
Drive-Thru: Fast, Accurate Evaluation of Storage Power Management

Daniel Peek and Jason Flinn
Department of Electrical Engineering and Computer Science

University of Michigan

Abstract

Running traces of realistic user activity is an impor-
tant step in evaluating storage power management. Un-
fortunately, existing methodologies that replay traces
as fast as possible on a live system cannot be used
to evaluate timeout-based power management policies.
Other methodologies that slow down replay to preserve
the recorded delays between operations are too time-
consuming. We propose a hybrid approach, called Drive-
Thru, that provides both accuracy and speed of evalua-
tion by separating time-dependent and time-independent
activity. We first synchronously replay file system activity
on the target platform to create a base trace that captures
the semantic relationship between file system activity and
storage accesses. We then use the base trace as input to
a simulator that can evaluate different disk, network, file
cache, and file system power management policies. We
use Drive-Thru to study the benefit of several recent pro-
posals to reduce file system energy usage.

1 Introduction

The battery capacity of small, mobile computers such as
handhelds limits the amount of energy that can be ex-
pended to access data. Given that I/O devices are often
power-hungry, it is essential that the storage hierarchy
employ power management to extend battery lifetime.
Consequently, power management has been a hotspot of
recent research in storage and file systems.

Unfortunately, it is often difficult for storage researchers
to evaluate new power management strategies. The rea-
son is that many of the activities associated with power
management are time-dependent: the execution of these
activities is related to the amount of time that has passed
since a prior event. For example, the disk [7] and net-
work [15] may enter power-conserving states after they
have been idle for a given amount of time, file systems
may coalesce operations that occur within a given time
interval to save power [19] and reduce network transmis-
sions [16], and the file cache may delay flushing dirty
blocks for some time to increase I/O burstiness [28].

Methodologies that ignore this time-dependent activity
are highly inaccurate, while methodologies that capture
it faithfully are often too slow.

Historically, trace replay on a live system has been one
of the most popular methods of evaluating storage sys-
tems. Using this method, one first captures representative
traces of user activity, then replays the traces to measure
the performance impact of proposed modifications.

Usually, trace replay on a live system omits any idle
time between activities in order to speed evaluation, es-
pecially when a large set of possible configurations is be-
ing tested. While this methodology accurately captures
time-independent activity, the impact of time-dependent
operations cannot be measured. For example, a power
management algorithm that spins down the disk during
idle periods is not invoked since replay does not pause
between activities.

Based on the above observation, one might reasonably
decide to preserve the recorded interarrival times. In our
own experience [1, 19], we have found this technique to
be highly accurate; however, we have also found it to
be too time-consuming. The time to run a single experi-
ment is essentially equivalent to the length of the original
trace. Potentially, one might shave some time off replay
by eliminating extremely long idle periods. However, we
have found that the background processing on most mod-
ern computers ensures that no more than a few seconds
passes without some file system activity—this makes the
occurrence of long idle periods rare. Given that one will
often want to test multiple design options and run multi-
ple trials to demonstrate repeatability, preserving interar-
rival times is too slow for all but the shortest traces.

A method to preserve interarrival times while hasten-
ing evaluation is to decrease the length and number of
traces. However, it is important to ensure that the re-
maining traces represent realistic user activity. These
microbenchmarks can be a useful guide to optimizing
a storage system, but over-reliance on one or two short
traces can lead to erroneous conclusions, as we show in
Section 4.

