Check out the new USENIX Web site.
USENIX, The Advanced Computing Systems Association

2007 USENIX Annual Technical Conference

Pp. 233246 of the Proceedings

Dynamic Spyware Analysis

Manuel Egele, Christopher Kruegel, and Engin Kirda, Secure Systems Lab, Technical University Vienna; Heng Yin, Carnegie Mellon University and College of William and Mary; Dawn Song, Carnegie Mellon University


Spyware is a class of malicious code that is surreptitiously installed on victims' machines. Once active, it silently monitors the behavior of users, records their web surfing habits, and steals their passwords. Current anti-spyware tools operate in a way similar to traditional virus scanners. That is, they check unknown programs against signatures associated with known spyware instances. Unfortunately, these techniques cannot identify novel spyware, require frequent updates to signature databases, and are easy to evade by code obfuscation.

In this paper, we present a novel dynamic analysis approach that precisely tracks the flow of sensitive information as it is processed by the web browser and any loaded browser helper objects. Using the results of our analysis, we can identify unknown components as spyware and provide comprehensive reports on their behavior. The techniques presented in this paper address limitations of our previous work on spyware detection and significantly improve the quality and richness of our analysis. In particular, our approach allows a human analyst to observe the actual flows of sensitive data in the system. Based on this information, it is possible to precisely determine which sensitive data is accessed and where this data is sent to. To demonstrate the effectiveness of the detection and the comprehensiveness of the generated reports, we evaluated our system on a substantial body of spyware and benign samples.

  • View the full text of this paper in HTML and PDF. Listen to the presentation and Q & A in MP3 format.
    Click here if you have forgotten your password Until June 2008, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, 2007 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.
To become a USENIX member, please see our Membership Information.

Last changed: 29 August 2007 ac