write,
and search through data on each device is often specific
to the device type. We therefore chose to structure our
code such that most functionality is implemented by a
generic layer that calls into device-specific routines only
when it needs to access data on the consumer electronic
device. These low-level routines provide services such
as listing the files on a device, reading data from each
file, and creating new files on the device.

We have created two sets of device-specific routines: one
for devices that export a file system interface, and one
for cameras that use PTP. Other sets of routines could
be added to expand the number of consumer electronic
devices supported by BlueFS.

Potentially, we could have linked these interface routines
directly into the file system daemon, in much the same
way that device drivers are dynamically loaded into the
kernel. However, we were cautioned by the poor reliabil-
ity of device drivers in modern operating systems [25].
We felt that such software could be a substantial source
of bugs, and we did not want faulty interface routines to
have the capability to crash the file system or corrupt the
data that it stores. Therefore, we implemented these in-
terface routines as sprockets to isolate them from the rest
of the file system.

For both the file system and PTP interface, we have cre-
ated sprockets that implement functions that open files
and directories, read them, and modify them. To im-
prove performance, these sprockets are allowed to cache
intermediary data in a temporary directory. They are also
allowed to make system calls that interact with the spe-
cific device with which they are interfacing; for exam-
ple, the PTP sprocket can communicate with the cam-
era over the USB interface. These additional capabilities
are allowed by expanding the whitelist for this particular
sprocket type to enable the extended functionality. How-
ever, these sprockets are not allowed to make changes to
data stored in BlueFS. Instead, they pass buffers to the
file system daemon. The daemon validates the contents
of each buffer before modifying the file system. We im-
plemented the entire PTP sprocket interface using only
635 lines of C code.

5.4 Other potential sprockets

Beyond the three types of sprockets we have already
implemented, we see many more potential applications
of sprockets in distributed file systems. One can in-
sert sprockets into client and server code to collect
statistics so that the file system can be tuned for bet-
ter performance. Sprockets can be used to refine the
results from directory listings — for example, if mul-
timedia files are located on remote storage, they might
be listed in a directory only if sufficient bandwidth is
available to stream them from the remote source and
play them without loss. Sprockets could also be used
to support on-the-fly transcoding of data from one for-
mat to another. Sprockets could potentially imple-
ment application-specific caching policies: for instance,
highly rated songs or movies that have been recorded but
not yet viewed can be stored on mobile devices. In gen-
eral, we believe that sprockets are a promising way to
deal with the heterogeneity of the emerging class of con-
sumer electronic devices, as well as the multimedia data
formats that they support.

6 Evaluation

Our evaluation answers the following questions:

• What is the relative performance of exten-
sions implemented through binary instrumentation,
address-space sandboxing, and direct procedure
calls?

• What are the effects of our binary instrumentation
optimizations on performance?

• What isolation is provided for extensions imple-
mented through binary instrumentation, address-
space sandboxing, and direct procedure calls?

9
2007 USENIX Annual Technical ConferenceUSENIX Association 123



10,000 matches 
0

10

20

30

T
im

e
(s

ec
on

ds
)

0 matches

10

20

30
procedure
sprocket
fork

This figure compares the time to create a persistent query that
lists MP3 songs by the band Radiohead using extensions imple-
mented via procedure call, sprocket, and fork. The graph on
the left shows the results when the file system contains 10,000
files, all of which match the persistent query; the graph on the
right shows the results when none match. Each result is the
mean of five trials — error bars show 90% confidence intervals.

Figure 2. Performance of the Radiohead transducer

6.1 Methodology

For our evaluation we used a single computer with a
3.02GHz Pentium 4 processor and 1GB of RAM— this
computer acts as both a BlueFS client and server. The
computer runs Red Hat Enterprise Linux 3 (kernel ver-
sion 2.4.21-4). When a second BlueFS client is required,
we add a IBM T20 laptop with a 700MHz Pentium III
processor and 128MB of RAM connected over a 100
Mbps switch. The IBM T20 runs Red Hat Linux En-
terprise 4 (kernel version 2.6.9-22). Each BlueFS client
is configured with a 500MB write log and does not cache
data on disk. We used the PIN toolkit version 7259 com-
piled for gcc version 3.2. All results were measured us-
ing the gettimeofday system call.