2005 USENIX Annual Technical Conference USENIX Association 251



A final alternative is simulation. While discrete-event
simulators [5, 30] are often used to model disks, the ma-
jority of power management algorithms are implemented
in other layers of the storage hierarchy (e.g. in the de-
vice driver, the file cache, and the file system). Accurate
simulation of storage power management requires that
the simulator capture all layers. Thus, the complexity of
developing an accurate storage hierarchy simulator is a
significant drawback of this approach. For instance, the
implementation of these layers (i.e. the VFS layer, ext2,
and the IDE driver) in the Linux 2.4 kernel comprises
over 50,000 lines of source code. Even after a simula-
tor is developed, careful testing is required to ensure that
it is bug-free and that it faithfully replicates the behav-
ior of the simulated system. Finally, substantial simu-
lator modifications may be needed in order to evaluate
new operating systems or file systems; even minor ver-
sion changes to these software layers may invalidate sim-
ulation results. One might possibly use a whole system
simulator [23] that can run the entire operating system
within the simulator and perform trace replay on top of
it. However, substantial portability issues will still arise
due to the diversity of hardware platforms seen in mobile
computing today; one may potentially have to develop
several complex simulators to examine behavior on all
target platforms.

All of the above methodologies have different strengths,
but no single methodology is fast, accurate, and portable.
We therefore propose a new methodology, Drive-Thru,
that combines the best features of trace replay on a live
system and simulation by separating time-dependent and
time-independent activity. Time-independent operations,
such as the mapping of file system operations to disk ac-
cesses and the determination of which requests hit in the
file cache, are captured through trace replay. The output
of the replay is a base trace that captures the semantic
relationship between file system operations and disk re-
quests. The base trace is used as input to a simulator
that models only time-dependent behavior such as disk
spin-down and the delayed writes of dirty cache blocks.
Our validation of Drive-Thru shows that it is over 40,000
times faster than a trace replay on a live system that
preserves request interarrival times. At the same time,
Drive-Thru’s estimates for the ext2 file system are within
5% of the measured filesystem delay and within 3%
of the measured file system energy consumption. Fur-
ther, since our simulator need not model complex time-
independent behavior, Drive-Thru is highly portable—
currently, our simulator is only 914 lines of source code.

As we discuss further in Section 8, the success of this
approach rests on two assumptions: first, that we can
cleanly separate time-dependent behavior from time-
independent behavior, and second, that most of the com-

plexity of the storage hierarchy is time-independent.

We have used Drive-Thru to perform a detailed case
study of storage power management policies. We con-
centrate on power management optimizations that re-
quire no application modification. For local file systems,
we find that a policy that writes dirty data to disk before
spin-down yields significant energy reductions, but that
increasing the Linux age buffer parameter beyond 30
seconds does not have a large enough benefit to offset
the increased danger of data loss. We also note that op-
erating systems should be careful not to set age buffer
to a value that is close to the spin-down time of the hard
drive. We find substantially different behavior for a net-
work file system. The policy of writing dirty data before
using a network power saving mode increases energy us-
age. Further, writes need be delayed only 2 seconds for
energy-efficiency; almost no additional energy reduction
is realized by delaying writes further.

We begin with a description of the design and implemen-
tation of Drive-Thru. Section 3 evaluates the speed and
accuracy of our methodology. Section 4 and Section 5
present case studies of power management strategies for
a local and a network file system, respectively. Section 6
applies the results of these case studies to optimize an
existing file system. After discussing related work and
Drive-Thru’s limitations, we conclude.

2 Drive-Thru: design and implementation

2.1 Overview

Figure 1 shows an overview of the Drive-Thru method-
ology. We begin with a pre-recorded trace of file system
activity that captures POSIX operations such as mkdir,
open, and unlink, as well as the time at which each op-
eration occurred. Such traces may be found in the public
domain [16]; alternatively, we have built a trace capture
tool that allows us to record our own.

It is important to note that block-level traces that record
disk accesses are insufficient for our purpose. A block-
level trace does not capture enough semantic information
to reason about how power management at higher layers
of the system will affect performance and energy usage.
Each disk trace captures one particular file system and
cache behavior, so considering alternative behaviors is
infeasible. For instance, if dirty blocks can reside in the
file cache for up to 30 seconds, then two writes to the
same block 20 seconds apart are coalesced into a single
disk write. By examining only the disk trace, one cannot
determine that two writes rather than one would occur if
the write-back delay is reduced to 15 seconds.

