
Integrated Scientific Workflow Management for the Emulab Network Testbed

Eric Eide Leigh Stoller Tim Stack Juliana Freire Jay Lepreau

University of Utah, School of Computing

{eeide, stoller, stack, juliana, lepreau}@cs.utah.edu www.emulab.net

Abstract

The main forces that shaped current network testbeds

were the needs for realism and scale. Now that several

testbeds support large and complex experiments, man-

agement of experimentation processes and results has be-

come more difficult and a barrier to high-quality systems

research. The popularity of network testbeds means that

new tools for managing experiment workflows, address-

ing the ready-made base of testbed users, can have im-

portant and significant impacts.

We are now evolving Emulab, our large and popular

network testbed, to support experiments that are orga-

nized around scientific workflows. This paper summa-

rizes the opportunities in this area, the new approaches

we are taking, our implementation in progress, and the

challenges in adapting scientific workflow concepts for

testbed-based research. With our system, we expect to

demonstrate that a network testbed with integrated sci-

entific workflow management can be an important tool

to aid research in networking and distributed systems.

1 Introduction

In the networking and distributed systems communi-

ties, research and development projects are increasingly

dependent on evaluating real applications on network

testbeds: sets of computers, devices, and other resources

that either emulate real-world networks or are overlaid

upon the real Internet. Data from testbed experiments

are increasingly important as software systems become

larger and more complex. Many testbeds are now avail-

able to researchers and educators worldwide, including

PlanetLab, RON, the Open Network Laboratory, ORBIT,

and Emulab [18].

Our research group has been developing and op-

erating Emulab—a free-for-use, Web-accessible, time-

and space-shared, reconfigurable network testbed—since

April 2000. Emulab provides a common interface to a

dozen types of networked devices, unifying them within

a single experimental framework. These devices include

This material is based upon work supported by NSF under grants

CNS–0524096, CNS–0335296, and CNS–0205702.

hundreds of (wired) PCs, a variety of wireless devices

including PCs and motes, PlanetLab and RON machines

scattered around the Internet, and emulated resources

such as network conditioners and virtual machines. As

of April 2006, our testbed has over 1,350 users from

more than 200 institutions around the globe, and these

users ran over 17,000 experiments in the last 12 months.

Dozens of papers have been published based on experi-

ments done with Emulab, and over 20 classes have used

Emulab for coursework. In addition, Emulab’s software

is now operating more than a dozen other testbed sites

around the world.

Emulab has continually grown to support larger and

more varied experiments, and concurrently, users have

applied Emulab to increasingly sophisticated studies.

But how do experimenters manage their many experi-

ments and their avalanche of data? Our answer is to

evolve our system to support more structured experi-

ments. The current interface to Emulab is based on a

notion of isolated experiments: an experiment is essen-

tially a description of a network topology that can be

instantiated (emulated) on the testbed, along with op-

tional event-driven activities. Many users have outgrown

this model, however, and need better ways to organize,

record, and analyze their work. Therefore, to support in-

creasingly sophisticated and large scale research, we are

evolving Emulab to support and manage scientific work-

flows within and across experiments.

A Different Domain, A Different Approach

We are inspired by the many scientific workflow man-

agement systems that have been developed for compu-

tational science in the Grid, including Kepler [10], Tav-

erna [13], Triana [17] and others [19]. None of these

apply directly to Emulab, however, because Emulab is

about using unabstracted network resources. Moreover,

Emulab’s model of use is different, as described below.

It is fair to say that “general purpose” scientific work-

flow systems have been slow to catch on and are not yet

in broad use [9, 14]. Anecdotal evidence indicates that

resistance to their adoption stems from two main fac-

tors [9, 14]. First, a workflow system may be too con-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 363



straining: the system does not match its users’ needs in

some manner, so users subvert the environment. Once

workflow escapes the tool, a substantial part of the tool’s

benefits are lost. Second, the intended audience may lack

“buy in.” People are reluctant to change their work pat-

terns to use a new tool. The impedance mismatch can be

large or small, but even a small mismatch is significant.

As traditionally approached and implemented, workflow

management is about imposing discipline in ways that

require active involvement by the user. Our experience

with Emulab is that testbed users perform both structured

and unstructured experiments, and that Emulab is most

successful when it does not require special actions from

its users.