6.2 Radiohead transducer

The first experiment measures the performance of a
transducer extension that determines whether or not an
MP3 has the artist tag “Radiohead”, as described in Sec-
tion 5.1. Figure 2 shows the performance of the exten-
sion in two different scenarios. In the left graph, the file
system is first populated with 10,000 MP3 files with the
ID3 tag designating Radiohead as the artist. The first bar
in the graph shows the time to run the sprocket 10,000
times, once for each file in the file system, and generate
the persistent query when the extension is executed as
a function call inside the BlueFS address space. As ex-
pected, the function call implementation is extremely fast
since it provides no isolation. The second bar shows per-
formance running the extension as a sprocket, with PIN-
based binary instrumentation providing isolation. The
instrumentation slows the execution of the extension by

procedure sprocket fork
0.0

0.2

0.4

0.6

T
im

e
(m

ill
is

ec
on

ds
)

helper 1st
helper 2nd
resolver

This figure compares performance when resolving a conflict us-
ing an application-specific ID3 tag resolver using procedure call,
sprocket, and fork-based implementations. A helper extension
is invoked twice to determine which data needs to be resolved,
and a resolver extension performs the actual resolution. Each
bar shows the time to resolve conflicts with 100 files. Each re-
sult is the mean of five trials — error bars show 90% confidence
intervals.

Figure 3. Application-speciÆc conØict resolution

a factor of 20 but ensures that a buggy sprocket will not
adversely affect the server.

The last bar in the graph shows performance when ex-
ecuting the extension using fork as described in Sec-
tion 3.3. While fork provides many of the same bene-
fits as sprockets, its performance is over 6 times worse.
For this small extension, the per-instruction performance
cost of binary instrumentation is much cheaper than the
constant performance cost of copying the file server’s
page table and flushing the TLB when executing fork.

The right graph in Figure 2 shows the performance of
the Radiohead transducerwhen BlueFS is populated with
10,000 MP3 files, none of which are by the band Radio-
head. Thus, the resulting persistent query will be empty.
The results of the second experiment are similar to the
first. However, the extension executes more code in this
scenario because it checks for the possible existence of
a version 2 ID3 tag when it finds that no version 1 ID3
tag exists. In the first experiment, the second check is
never executed. The additional code has a proportionally
greater affect on the sprocket implementation because of
its high per-instruction cost.

6.3 Application-specific conflict resolution

The next experiment measures the performance of a set
of extensions that resolve a conflict within the ID3 tag of
an MP3. When a client sends an operation to the server
(e.g., a file system write) that conflicts with the version at
the server, the client invokes an extension to try to auto-
matically resolve the conflict before requiring the user to
manually intervene. We populated BlueFS with 100MP3

1
2007 USENIX Annual Technical Conference USENIX Association124



Transducer Conflict Resolver
0.0

0.5

1.0

N
or

m
al

iz
ed

E
xe

cu
ti

on
T

im
e

None
Malloc
Duplicate
Stack
Malloc & Duplicate
Malloc & Stack
Duplicate & Stack
All Three

This figure shows effects of combinations of our optimizations on
the performance of our sprocket tests: the Radiohead transducer
with 10,000 matches and a run of the application specific conflict
resolver. Results are the average of five pre-instrumented exe-
cutions with 90% confidence intervals and are normalized to the
unoptimized performance.

Figure 4. Optimization performance

files, each of which is 3MB in size. We then modified
two different fields within the ID3 tag of each file on two
different BlueFS clients. After ensuring that one client
had reconciled its log with the server, we flushed the sec-
ond client’s log, creating a conflict in all 100 files. The
client then invokes two extensions to resolve the conflict.
The first, helper, extension is invoked twice to determine
where the ID3 tag is located in the file. The first invoca-
tion reads the ID3 header, which determines the size of
the rest of the tag; the second invocation reads the rest of
the tag. The second, resolver, extension creates a patch
that resolves the conflict. This process is repeated for
each of the 100 files.