As described in Section 2.2, we first replay each file sys-
tem trace on the target platform, operating system, and

2005 USENIX Annual Technical Conference USENIX Association252



Figure 1. Drive-Thru overview

file system. The trace replay tool records the time when
each file system operation begins and ends in the replay
log. Simultaneously, we also generate a low-level ac-
cess log that records each I/O access during the trace.
After each POSIX operation completes, the trace replay
tool ensures that all modifications have been reflected to
storage (e.g. by using the sync system call) and then
immediately begins the next operation. Reflecting mod-
ifications to storage immediately allows us to associate
each I/O access with the POSIX operation that caused
it. Because we omit recorded idle time, the base trace
is generated in much less time than it took to record the
original trace.

The next step, described in Section 2.3 is to merge the
original trace, the access log, and the replay log into
a base trace that captures the semantic relationship be-
tween high-level file system operations and low-level ac-
cesses. This relationship reveals time-independent be-
havior such as how a particular file system lays out its
data on disk and which accesses hit in the file cache. The
base trace is input to the Drive-Thru simulator, which
models time-dependent behavior.

Drive-Thru simulates time-dependent activity at each
layer of the hierarchy. For example, at the file system

layer, it models queuing behavior in distributed file sys-
tems such as Coda [14] and BlueFS [19] where file op-
erations are delayed before being sent over the network
to the file server. At the file cache layer, the simula-
tor models the coalescing of block writes due to delayed
writeback of dirty blocks. At the device driver layer, the
simulator models specific power management algorithms
such as disk spin-down [7] or the use of 802.11b’s Power
Saving Mode (PSM) [11].

As described in Section 2.4, the Drive-Thru simulator de-
lays, eliminates, and coalesces I/O accesses depending
upon the specific power-management algorithms speci-
fied at each layer of the storage hierarchy. Each resulting
I/O access is then passed to a device-specific simulator
that models network or storage. For disk simulation, we
use Dempsey [30], a modified version of DiskSim [5]
that simulates both time and energy. For network simu-
lation, we use a custom 802.11b simulation module. As
output, Drive-Thru gives the expected time and energy
to replay the trace on the target platform. By chang-
ing the parameters of the Drive-Thru simulator, one can
quickly investigate alternative file system, cache, and de-
vice power management strategies.

2.2 Replay

The Drive-Thru file system trace replay tool runs on
the target platform for evaluation. It replays operations
recorded in the trace sequentially and forces all dirty data
to storage before beginning each new operation. Since
all file system operations issued by the replay tool are
POSIX-compliant, the replay tool is portable; i.e., it can
be run on any POSIX platform.

During replay, we record disk accesses using a modified
ide-disk Linux kernel module. The module generates
a disk access log that records the start time, completion
time, starting sector, length, and type (read or write) of
every access. The module writes this data to a 1 MB ker-
nel buffer that is read by a user-level program through a
pseudo-device after the trace is complete.

We employ a similar strategy to monitor network ac-
cesses made by distributed file systems. We modify the
file system’s remote procedure call (RPC) package to
record the start time, completion time, size, and type
(read or write) of each RPC. This information is writ-
ten to a network access log—on the iPAQ platform, this
log is stored in RAM.

2.3 Generating the base trace

As shown in Figure 2, we merge the original file system
trace, the replay log, and the access log(s) to generate a
base trace. The base trace preserves the interarrival times
between file system operations that were captured in the

2005 USENIX Annual Technical Conference USENIX Association 253



Figure 2. Example of generating a base trace

original file system trace—this is shown by the sleep
record in the trace in Figure 2.

For each file system operation, the base trace shows
the disk and/or network accesses generated by executing
each operation on the target platform. Because the trace
replay tool executes each operation sequentially and en-
sures that all dirty data is flushed before it begins the next
operation, each storage access will overlap with exactly
one file system operation (although a single file system
operation may overlap several storage accesses). This
methodology makes clear the semantic relationship be-
tween file system operations and disk and network ac-
cesses.

As shown in Figure 2, the base trace captures the re-
lationship between the file system trace and the access
trace—this shows time-independent behavior such as
how the file system lays out its data on disk and which
blocks hit in the file cache. Because the base trace al-
ready captures this behavior, the Drive-Thru simulator
need only simulate time-dependent operations.