Because we have tight control over both the testbed re-

sources and the workflow user interface, we can do “bet-

ter” than Grid workflow systems for our domain. To be

successful, a workflow system must carefully fit into and

support existing users’ modes of use and the experiment

life cycle, as the Taverna group describes [13]. We have

experience with how people use Emulab and are craft-

ing our workflow system to match. The following are

some important ways in which our work is distinguished

from other scientific workflow efforts, and we believe

that these qualities will help us succeed.

• Domain and Expertise. We are tailoring our sys-

tem to networking and distributed systems activities.

That is precisely our primary domain of expertise, which

we understand expertly. We have systems skills, helping

us both to conceive and to execute techniques that most

developers of workflow systems would not.

• Experiment Model. Emulab already has a perva-

sive experiment abstraction, which is a container of re-

sources, control, and naming scope (Section 2). This ab-

straction eases both implementation and adoption: users

are already familiar with it. Workflow can build on this

abstraction and extend it in powerful but natural ways.

• Implicit vs. Explicit Specification. As an example

of how our systems abilities benefit our workflow sys-

tem, we can modify operating systems in the testbed and

monitor the network to determine filesystem reads and

writes. This helps us overcome the user-adoption bar-

rier in which the experimenter must exercise discipline

by explicitly specifying all input and output parameters.

We can instead infer that opened files are parameters, and

simply record all file state, or provide users with straight-

forward options to deal with those files (Section 3).

• History-Based Views. A key part of our philoso-

phy is to “remember everything.” We can leverage the

trend in cheap disk space and copy-on-write filesystem

techniques to (in principle) record everything that oc-

curs within an experiment. One possible implementation

technique is to use a filesystem that supports snapshots,

such as ZFS [16], or new research storage systems that

support branching [1, 15], to provide immutable storage

efficiently. We provide a simple GUI for users to peruse

and branch the “tree” of experiment history (Section 4).

• Incremental Adoption. Researchers and students

already make heavy use of the Emulab testbed. We build

on that to transparently add features under the covers,

lure users to exploit them, and get explicit and implicit

user feedback. Emulab’s interface is Web-based, so like

all ASPs we can track experimenters’ use of features and

their paths through our interface.

• Pragmatic Approach. Finally, we have adopted

a thoroughly practical attitude toward the incorporation

of scientific workflow into the user experience of our

testbed. As we incorporate features to support workflows

within and across testbed experiments, we strive to main-

tain high degrees of transparency, flexibility, and exten-

sibility. Our goal is for users to be able to choose the

degree to which they want to interact with workflow fea-

tures, and change their minds as their activities require.

Our “bottom-up” strategy for integrating scientific

workflow into Emulab is designed so that our system will

be practical for the users of our testbed. Beyond imple-

menting a useful system, we are devising new techniques

to enable the “bottom-up” design and adoption of work-

flows for our domain. We are hopeful that the techniques

we develop and the experience we gain will be applicable

beyond the systems and network areas.

Contributions

Our work addresses a convergence of demand and oppor-

tunity, and Emulab is a uniquely powerful environment

in which a workflow system can succeed. The testbed

provides leverage such as the ability to repeat distributed

system experiments “exactly” and collect data automat-

ically. We are using implicit and automatic techniques

for workflow definition and execution where possible,

and monitoring for completeness. We have much his-

tory on Emulab’s use and are guided by actual user ex-

perience (including our own) which shows the need for

flexible user interactions and patterns for workflow his-

tory and groups. We are deploying features in an evolu-

tionary way, thus helping users and enabling feedback.

Maintaining a low barrier to entry is a major goal of our

work. The rest of this paper describes the opportunities

and challenges ahead, and summarizes the status of our

workflow-integrated Emulab in progress.

2 Testbed Experiments

In the current Emulab, the main conceptual entity is an

experiment. Primarily, an experiment describes a net-

work: a set of computers and other devices, the net-

work links between them, and the configuration of those

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association364



devices and links. An experiment defines such things

as the hardware type of each node in the network (e.g.,

a 3 GHz PC or a mobile robot), the operating systems

and software packages to be loaded on those nodes, the

characteristics of each network link (e.g., speed, latency,

and loss), and the configuration of other entities such as

network traffic generators. A user describes these items

in an extension of the ns language [8], or alternatively,

through a GUI in Emulab’s Web interface. Either way,

the user submits the description to Emulab and gives it

a name. Emulab parses the description into an internal

form and stores the data in its database.

At this point, the experiment can be “swapped in.”

