thin clients: back to the future

<Jason Nieh> nieh@cs.columbia.edu

"Computers in the future may weigh no more than 1.5 tons."

a Popular Mechanics editorial 1949

PCs in use worldwide (2004)

YttnuoC

PCs nuse (m illons)

"I think there is a world market for about five computers"

remark attributed to Thomas J. Watson Chairman of the Board International Business Machines 1943

Computers and Internet Access in the Home: 1984 to 2000

(Civilian noninstitutional population)

Source: U.S. Census Bureau, Current Population Survey, various years.

"There is no reason anyone would want a computer in their home."

> Ken Olson founder and chairman Digital Equipment 1977

"I can assure you that data processing is a fad that won't last out the year."

a Prentice Hall business book editor 1957

today's computer

today's computer problem

problem #1: manageability

problem #2: operating cost

move add change

\$1000 per incident

problem #3: availability

problem #4: work area

problem #5: security

dis-integration of the computer

thin-client computing

network decouples computing and display

thin-client computing

application processing

and data here

stateless client secure server room

benefits

simplify IT management minimize cost of desktop failures transparent user mobility continuous computing access secure computing services improve user/computer work areas utilize resources efficiently

The Inside Skinny

* Numbers for 2005 and after are estimates.

"Thin client" computers are expected to gain share among large and medium-size companies (the so-called enterprise desktop market).

trends

transistors

computers are cheap people are expensive

computers vs people

Dell Dimension 2400 PC desktop, 2.4 GHz CPU, \$420

move, add, change: \$1000 per incident

Dell PowerEdge 420 server, 2.4 GHz CPU, \$350

2004: Percent of Adult Internet Users – Past 30 Days Used the Following as Primary and Secondary Internet Connection % 2004 First Mention % 2004 Other Mention 30% A dial-up modem 39% 32% A DSL 38% High-speed access - Total (Digital Subscriber Line) 17% High-speed broadband 21% 62% Primary Access using cable 9% High-speed broadband 68% Total Access 12% using ISDN 3% High-speed broadband 7%using optical fiber 2% Using a wireless 11% access/service 2%Some other connection 7% 10 20 30 50 40 0

Past 30 Day Internet Users

Source: Ipsos-Insight, The Face of the Web 2004, survey of 6,544 adults in 12 global markets, October 2004

© Ipsos-Insight 2005

http://100x100network.org - The 100x100 Project - Microsoft Internet Explorer

File Edit View Favorites Tools Help

100 X 100

Charting a path to 100 Mbps access from 100 Million homes

The Project

→ Mission → FAQ → Background

Participants

-+ Researchers

→ Institutions

└→ Internal site

Communications

→ News Room

→ Papers

Done

hzhang@cs.cmu.edu

Over the past 100 years, the telephone has grown from a rare communications device of the wealthy to a ubiquitous implement that has streamlined the processes of the economy. Similarly, the Internet began 30 years ago as a research network connecting a handful of research centers over extremely expensive long distance data lines. The past 10 years have established the value of data connectivity to the homes of average Americans, with 50% of homes now having a modem connection or better. Today, both economists and policy makers have recognized the economic importance of digital connectivity, and technologists are searching for viable ways to transition the Internet from a network of research centers to a ubiquitous service akin to the telephone.

This rebuild presents an emerging opportunity to create the first nationwide communications infrastructure designed from first principles to bring reliable and private Internet service to consumers and small businesses across the country. The 100x100 project, funded by the National Science Foundation's Information Technology Research program, is working to conduct the basic research and develop the blueprint designs that will guide decision-makers in the construction of a network that is dependable and secure; understandable to users and operators; and both economical and scalable.

ATAT	Berkeley	Carnegie Mellon	Fraser Research	INTERNET		RICE	G
------	----------	-----------------	--------------------	----------	--	------	---

Internet

"the network is the computer"

thin clients vs mainframes

rich graphical interfaces

clusters of inexpensive servers, blades dumb plain text terminals

large, expensive machine

thin clients vs web

preserve software investments

no client applications

rewrite applications for the web

client browser and helper applications

key technologies
remote display

display pipeline

client/server partitioning

window server on client

window server on client

local non-app UI interactions complex software running on client software needs to be maintained client resources need to scale

window server on server

window server on server

no complex client software no client software maintenance client scales with display

"ultra-thin" client

wire protocol

high-level graphics low-level graphics 2D drawing primitives raw pixels

THINC protocol

copy solid fill pixmap fill bitmap RAW

THINC optimizations

offscreen drawing transparent video support local cursor drawing support server-push model smallest update first scheduling server-side screen scaling

enables

stateless clients heterogeneous display devices remote access remote collaboration

performance?

name	custom	ultra	color	audio	en-	OS
	window	thin	depth		crypt	
	server				ion	
local PC	no	N/A	24	yes	N/A	Linux
ICA	no	yes	24	yes	yes	Windows
RDP	no	yes	24	yes	yes	Windows
GoToMyPC	no	yes	8	no	yes	Windows
Х	no	yes	24	yes	no	Linux
X ssh -C	no	no	24	yes	yes	Linux
NX	no	no	24	yes	yes	Linux
VNC	yes	yes	24	no	no	Linux
Sun Ray	yes	yes	24	yes	yes	Linux
THINC	no	yes	24	yes	yes	Linux

configurations

desktop LAN desktop WAN 802.11g PDA

desktop LAN web performance

desktop LAN web performance

desktop WAN web performance

802.11g PDA web performance

desktop LAN A/V performance

desktop WAN A/V performance

802.11g PDA A/V performance

thinc

ultra-thin client

leverage and virtualize standard display driver interface

fast, lightweight

full-motion, full resolution
 audio/video performance

transparent
checkpoint/migration

checkpoint

capture the state of a running process and save it so that it can be resumed at a later time

migration

move checkpointed process state to a target machine and resume process

transparent

- no application changes
- no need for new languages/run-time
- no operating system kernel changes
- no constraints on use of OS services

enables

software mobility
load balancing
power management
fault resilience
improved system availability

approaches

language	Emerald		
library	Condor		Applications
kernel	Mosix		
hardware	Vmware,	Xen	Libraries
system call		zap	Operating System
			Hardware

zap

virtualize OS to decouple applications from underlying OS instance

use high-level kernel functionality for portable migration

preserve application availability across operating system upgrades

problem

int iChildPID;

```
if (iChildPID=fork()) {
   /* parent does some work */
   waitpid(iChildPID);
} else {
   /* child does some work */
   exit(0);
```

issues

resource consistency resource conflicts resource dependencies transparency

solution

private virtual namespace PrOcess Domain (POD)
POD virtualization

PID IPC file system network devices

architecture

cost?

virtualization

remote desktop

checkpoint/restart

zap

transparent checkpoint/migration
of legacy and network applications

POD: consistent, conflict-free, avoid dependencies

fast and lightweight

conclusions

technology scaling trends are driving thin-client computing

key enabling technologies: remote
 display and checkpoint/migration

THINC and Zap: display and operating system virtualization mechanisms for thin clients

the future

virtual computing utility delivered to smart displays

more info

network computing laboratory
http://www.ncl.cs.columbia.edu