2.4 The Drive-Thru simulator

Using the base trace as input, the Drive-Thru simulator
calculates the time and energy that it would take to run
the file system trace on the target platform had interar-
rival times been preserved during trace replay. Drive-
Thru uses discrete-event simulation to model three layers
of the storage hierarchy: the file system, the file cache,
and device power management. At each layer, the simu-
lator modifies the stream of I/O accesses seen in the base
trace. Based upon the time-dependent behavior speci-
fied, the simulator:

• Delays I/O accesses. Disk or network accesses are
often delayed to save power. For example, on the
Hitachi 1 GB microdrive, once the drive enters its
standby mode, the next access is delayed approxi-
mately 800 ms [10]. Similarly, a transition between
power modes on a 802.11b network interface de-
lays accesses for several hundred milliseconds until
the transition completes [1]. At the file system and
cache layers, write accesses are often delayed to
improve performance or save power. Based on the
behavior specified, the Drive-Thru simulator may
delay accesses at each layer of the storage hierar-
chy. This can result in reordering of accesses (e.g.
if writes are delayed but reads are not).

• Eliminates I/O accesses. A delayed access may be
obviated entirely by a subsequent file system oper-
ation, in which case the simulator eliminates it. For
example, the age buffer parameter specifies how
long a dirty block may remain in the file cache until
it is written to storage. If a write operation creates
a dirty block that is overwritten by a subsequent
write operation within age buffer seconds, only
one disk access will result. In this case, the sim-
ulator eliminates the first disk write upon seeing
the second write. Similarly, the Coda file system
delays sending operations to the file server for up
to 300 seconds in write-disconnected mode [16].
If two operations that cancel each other are per-
formed within this period, neither is sent over the
network. The simulator would therefore eliminate
all network accesses associated with the two oper-
ations.

2005 USENIX Annual Technical Conference USENIX Association254



• Coalesces I/O accesses. Two discrete I/O accesses
may be merged into a single large access. For ex-
ample, two writes to adjacent disk sectors can be
merged into a single write to two sectors. Similarly,
the Blue file system aggregates RPCs that modify
data in order to save power [19]. Thus, for BlueFS,
our simulator coalesces multiple small network ac-
cesses into a larger access whose size is the sum of
the sizes of the smaller RPCs.

After the Drive-Thru simulator accounts for time-
dependent behavior in the file system, file cache, and
device power management layers, it hands the resulting
accesses off to a device-specific simulation module to
model the time and energy needed to perform the net-
work and disk accesses. For disk simulation, we use the
Dempsey simulator [30] developed by Zedlewski et al.
For network simulation, we use our own custom module
that models 802.11b behavior.

Dempsey is a discrete-event simulator based on
DiskSim [5] that estimates the time and energy needed
to perform disk accesses. Dempsey calculates when
each disk access will complete based upon a detailed
characterization of the drive. At the end of simula-
tion, Dempsey reports the total energy used by the drive.
Drive-Thru adds this value to its calculated energy usage
for the network and the rest of the system to derive the
total energy usage of the mobile computer.

The network simulator takes as input the measured la-
tency and bandwidth between the mobile computer and
file server, as well as a model of packet loss. The net-
work simulator currently models three power manage-
ment strategies: the Continuous Access Mode (CAM)
and Power-Saving Mode (PSM) defined by the 802.11b
standard [11], as well as Self-Tuning Power Management
(STPM) [1], an adaptive strategy that toggles between
CAM and PSM depending upon the observed network
access patterns. The network module calculates the time
and energy used to perform each RPC based upon a char-
acterization of the network card that includes the power
needed to transmit and receive data in each mode as well
as the time and energy cost of switching between CAM
and PSM. At the end of simulation, the module reports
the total energy used by the network.

3 Validation

We validated Drive-Thru by comparing its time and en-
ergy results to those obtained through a trace replay on a
live system that preserves request interarrival times.