When a user directs Emulab to swap in an experiment,

Emulab maps the logical topology of the experiment onto

actual testbed hardware, loads the requested operating

systems and software onto the allocated devices, creates

the network links (using VLANs), and so on.

When swap-in is complete, the user can login to the

allocated machines and do his or her work. In contrast to

swap-in, which is handled by Emulab, the organization

and execution of the actual experiment steps are mostly

left up to the user. Many users perform their experi-

ments interactively, via remote shell access to the allo-

cated computers. More sophisticated users, however, of-

ten automate some or all of the steps. Emulab provides

some tools for this—e.g., an event service—but users

must provide the higher-level frameworks and orchestra-

tion that make use of Emulab’s built-in tools.

A user’s experiment may last from a few minutes to

many weeks, allowing the user time to run multiple tests,

change software and parameters, or do long-term data

gathering. When the user is done, he or she tells Emu-

lab to “swap out” the experiment, releasing the experi-

ment’s resources. The experiment itself remains in Em-

ulab’s database so it can be swapped in again later.

3 Workflow Within Experiments

It has become clear that Emulab’s experiment notion

must change to meet the needs of increasingly complex

experimental activities. Three critical requirements are

encapsulation, orchestration, and data management, and

satisfying these needs is the job of a scientific workflow

system. Consequently, we are now evolving Emulab’s in-

terfaces and internals to support experiments built around

workflows. Organizing Emulab experiments around ex-

isting scientific workflow metaphors and mechanisms is

not straightforward. Here, we outline some of the chal-

lenges and the ways we are extending existing workflow

notions to meet our users’ needs.

Encapsulation. An essential part of a workflow sys-

tem is keeping track of artifacts, i.e., experiment inputs

and outputs. Unfortunately, Emulab’s current model of

an experiment does not encapsulate all the artifacts that

are part of the experimental process. Some constituents,

such as the software packages installed at swap-in, are

referenced by name only. The experiment definition does

not contain the software, but instead contains only a file

name. Other objects including command scripts, pro-

gram input files, and especially program output files,

may not be referenced at all in an experiment descrip-

tion. Users simply know where these objects are located

in Emulab’s file system.

A critical first step toward a workflow-enabled testbed,

therefore, is to evolve Emulab’s representation of ex-

periments to encapsulate all the elements—insofar as

possible—that make up an experiment. This evolution

has many technical aspects, and Emulab already provides

a solid base for addressing them. For instance, Emu-

lab today encapsulates disk images [7], which contain

operating systems and other software. These are cur-

rently referenced from experiments by name, but it will

be “straightforward” to keep disk images within an ex-

panded type of experiment.

The more challenging aspects of encapsulation con-

cern the user interface, and the effort required for a user

to create an encapsulated experiment. It is important for

the set of experiment constituents to be complete, so an

experiment can be repeated and modified; it must also

be precise (without extraneous detail), so the experiment

can be stored, analyzed by the testbed, and understood

by people. Because even a small experiment may read

and/or write hundreds of files, it would be unworkable

for Emulab to require users to identify all the parts of an

experiment by hand.

Therefore, we are using automatic approaches to de-

termine the “extent” of experiments. To capture file data,

we have modified Emulab to snapshot all the files ref-

erenced by an experiment, every time the experiment is

swapped in or out. In general, not all of these files will be

named in an experiment’s definition. To find files that are

not named there (e.g., output files), we have implemented

dynamic monitoring of filesystem accesses. Snapshots

are persistent and thus provide a sound basis for encapsu-

lating experiments and tracking revisions over time. We

may supplement or replace our custom tracking solutions

with a storage system that is “provenance-aware” [11].

Such a system tracks the lineage of files and supports

queries over files’ histories. Our workflow system may

be able to use such a system to dynamically discover or

verify the commands that were used to create files within

an experiment.

Dynamic techniques may not be precise, however, in

the sense that they may capture irrelevant detail. As our

work evolves, we expect to combine automatic and man-

ual techniques for defining experiments precisely: auto-

matic for producing candidates and checking encapsu-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 365



lation, and manual for precision, classification, and an-

notation. For instance, at the end of an experiment, the

Emulab GUI can present a list of files that were accessed

but that were not previously defined to be “part of” or

“not part of” the experiment. The user may choose to

classify the files, and thereby improve the description of

the experiment. If the user chooses not to classify the

files, however, default behaviors would apply. The PASS

described previously will provide the necessary metadata

to make these defaults intelligent.

