
AMP: Program-Context
Specific Buffer Caching

Feng Zhou, Rob von Behren, Eric Brewer
University of California, Berkeley
Usenix tech conf 2005, April 14, 2005

2

Buffer caching beyond LRU
Buffer cache speeds up file reads by caching file
content
LRU performs badly for large looping accesses

DB, IR, scientific apps often suffer from this
Recent work

Utilizing frequency: ARC (Megiddo & Modha 03),
CAR (Bansal & Modha 04)
Detection: UBM (Kim et al. 00), DEAR (Choi et al. 99),
PCC (Gniady et al. 04)

Access stream: , Cache Size: 31

2 3 4

1 2 3 4
miss

0 Hit Rate for any loop over data set larger than cache size

3

Program Context (PC)
Program context: current program counter + all
return addresses on the call stack

btree_index_scan()

get_page(table, index)

read(fd, buf, pos, count)

btree_tuple_get(key,…)

send_file(…)

process_http_req(…)

foo_db bar_httpd

#1 #2 #3

Ideal policies
#1: MRU for loops
#2, #3: LRU/ARC for all others

4

Contributions of AMP
PC-specific organization that treats requests
from different program contexts differently*
Robust looping pattern detection algorithm

reliable with irregularities
Randomized partitioned cache management
scheme

much cheaper than previous methods

* Same idea is developed concurrently by Gniady et al (PCC at OSDI’04)

5

Adaptive Multi-Policy Caching (AMP)

time to detect?

calc PC

detect pattern using
info about past requests

from same PC

go to cache
partition using

appropriate
policy

Default partition
(LRU/ARC)

MRU1

MRU2

(block,pc)

(block,pc,pattern)

(pattern)

……

buffer
cache

fs syscall()/page fault

6

Looping pattern detection
Intuition:

Looping streams always access blocks that has not
been accessed for the longest period of time, i.e. the
least recently used blocks.
1 2 3 1 2 3
Streams with locality (temporally clustered streams)
access blocks that has been accessed recently, i.e.
recently used blocks.
1 2 3 3 4 3 4

What AMP does: measure a metric we call
average access recency of all block accesses

7

Loop detection scheme
For the i-th access

Li: list of all previously accessed blocks, ordered from
the oldest to the most recent by their last access time.
pi: position in Li of the block accessed (0 to |Li|-1)
Access recency: Ri=pi/(|Li|-1)

oldest

Ri=

most recent
Li :

0 1pi/(|Li|-1)

8

Loop detection scheme cont.
Average access recency R = avg(Ri)
Detection result:

loop, if R < Tloop (e.g. 0.4)

temporally clustered, if R > Ttc (e.g. 0.6)
others, o.w. (near 0.5)

Sampling to reduce space and computational
overhead

9

Example: loop
Access stream: [1 2 3 1 2 3]

003 1 236
002 3 125
001 2 314

1 233
122

empty11
RipiLiblocki

R =0, detected pattern is loop

10

Example: non-loop
Access stream: [1 2 3 4 4 3 4 5 6 5 6], R =0.79

0.66721 2 3 436

0.66721 2 4 347

1 2 3 458
1 2 3 4 569

0.841 2 3 4 5 6510

0.801 2 3 4 6 5611

131 2 3 445
1 2 344
1 233
122

empty11
RipiLiblocki

11

Randomized Cache Partition Management

Need to decide cache sizes devoted to each PC
Marginal gain (MG)

the expected number of extra hits over unit time if one extra block
is allocated
Local optimum when every partition has the same MG

Randomized scheme
Expand the default partition by one if ghost buffer hit
Expand an MRU partition by one every loop_size/ghost_buffer_size
accesses to the partition
Expansion is done by taking a block from a random other part.

Compared to UBM and PCC
O(1) and does not need to find smallest MG

12

Robustness of loop detection

loopotherlooplooplooplooploopPCC

otherotherloopotherotherloopotherDEAR

other
0.513

loop
0.010

loop
0.008

tc
0.617

loop
0.347

loop
0.001

tc
0.755

AMP
R

“tc”=temporally clustered
Colored detection results are wrong

Classifying tc as other is deemed correct.

13

Simulation: dbt3 (tpc-h)

Reduces miss
rate by > 50%
compared to
LRU/ARC

Much better than
DEAR and
slightly better
than PCC*

14

Implementation
Kernel patch for Linux 2.6.8.1
Shortens time to index Linux source code using
glimpseindex by up to 13% (read traffic down 43%)
Shortens time to complete DBT3 (tpc-h) DB workload by
9.6% (read traffic down 24%)

http://www.cs.berkeley.edu/~zf/amp
Tech report
Linux implementation
General buffer cache simulator