3.1 Methodology

We evaluated Drive-Thru on an HP iPAQ 3870 handheld
running the Linux 2.4.19-rmk6 kernel. The handheld

has a 206 MHz StrongArm processor, 64 MB of DRAM
and 32 MB of flash. We used a 1 GB Hitachi micro-
drive [10] and a 11 Mb/s Cisco 350 802.11b network
card in our experiments. The Hitachi microdrive uses the
adaptive ABLE-3 controller that spins down the disk to
save power. Empirical observation of its behavior reveals
that the microdrive spins down once it has been idle for
approximately 2 seconds.

We measured operation times using the gettimeofday
system call. Energy usage was measured by attaching
the iPAQ to an Agilent 34401A digital multimeter. We
removed all batteries from the handheld and sampled
power drawn through its external power supply approxi-
mately 50 times per second. We calculated system power
by multiplying each current sample by the mean volt-
age drawn by the mobile computer — separate voltage
samples are not necessary since the variation in voltage
drawn through the external power supply is very small.
We calculated total energy usage by multiplying the aver-
age power drawn during trace replay by the time needed
to complete the trace. The base power of the iPAQ when
idle with no network or disk card inserted is 1.4 Watts. If
we had turned off the screen, the iPAQ would have used
only 0.9 Watts.

We used file system traces from two different sources.
The first four in Figure 3 were collected by Mummert
et al. at Carnegie Mellon University [17] from 1991 to
1993. The remaining traces are NFS network traces col-
lected by Kim et al. at the University of Michigan in
2002 [13]. Because it would be too time consuming to
replay each trace in its entirety, we selected segments ap-
proximately 45 minutes in length from a subset of these
traces.

We first replayed each segment on the iPAQ, preserving
operation interarrival times and measuring the time and
energy used to complete each trace. We then compared
the measured results with Drive-Thru’s estimates. How-
ever, we note that the majority of time spent during trace
replay is due to recreation of interarrival time rather than
file system activity. A reasonable metric of accuracy may
therefore be how well Drive-Thru estimates the non-idle
time in the trace. We calculate this file system time by
subtracting the idle time from the total trace time; this
metric reflects the additional delay added by the file sys-
tem. We also calculate file system energy, which is the
amount of additional energy consumed by file system
activity during trace replay. To generate this value, we
subtract the product of the handheld’s idle power and the
idle time from the total energy used to replay the trace.

3.2 Local file system results

We began by evaluating how accurately Drive-Thru es-
timates the time and energy needed to replay traces on

2005 USENIX Annual Technical Conference USENIX Association 255



Number Length Update Working
Trace of Ops. (Hours) Ops. Set (MB)
Purcell 87739 27.66 6% 252
Messiaen 44027 21.27 2% 227
Robin 37504 15.46 7% 85
Berlioz 17917 7.85 8% 57
NFS2 39074 24.00 28% 21
NFS15 34188 24.00 16% 4

This figure shows the file system traces used in our evaluation.
Update operations are those that modify data. The working set
is the total amount of data accessed during a trace.

Figure 3. File traces used in evaluation

Linux’s ext2 file system. Figures 4(a) and 4(b) compare
the measured time and energy to replay traces on ext2
with Drive-Thru’s estimates. For the Purcell trace, we
vary Linux’s file cache write-back delay (age buffer)
from 15 to 60 seconds; all other segments were replayed
with the default 30 second value. As can be seen, Drive-
Thru’s estimates of total replay time and energy are ex-
tremely accurate—on average, they are within 0.10%
of the measured time to execute each trace and within
0.21% of the measured energy.

As shown in Figures 4(c) and 4(d), Drive-Thru still main-
tains excellent accuracy when only file system time and
energy are considered. Drive-Thru’s estimates are, on
average, within 5% of the measured file system time and
within 3% of the measured file system energy usage.