Orchestration. Emulab is a platform for directed ex-

perimentation, but just as important, it is a platform for

open exploration. Emulab configures computers and net-

works very quickly (within minutes) and provides users

with interactive access and total control over their ma-

chines. For these reasons, Emulab is often used for

ad hoc activities including software development and de-

bugging, platform testing (e.g., with many different op-

erating systems), and live demonstrations.

Therefore, a major focus of our workflow integration

is to accommodate the wide variety of ways in which

Emulab is used: for directed and exploratory work, with

interactive and scripted commands, and with workflows

that blend and combine these modes. The practical is-

sue is for the workflow facilities not to get in the way

when they are not wanted. The research issue is how

to meet that goal while also supporting the evolution of

unplanned and/or interactive experiments into repeatable

and/or scripted workflows. This capability will neces-

sarily build on Emulab’s ability to monitor essentially all

activity within the testbed. Using an automated workflow

in an interactive way is also essential: a user may want

to execute the workflow up to a point, and then “take the

wheel” to explore a new idea (Section 4).

Currently, due to the effort required, relatively few

Emulab users take the time to carefully script and pack-

age their experiments. By evolving the current experi-

mentation model, we expect to lower the barrier to or-

chestrating Emulab experiments, expand the set of activ-

ities that can be coordinated, and provide a framework

in which users can create new types of workflow steps.

By integrating a workflow system and libraries of work-

flow elements, we will make it easier to create experi-

ments from reusable “parts.” For example, we have pro-

totyped a point-and-click interface that generates graphs

from data stored in a broad range of formats. We will

pursue similar ideas, based on programming-by-example

(i.e., recording the user’s actions), to make it easier for

users to interactively develop and record their workflows.

Data Management. Pre-packaged workflow ele-

ments help us present other new capabilities to users

as well: e.g., automated collection of experiment data

(via probes), data analysis steps, and visualization steps.

For these tasks, we and our collaborators are working

to connect a datapository [3]—a network measurement

data storage and analysis facility—to Emulab. Experi-

ment measurements will be saved in the datapository’s

database. By structuring user interactions as workflows,

we will be able to describe data analysis and visual-

ization steps that can occur after the primary resources

for an experiment run have been released, i.e., after

“swap out.” An important issue will be to expand Em-

ulab’s resource scheduling capabilities: e.g., to handle

demands that change over the course of a workflow and

to handle new types of resources such as CPU and I/O

within the datapository.

4 Workflow Across Experiments

The thorough study of a system typically requires many

experiments. For example, an Emulab user may want to

study a distributed system across a variety of network

sizes and topologies. Furthermore, as results are ob-

tained from experiment runs, the user may change his

or her plan for future experiments. Users routinely mod-

ify experiment definitions to explore promising new av-

enues as they are discovered—and then want to return to

the original course, or explore yet another new direction.

Thus, testbed users need to navigate easily through “ex-

periment space” on both planned and unplanned courses.

As opposed to managing workflow within a single exper-

iment, this type of navigation corresponds to workflow

across experiments. Workflow across experiments deals

with flexible grouping, managing changes to experiment

definitions, and navigating through artifacts across time.

Definition and Execution. An essential first step is

separating the main temporal aspects of experiments:

i.e., definition and execution. These aspects are cur-

rently intertwined: for example, an experiment is either

swapped in or swapped out, and a user cannot run two

copies of a single experiment at the same time. These

are properties of the design described in Section 2, which

many Emulab users have outgrown.

As we evolve experiments to be more encapsulating,

we are adding the ability to track and distinguish results

that are produced by each run of an experiment. This is

similar to the separation of workflow definition and exe-

cution found in the VisTrails system [4]. Even if an ex-

periment description does not change, its output may—

for example, due to the impacts of real-world effects such

as the state of the actual Internet. The many runs of a

single experiment form a group, and Emulab will pro-

vide users with straightforward access to the members of

such groups. For example, users will be able to see if and

how the results of an experiment change over time.

Grouping. Beyond grouping the executions of a sin-

gle, unchanging experiment, our experience is that users

need much more sophisticated grouping facilities. Most

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association366



importantly, users need flexible ways to manage groups

of experiment definitions in addition to groups of execu-

tions. A user who wants to run a collection of related

experiments today must do so in an ad hoc manner: by

creating many similar but “unrelated” experiments, by

modifying one experiment many times, or by combining

all the tests into a single Emulab experiment. All of these

approaches, however, disguise the essence of the collec-

tion from Emulab. Support for workflows over groups

of experiments, therefore, will require Emulab to have a

built-in notion of experiment groups. We are currently

prototyping support for experiment groups in Emulab,

which involves two main challenge areas.