Figure 3 shows the performance of each implementation.
The sprocket implementation is substantially faster than
the fork-based implementation on all extensions, though
the difference in performance is greater for the first two
helper invocations (because they execute fewer instruc-
tions). The resolver extension is still faster with the
sprocket implementation than with fork, but shows a
substantially smaller advantage than the others. This is

optimization transducer conflict resolver
Malloc (total) 0.00% 2.78%
Duplicate (total) 82.44% 81.71%
Stack (total) 99.45% 93.35%
Malloc (unique) 0.00% 2.01%
Duplicate (unique) 0.38% 2.68%
Stack (unique) 17.39% 15.08%

This table shows the fraction of memory backups prevented by
the three optimizations. The first three rows show the fraction of
memory backups prevented by each optimization. The second
three rows show the fraction of memory backups prevented by
only that optimization and no other. Results are the average of
five runs of a single execution of each extension.

Table 2. Effects of optimizations

because the resolver extension runs longer, causing the
cumulative cost of executing instrumented code to ap-
proach the cost of fork. While the performance of bi-
nary instrumentation might improve with further code
optimization, we believe that sprockets of substantially
greater complexity than this one should probably be ex-
ecuted using fork for best performance.

6.4 Optimizations

Given this set of experiments, we next measured the ef-
fectiveness of our proposed binary instrumentation opti-
mizations which eliminate saving and restoring data at
addresses allocated by the sprocket, duplicated in the
undo log, or in the section of the stack used by the
sprocket. These three techniques are intended to improve
performance by inserting an inexpensive check before
each write performed by the sprocket that tests whether
overwritten data needs to be saved in the undo log.

Since each optimization adds a test that is executed be-
fore each write, optimizations must provide a substan-
tial reduction in logging to overcome the cost of testing.
Figure 4 shows the time taken for both the Radiohead
transducer and conflict resolver with combinations of op-
timizations turned on.

To understand these results, we first measured the frac-
tion of writes each optimization prevents from creating
an undo log entry. As shown in the upper half Ta-
ble 2, avoiding either stack writes or duplicates of al-
ready logged addresses prevents almost all new log en-
tries. For these sprockets, the malloc optimization is less
effective; the Radiohead transducer does not use malloc
and the conflict resolver performs fewwrites to the mem-
ory it allocates.

Seeing the large overlap in writes covered by these op-
timizations, we next investigated how much each con-
tributed to the total reduction in logging. The lower half
of Table 2 shows the fraction of writes that are uniquely
covered by each optimization. In this view, the malloc

1
2007 USENIX Annual Technical ConferenceUSENIX Association 125



buggy sprocket procedure result fork result sprocket result
memory leak crash correct correct
memory stomp crash correct correct
segfault crash extension terminated extension terminated
file leak crash correct correct
wrong close hang correct extension terminated
infinite loop hang extension terminated extension terminated
call exec exec & exit exec executed extension terminated

This table shows the results when a buggy extension is executed under three different execution environments. “Correct” means that
the sprocket completed successfully without a negative effect on the BlueFS file system. “Extension terminated” means a problem
was detected and the extension halted without adversely affecting the file system or its data.

Table 1. Result of executing buggy extensions

optimization looks more useful as writes it covers are
usually not covered by the other optimizations.

Since the Radiohead transducer sprocket does not use
malloc, the malloc optimization simply imposes addi-
tional cost. For this sprocket, the stack optimization
alone is the most effective; adding the duplicate opti-
mization prevents an additional 0.38% of writes from
creating undo log entries, but this benefit is less than the
cost of its test on every write.

On the conflict resolver sprocket, the effects are some-
what different. Again, the stack optimization is the most
effective. Adding the other optimizations produces no
significant difference. This suggests that very simple
tests, such as the malloc optimization, that test if the ad-
dress to be logged is within a certain range, can break
even if they prevent around 2% of writes from triggering
logging.

6.5 When good sprockets go bad

Next, we implemented eight buggy extensions and ob-
served how their execution affected the BlueFS server
— the results are shown in Table 1. The first extension
leaks memory by allocating a 10 MB buffer and return-
ing without deallocating the buffer. When the extension
is run as a function call, the file server crashes after re-
peated invocation when it runs out of memory. When
fork is used, the child address space is reclaimed each
time the sprocket exits, so there are no negative effects.
Likewise, the sprocket implementation exhibits no nega-
tive effects due to its rollback of address space changes.