3.3 Network file system results

We next validated Drive-Thru using a network file sys-
tem in which data is stored on a remote server rather than
local disk. For this purpose, we used the Blue file sys-
tem [19], a distributed file system developed at the Uni-
versity of Michigan. One reason that we chose BlueFS
for this study is that it has been designed from the start
with energy-efficiency as a goal; consequently, BlueFS
has been shown to use much less energy than other dis-
tributed file systems. BlueFS stores the primary replica
of each file system object on a network file server. Fur-
ther, it can optionally cache second-class replicas on lo-
cal and portable storage devices. However, for this par-
ticular case study, we allow BlueFS to use only the re-
mote file server so as to isolate the performance of Drive-
Thru for network storage.

BlueFS issues remote procedure calls (RPCs) to the net-
work server in a manner similar to NFS [18], e.g. each
RPC roughly corresponds to an individual VFS opera-
tion. BlueFS queues RPCs that modify data for up to
30 seconds before sending them to the server. On the
iPAQ, BlueFS also flushes the outgoing queue if the size
of queued data exceeds 11.25 MB. If the queue size ex-
ceeds 15 MB, new file system operations are blocked un-
til some operations are sent to the server. When send-

ing queued operations to the server, BlueFS coalesces
RPCs into aggregate RPCs of up to 1 MB. We modeled
this time-dependent behavior in the Drive-Thru simula-
tor with 44 lines of source code.

In Figures 4(e–h), we show the accuracy of Drive-Thru’s
estimates for the Purcell and NFS15 traces. For each
trace, we examine behavior using 802.11b’s CAM and
PSM modes [11], as well as the adaptive STPM pol-
icy [1]. On average, Drive-Thru’s estimates are within
0.86% of measured values for total time and within
0.90% for total energy. When we remove idle time from
consideration, Drive-Thru’s estimates are, on average,
within 13% for file system time and within 7% for file
system energy usage.

Why is Drive-Thru less accurate for network file systems
than for local disk file systems? Partially, this is because
network accesses are inherently more variable (as can be
seen by the larger error bars in the measured results for
network accesses in Figure 4). Also, we do not yet model
the storage hierarchy of the network file server. Finally,
we might be able to improve Drive-Thru’s estimates by
replacing our simple network simulator with one that is
more accurate [12, 26].

4 Case study: local file system

4.1 Methodology

Using Drive-Thru, we quantified the benefit of several
recent proposals that modify file cache behavior in order
to reduce energy consumption. We selected for our study
only proposed modifications that could easily be imple-
mented in current commodity operating systems. As a
consequence, none of the proposals we selected require
changes to existing application source code.

The three modifications that we studied were:

• Flush on write. Whenever any single dirty cache
block is written to disk, write all dirty cache
blocks. This modification was proposed by Weis-
sel et al. [28], who referred to it as the “write back
all buffers” strategy. Papathanasiou and Scott also
propose to write all dirty blocks in their energy-
efficient prefetching work [21].

• Flush on spin-down. Before the disk is spun down
to save power, write all dirty blocks in the cache
to disk. Weissel [28] first proposed this strategy,
referring to it as “Update on shutdown”.

• Increasing age buffer. This allows a dirty block
to reside in the cache for a longer period of time.
The default Linux age buffer value is 30 sec-
onds. Weissel et al. [28] increased this value to

2005 USENIX Annual Technical Conference USENIX Association256



Purcell 
(15 s)

Purcell Purcell 
(60 s)

Berl. Mess. NFS15
0

1000

2000

3000

T
im

e 
(s

ec
on

ds
)

Measured
Drive-Thru

Purcell 
(CAM)

Purcell 
(PSM)

Purcell 
(STPM)

NFS15 
(CAM)

NFS15 
(PSM)

NFS15 
(STPM)

0

1000

2000

3000

T
im

e 
(s

ec
on

ds
)

Measured
Drive-Thru

(a) ext2 total time (e) BlueFS total time

Purcell 
(15 s)

Purcell Purcell 
(60 s)

Berl. Mess. NFS15
0

1000

2000

3000

4000

E
ne

rg
y 

(J
ou

le
s)

Purcell 
(CAM)

Purcell 
(PSM)

Purcell 
(STPM)

NFS15 
(CAM)

NFS15 
(PSM)

NFS15 
(STPM)