First, parameterized experiment definitions capture a

common kind of grouping but present new user interface

and scheduling issues. A parameterized definition is like

a subroutine with formal parameters: these are bound to

values when the experiment is executed. A parameter-

ized definition is therefore a template of experiments to

be run. We have prototyped a user interface for this in

Emulab, in which a user specifies parameter values in a

Web form. This will be enhanced so users can save and

reuse parameter sets. It will also be extended so users can

describe movement through the parameter space of an ex-

periment. By creating workflows that move though pa-

rameter space, Emulab will provide a scalable way to ex-

ecute large numbers of trials. This presents a scheduling

issue: the ability to explore parameter space leads to new

concerns such as the desire to get “interesting” results

quickly, where “interesting” is determined by system- or

user-defined metrics. Our work in this area will build on

adaptation features that are already in Emulab [6]. Smart

scheduling highlights the need for workflow to be inte-

grated with Emulab, not merely built on top.

Second, although parameterized definitions produce

groups of related experiment runs and results, it is es-

sential for “group” to be a more flexible concept, allow-

ing users to define and navigate through arbitrary sets

of experiments and results. Users will want to group ex-

periment results in many ways, none of them necessarily

being inherent or dominant. One experiment may belong

to many groups at the same time: for instance, a test of

a Web server may belong to a series in which the client

load varies (requests/sec) and to one in which the server

configuration varies (e.g., number of threads, or caching

strategy). Users will want to define groups by extension

(e.g., the records of particular experiment executions),

intension (e.g., rules that select records of interest), and

combinations of these. New groupings will be created

after experiments are run, and parameters may be added

or removed over time. All of these things mean that we

must develop a highly flexible means for cataloging and

tracking experiment records.

History. User-defined experiment groups support

Figure 1: Screen shot of our prototype Web-based browser and

editor of the experiment tree archive.

“spatial” navigation across related experiments. Just as

important, however, is temporal navigation over exper-

iments, singly or in groups. As previously described,

users routinely modify their experiments over time to ex-

plore both planned and unplanned directions of research.

We have found that it is important for users to be free to

make such changes without fear of losing previous work;

to name and annotate experiment versions; and to “back

up” to previous versions of an experiment, and from there

“fork” to explore new avenues.

The revisions of an experiment form a tree, which rep-

resents the provenance of an experiment workflow. We

have implemented a prototype of experiment trees in Em-

ulab, based on the Subversion revision control system

and an AJAX-based GUI, integrated into Emulab’s Web

interface (Figure 1). Previous work by Bavoli et al. [4]

and Callahan et al. [5] provides additional detail about

managing workflow histories in general.

5 Related Work

There is growing interest in applying scientific work-

flow systems to testbed-based research. For example,

Plush [2] is a workflow-centered tool for experiments

within PlanetLab. Plush focuses on tool integration and

experiment automation; in contrast, our workflow en-

hancements to Emulab focus on strong encapsulation (in-

cluding repeatability) and enhanced exploration (includ-

ing flexible use, groups, and history management). Both

Plush and our work aim to support extensions via third-

party and user-provided workflow steps.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 367



LabVIEW [12] is a popular commercial product for

scientific experiment management and control. It is sim-

ilar to our Emulab-based workflow system in that both

manage workflow processes and results from “instru-

ments.” However, the domains of the two systems dif-

fer in two ways. First, the instruments in Emulab con-

sume and produce many complex sources of data: e.g.,

configurations of hardware and software, input and out-

put files and databases, software under test (sources and

binaries), and data from previous runs and variations of

an experiment. Emulab and its users must deal with a

wide variety of highly structured data, not just series of

sensor readings. Second, Emulab is the laboratory, not

just the monitoring and control portion of it. Our inte-

grated workflow system has near-total control over the

relevant components of the environment in which Em-

ulab experiments occur, so it can perform tasks such as

setting up hardware or virtual machines, and running ex-

periments automatically, with probes in place. Further-

more, to a significant extent, our system can archive the

actual “devices” under test, not just the recorded outputs

of those devices. The ability to archive and re-execute

software—including entire disk images—means that we

can provide much more automation in our domain than

what LabVIEW can generally provide in its domain.