The second extension overwrites an important data struc-
ture in the BlueFS server address space (the pointer to the
head of the write-ahead log) with NULL. As expected, the
extension crashes the server when run as a function call
and it has no effect when run using fork. When run as
a sprocket, the extension does not affect the server be-
cause the memory stomp is undone after the extension
completes.

Another common fault is an illegal access to memory that
causes a segfault. The third extension creates this fault

by dereferencing a pointer to an invalid memory location.
If the extension is executed as a function call, the server
is terminated. If the extension is run via fork, the child
process dies as a result of the segfault and an error
message is returned to the parent process. The sprocket
infrastructure correctly catches the segfault signal and
returns an error to the core file system.

Leaking file handle resources can also be problematic.
We created an extension that opens a file but forgets to
close it. When we ran this extension multiple times as
a function call, the server eventually crashed due to the
resource leak. With both the fork and sprocket imple-
mentations, the resource leak is prevented by the cleanup
executed after the extension finishes executing.

A buggy extension might also close a descriptor that it
did not open. We therefore created an extension that
closed all open descriptors, even those it did not itself
open, before it exits. Executing this extension as a pro-
cedure call disconnected all current clients of the file
server and prevented them from reconnecting by closing
the port on which the server listens for incoming connec-
tions. When the extension is run with fork, the server’s
file handles are not affected by the sprocket’s mistake.
When the the extension is run as a sprocket, the system
call whitelist detects that the sprocket is trying to close a
file descriptor that it did not open and aborts the sprocket.
Alternatively, we could have chosen to ignore the close
call altogether, but we felt that triggering an error return
was the best way to handle this bug.

Another common danger is extension code that does not
terminate. The sixth row of Table 1 shows results for
an extension that executes an infinite loop. Running the
sprocket multiple times via a function call causes the
server to hang as it runs out of threads. With sprockets,
a timer expiration triggers termination of the sprocket. A
similar approach can be used to terminate the child pro-
cess when using fork.

The last sprocket attempts to execute a new program by
calling exec. When executed as a function call, the
server simply ceases to exist since its address space is

1
2007 USENIX Annual Technical Conference USENIX Association126



replaced by that of another program. With sprockets, the
system call whitelist detects that a sprocket is attempting
a disallowed system call. The PIN tool immediately rolls
back the sprocket’s execution, and returns an error to the
file system. The fork implementation allows the exten-
sion to exec the specified executable, which is probably
not a desirable behavior.

7 Related work

To the best of our knowledge, sprockets are the first sys-
tem to use binary instrumentation and a transactional
model to allow arbitrary code to run safely inside a dis-
tributed file system’s address space.

Our use of binary instrumentation to isolate faults builds
on the work done by Wahbe et al. [26] to sandbox an
extension inside a program’s address space. However,
instead of limiting access to the address space outside
the sandbox, we provide unfettered access to the address
space but record modifications and undo them when the
extension completes execution.

VINO [22] used software fault isolation in the context
of operating system extensions. However, VINO exten-
sions do not have access to the full repertoire of kernel
functionality and are prevented from accessing certain
data. Permitted kernel functions are specified by a list.
Those functions must check parameters sent to them by
the extension to protect the kernel. In contrast, sprockets
can call any function and access any data.

Nooks [25] used this technique for device drivers. The
Exokernel [5] allowed user-level code to implement
many services traditionally provided by the operating
system. Rather than focus on kernel extensions, sprock-
ets target functionality that is already implemented at
user-level. This has several advantages, including the
ability to access user-level tools and libraries. The
sprocket model also introduces minimal changes to the
system being extended because it requires little refactor-
ing of core file system code and makes extensions appear
as much like a procedure call as possible.

Type-safe languages are another approach to protection.
The SPIN project [25] used the type-safe Modula-3 lan-
guage to guarantee safe behavior of modules loaded into
the operating system. However, this approach may re-
quire extra effort from the extension developer to ex-
press the desired functionality and limits the reuse of ex-
isting file system code, much of which is not currently
implemented in type-safe languages. Languages can be
taken even further [15] by allowing provable correctness
in limited domains. However, this is not applicable to
our style of extension which can perform arbitrary calcu-
lation.

Other methods for extending file system functionality
such as Watchdogs [3] and stackable file systems [8, 12]

provide safety, but operate through a more restrictive in-
terface that allows extensions only at certain pre-defined
VFS operations such as open, close, and write.
The sprocket interface is not necessarily appropriate for
such course-grained extensions; instead, we target fine-
grained extensions that are a few hundred lines of source
code at most.