0

2000

4000

6000

8000

E
ne

rg
y 

(J
ou

le
s)

(b) ext2 total energy (f) BlueFS total energy

Purcell 
(15 s)

Purcell Purcell 
(60 s)

Berl. Mess. NFS15
0

20

40

60

80

Fi
le

 sy
st

em
 ti

m
e 

(s
ec

on
ds

)

Purcell 
(CAM)

Purcell 
(PSM)

Purcell 
(STPM)

NFS15 
(CAM)

NFS15 
(PSM)

NFS15 
(STPM)

0

200

400

600

800

Fi
le

 sy
st

em
 ti

m
e 

(s
ec

on
ds

)

(c) ext2 file system time (g) BlueFS file system time

Purcell 
(15 s)

Purcell Purcell 
(60 s)

Berl. Mess. NFS15
0

100

200

300

400

Fi
le

 sy
st

em
 e

ne
rg

y 
(J

ou
le

s)

Purcell 
(CAM)

Purcell 
(PSM)

Purcell 
(STPM)

NFS15 
(CAM)

NFS15 
(PSM)

NFS15 
(STPM)

0

1000

2000

3000

Fi
le

 sy
st

em
 e

ne
rg

y 
(J

ou
le

s)

(d) ext2 file system energy (h) BlueFS file system energy

The left column validates Drive-Thru for a local file system by comparing its time and energy estimates with measured results for ext2.
The right column validates a network file system by comparing results for BlueFS. File system time and energy are metrics that reflect
the overhead of the file system. Each bar is the mean of three trials, with error bars giving the value of the lowest and highest trial.
Note that the scales are different between the two columns due to the larger overhead of network file systems.

Figure 4. Drive-Thru validation

2005 USENIX Annual Technical Conference USENIX Association 257



0 20 40 60

age_buffer (seconds)

0

200

400

600

800

1000
Fi

le
 sy

st
em

 e
ne

rg
y 

(J
ou

le
s)

Default
Flush on Write
Flush on Spin-down
Flush on Both

0 20 40 60

age_buffer (seconds)

0

200

400

600

800

Fi
le

 sy
st

em
 e

ne
rg

y 
(J

ou
le

s)

Default
Flush on Write
Flush on Spin-down
Flush on Both

(a) Berlioz (b) Messiaen

0 20 40 60

age_buffer (seconds)

0

500

1000

1500

Fi
le

 sy
st

em
 e

ne
rg

y 
(J

ou
le

s)

Default
Flush on Write
Flush on Spin-down
Flush on Both

0 20 40 60

age_buffer (seconds)

0

500

1000

1500

2000

2500

Fi
le

 sy
st

em
 e

ne
rg

y 
(J

ou
le

s)
Default
Flush on Write
Flush on Spin-down
Flush on Both

(c) Robin (d) Purcell

0 20 40 60

age_buffer (seconds)

0

500

1000

1500

2000

2500

Fi
le

 sy
st

em
 e

ne
rg

y 
(J

ou
le

s)

Default
Flush on Write
Flush on Spin-down
Flush on Both

0 20 40 60

age_buffer (seconds)

0

500

1000

1500

2000

Fi
le

 sy
st

em
 e

ne
rg

y 
(J

ou
le

s)

Default
Flush on Write
Flush on Spin-down
Flush on Both

(e) NFS2 (f) NFS15

Each graph shows the results of implementing the three cache management policies described in Section 4.1 for the ext2 file system.
We show only energy results since the policies studied had negligible performance impact. Note that the scales are different in each
graph. In most graphs, the “Flush on Spin-down” and “Flush on Both” lines overlap and thus appear to be only a single line. Similarly,
the “Default” and “Flush on Write” lines overlap in some graphs such as 5(e).

Figure 5. Results from local file system case study

60 seconds in their work. Papathanasiou [21, 22]
also increased this value to 60 seconds (or longer
in some cases). In our own work [1], we have pro-
posed a similar strategy that delays writes as long
as possible for data that is replicated elsewhere.