6 Conclusion

As grids changed the playing field for computational sci-

ence, testbeds like PlanetLab and Emulab have changed

the field for networked and distributed systems. The

scale, complexity, and popularity of network testbeds

have reached the point where scientific workflow sys-

tems are often needed to manage testbed-based research.

To meet this need, we are integrating novel workflow

support in Emulab, both within and across experiments.

Moreover, testbeds like Emulab are an opportunity for

advancing scientific workflow systems themselves. By

building on and retaining Emulab’s strengths, including

“total” experiment monitoring and interactivity, we are

expanding the domain of scientific workflow, developing

new workflow and experiment management techniques,

and, we predict, achieving new levels of acceptance and

adoption for scientific workflow systems in general.

Acknowledgments

We thank Mike Hibler, Russ Fish, and the anonymous

reviewers for their valuable comments on this paper.

References

[1] M. K. Aguilera, S. Spence, and A. Veitch. Olive: Dis-

tributed point-in-time branching storage for real systems.

In Proc. Third NSDI, May 2006.

[2] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat. Plan-

etLab application management using Plush. ACM Oper-

ating Systems Review, 40(1):33–40, Jan. 2006.

[3] D. G. Andersen and N. Feamster. Challenges and oppor-

tunities in Internet data mining. Technical Report CMU–

PDL–06–102, Carnegie Mellon University Parallel Data

Laboratory, Jan. 2006. www.datapository.net.

[4] L. Bavoli, S. P. Callahan, P. J. Crossno, J. Freire, C. E.

Scheidegger, C. T. Silva, and H. T. Vo. VisTrails: En-

abling interactive multiple-view visualizations. In Proc.

IEEE Visualization 2005, pages 135–142, Oct. 2005.

[5] S. P. Callahan, J. Freire, E. Santos, C. E. Scheideg-

ger, C. T. Silva, and H. T. Vo. Managing the evolu-

tion of dataflows with VisTrails. IEEE Workshop on

Workflow and Data Flow for Scientific Applications (Sci-

Flow 2006), Apr. 2006. Extended abstract. http://www.

cs.utah.edu/∼juliana/pub/sciflow2006.pdf.

[6] M. Hibler et al. Feedback-directed virtualization tech-

niques for scalable network experimentation. Flux Tech-

nical Note FTN–2004–02, University of Utah, May

2004. http://www.cs.utah.edu/flux/papers/

virt-ftn2004-02.pdf.

[7] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb.

Fast, scalable disk imaging with Frisbee. In Proc. 2003

USENIX Annual Tech. Conf., pages 283–296, June 2003.

[8] ISI, University of Southern California. The network sim-

ulator - ns-2. http://www.isi.edu/nsnam/ns/.

[9] G. Lindstrom. Personal communication, 2005–2006.

[10] B. Ludäscher et al. Scientific workflow management and

the Kepler system. Concurrency and Computation: Prac-

tice and Experience, Dec. 2005.

[11] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and

M. Seltzer. Provenance-aware storage systems. In Proc.

2006 USENIX Annual Tech. Conf., June 2006.

[12] National Instruments. LabVIEW home page. http://

www.ni.com/labview/.

[13] T. Oinn et al. Taverna: Lessons in creating a workflow

environment for the life sciences. Concurrency and Com-

putation: Practice and Experience, Dec. 2005.

[14] S. Parker. Personal communication, Jan. 2006.

[15] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtualization

aware file systems: Getting beyond the limitations of vir-

tual disks. In Proc. Third NSDI, May 2006.

[16] Sun Microsystems, Inc. ZFS home page. http://www.

opensolaris.org/os/community/zfs/.

[17] I. Taylor, I. Wang, M. Shields, and S. Majithia. Dis-

tributed computing with Triana on the Grid. Concurrency

and Computation: Practice and Experience, 17(9):1197–

1214, Aug. 2005.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An

integrated experimental environment for distributed sys-

tems and networks. In Proc. 5th Symp. on Operating Sys-

tems Design and Impl., pages 255–270, Dec. 2002.

[19] J. Yu and R. Buyya. A taxonomy of workflow man-

agement systems for Grid computing. Technical Report

GRIDS–TR–2005–1, Grid Computing and Distributed

Systems Laboratory, Univ. of Melbourne, Mar. 2005.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association368