The use of sprockets to evaluate file system state was
inspired by the predicates used by Joshi et al. [11] to
detect the exploitation of vulnerabilities through virtual
machine introspection. Evaluating a predicate provides
similar functionality to a transaction that is never com-
mitted. The evaluation of a sprocket has similar goals in
that it extracts a result from the system without perturb-
ing the system’s address space. However, since the code
we are isolating runs only at user level, we can provide
the needed isolation by using existing operating system
primitives instead of a virtual machine monitor.

Like projects on software [23] and hardware [9] transac-
tional memory, sprockets rely on hiding changes to mem-
ory from other threads to ensure that all threads view
consistent state. One transactional memory implemen-
tation, LogTM [18], also uses a log to record changes to
memory state. In the future, it may be possible to im-
prove the performance of sprockets, particularly on mul-
ticore systems, by leveraging these techniques.

8 Conclusion

Sprockets are designed to be a safe, fast, and easy-to-
use method for extending the functionality of file sys-
tems implemented at user level. Our results are encour-
aging in many respects. We were able to implement ev-
ery sprocket that we attempted in a few hundred lines
of code. Our sprocket implementation using binary in-
strumentation caught several serious bugs that we in-
troduced into extensions and allowed the file system to
recover gracefully from programming errors. Sprocket
performance for very simple extensions can be an or-
der of magnitude faster than a fork-based implementa-
tion. Yet, we also found that there are upper limits to the
amount of complexity that can be placed in a sprocket
before binary instrumentation becomes more expensive
than fork. Extensions that are more than several thou-
sand lines of source code are probably better supported
via address-space sandboxing.

In the future, we would like to explore this issue in
greater detail, perhaps by creating an adaptive mech-
anism that could monitor sprocket performance and
choose the best implementation for each execution. We
would also like to explore the use of the whitelist to re-
strict sprocket functionality: since the whitelist is im-
plemented using a PIN tool, we may be able to spec-
ify novel policies that restrict the particular data being
passed to system calls rather than just what system calls

1
2007 USENIX Annual Technical ConferenceUSENIX Association 127



are allowed. In general, we believe that sprockets are a
promising avenue for meeting the extensibility needs of
current distributed file systems and may be suited to the
needs of other domains such as integrated development
environments and games.

Acknowledgments

We thank Manish Anand for suggestions that improved the quality of
this paper. The work is supported by the National Science Founda-
tion under awards CNS-0509093 and CNS-0306251. Jason Flinn is
supported by NSF CAREER award CNS-0346686. Ed Nightingale is
supported by a Microsoft Research Student Fellowship. Intel Corp and
Motorola Corp have provided additional support. The views and con-
clusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed
or implied, of NSF, Intel, Motorola, the University of Michigan, or the
U.S. government.

References

[1] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND
LEVY, H. M. Scheduler activations: Effective kernel support for
the user-level management of parallelism. In Proceedings of the
13th ACM Symposium on Operating Systems Principles (October
1991), pp. 95–109.

[2] BERSHAD, B., SAVAGE, S., PARDYAK, P., SIRER, E., FI-
UCZYNSKI, M., BECKER, D., CHAMBERS, C., AND EGGERS,
S. Extensibility, safety and performance in the SPIN operating
system. In Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles (Copper Mountain, CO, Dec. 1995),
pp. 267–284.

[3] BERSHAD, B. B., AND PINKERTON, C. B. Watchdogs - extend-
ing the unix file system. Computer Systems 1, 2 (Spring 1988).

[4] CHANG, F., AND GIBSON, G. Automatic I/O hint generation
through speculative execution. In Proceedings of the 3rd Sym-
posium on Operating Systems Design and Implementation (New
Orleans, LA, February 1999), pp. 1–14.

[5] ENGLER, D., KAASHOEK, M., AND J. O’TOOLE, J. Exokernel:
An operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (Copper Mountain, CO, December
1995), pp. 251–266.

[6] FUSE. Filesystem in userspace. http://fuse.sourceforge.
net/.

[7] GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND
O’TOOLE, J. W. Semantic file systems. In Proceedings of the
13th ACM Symposium on Operating Systems Principles (October
1991), pp. 16–25.

[8] HEIDEMANN, J. S., AND POPEK, G. J. File-system development
with stackable layers. ACM Transactions on Computer Systems
12, 1 (1994), 58–89.

[9] HERLIHY, M., AND MOSS, J. E. B. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proceedings
of the 20th Annual International Symposium on Computer Archi-
tecture (May 1993), pp. 289–300.

[10] HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS,
D. A., SATYANARAYANAN, M., SIDEBOTHAM, R. N., AND
WEST, M. J. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems 6, 1 (February 1988).

[11] JOSHI, A., K ING, S. T., DUNLAP, G. W., AND CHEN, P. M. De-
tecting past and present intrusions through vulnerability-specific
predicates. In Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles (Brighton, United Kingdom, October
2005), pp. 91–104.

[12] KHALIDI, Y. A., AND NELSON, M. N. Extensible file systems in
spring. In Proceedings of the 14th ACM Symposium on Operating
Systems Principles (Asheville, NC, December 1993), pp. 1–14.

[13] K ISTLER, J. J., AND SATYANARAYANAN, M. Disconnected op-
eration in the Coda file system. ACM Transactions on Computer
Systems 10, 1 (February 1992).

[14] KUMAR, P., AND SATYANARAYANAN, M. Flexible and safe
resolution of file conflicts. In Proceedings of the 1995 USENIX
Winter Technical Conference (New Orleans, LA, January 1995).

[15] LERNER, S., MILLSTEIN, T., RICE, E., AND CHAMBERS, C.
Automated soundness proofs for dataflow analyses and trans-
formations via local rules. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (New York, NY, USA, 2005), ACM Press, pp. 364–
377.

[16] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: Building customized program analysis tools with dy-
namic instrumentation. In Programming Language Design and
Implementation (Chicago, IL, June 2005), pp. 190–200.

[17] MAZIÈRES, D. A toolkit for user-level file systems. In Proceed-
ings of the 2001 USENIX Technical Conference (Boston, MA,
June 2001), pp. 261–274.

[18] MOORE, K. E., BOBBA, J., MORAVAN, M. J., HILL, M. D.,
AND WOOD, D. A. Logtm: Log-based transactional memory. In
HPCA-12.

[19] NIGHTINGALE, E. B., CHEN, P. M., AND FLINN, J. Spec-
ulative execution in a distributed file system. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles
(Brighton, United Kingdom, October 2005), pp. 191–205.

[20] NIGHTINGALE, E. B., AND FLINN, J. Energy-efficiency and
storage flexibility in the Blue File System. In Proceedings of the
6th Symposium on Operating Systems Design and Implementa-
tion (San Francisco, CA, December 2004), pp. 363–378.

[21] PEEK, D., AND FLINN, J. EnsemBlue: Integrating consumer
electronics and distributed storage. In Proceedings of the 7th Sym-
posium on Operating Systems Design and Implementation (Seat-
tle, WA, November 2006), pp. 219–232.

[22] SELTZER, M. I., ENDO, Y., SMALL, C., AND SMITH, K. A.
Dealing with disaster: Surviving misbehaved kernel extensions.
In Proceedings of the 2nd Symposium on Operating Systems De-
sign and Implementation (Seattle, Washington, October 1996),
pp. 213–227.

[23] SHAVIT, N., AND TOUITOU, D. Software transactional memory.
In Symposium on Principles of Distributed Computing (1995),
pp. 204–213.

[24] Spotlight overview. Tech. Rep. 2006-04-04, Apple Corp., Cuper-
tino, CA, 2006.

[25] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improv-
ing the reliability of commodity operating systems. In Proceed-
ings of the 19th ACM Symposium on Operating Systems Princi-
ples (Bolton Landing, NY, 2003), pp. 207–222.

[26] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. In Proceedings
of the 14th ACM Symposium on Operating Systems Principles
(Asheville, NC, December 1993), pp. 203–216.

[27] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M.
Using model checking to find serious file system errors. In Pro-
ceedings of the 6th Symposium on Operating Systems Design and
Implementation (San Francisco, CA, December 2004), pp. 273–
288.

2007 USENIX Annual Technical Conference USENIX Association128