We used Drive-Thru to assess the potential benefit of
each strategy for the ext2 file system on the iPAQ de-

scribed in Section 3. We used the six full-length file
traces shown in Figure 3. We examined the four com-
binations of enabling or disabling flush on spin-down
and flush on write, while varying age buffer from 0–60
seconds. Note that age buffer only controls the eligi-
bility of dirty blocks to be written from the Linux cache;
the updated thread that actually writes the data wakes up

2005 USENIX Annual Technical Conference USENIX Association258



every interval seconds. By default, age buffer is set
to 30 seconds and interval is set to 5 seconds (mean-
ing that a dirty block may actually reside in the cache for
up to 35 seconds before flushing starts). As we varied
age buffer, we also varied interval to preserve the
default 6:1 ratio.

4.2 Results

As can be seen in Figure 5, both the flush on spin-down
and the flush on write policies are effective in reducing
energy usage for almost every trace. However, the flush
on write policy is less effective; in the NFS2 trace, for
example, its energy usage is essentially equivalent to the
default Linux cache management policy. Interestingly,
for all six traces, the flush on spin-down policy alone
saves almost the same amount of energy as the combi-
nation of the two policies. Examination of the detailed
results shows that if the cache is flushed on spin-down,
the flush on write mechanism is almost never used as long
as the value of age buffer is larger than a few seconds.
Essentially, it is rare for read operations to constantly
keep the disk spinning long enough for the flush on write
policy to take effect.

Across all six traces, flush on spin-down reduces file sys-
tem energy usage by an average of 11%. Since flush on
spin-down is relatively easy to implement and because it
requires no application modification to be effective, we
recommend that the policy be added to commodity oper-
ating systems such as Linux.
We were surprised to see that increasing age buffer
beyond the Linux default of 30 seconds has little ef-
fect on energy consumption. On average, increasing
age buffer from 30 to 60 seconds reduces file system
energy usage by only 8% (assuming flush on spin-down
is implemented). Increasing the value to more than 60
seconds does not significantly decrease energy usage fur-
ther. Intuitively, the effect is minimal because the distri-
bution of disk accesses is such that few interarrival times
fall between 30 and 60 seconds. Unlike the other two
policies, increasing age buffer has a substantial down-
side because it increases the window during which data
may be lost due to system crash. Therefore, we recom-
mend that age buffer be left unchanged unless storage
energy usage is an overriding concern.

Close examination of the trace results revealed a feature
that we did not predict. In Figure 5(d), the default Linux
cache policy experiences a peak in energy consumption
when age buffer is set to 2 seconds. This peak exists in
all other traces, although it is not particularly pronounced
in some. In addition to using Drive-Thru, we have also
confirmed the existence of this peak experimentally.
By studying Drive-Thru trace results, we determined that
this peak occurs when age buffer is set to a value

0 20 40 60

age_buffer (seconds)

0

200

400

600

Fi
le

 sy
st

em
 e

ne
rg

y 
(J

ou
le

s)

Default
Flush on Write
Flush on Spin-down
Flush on Both

This shows the results of implementing the three cache manage-
ment policies described in Section 4.1 on the energy needed to
download a 37 MB file and store it on disk.

Figure 6. Results from download microbenchmark

that closely approximates the disk spin-down timeout.
In all of our traces, reads and writes tend to be clus-
tered together due to the bursty nature of file system
accesses [27]. For each cluster, the disk spins up to
service the read requests, then spins down immediately
before updated writes back dirty cache blocks modi-
fied by operations in the cluster. The disk must then
spin up to service updated writes; it also remains in a
high-power state for another two seconds before spin-
ning down again. Note that use of the flush on spin-
down avoids this peak because it writes dirty blocks to
the cache before the first spin-down operation. To avoid
this behavior, we recommend that the operating system
set the disk spin-down threshold to a value different from
age buffer (or else, implement flush on spin-down).

Calculating time and energy estimates using Drive-Thru
requires two steps: the generation of the base trace, fol-
lowed by the execution of the simulator. When compar-
ing the speed of Drive-Thru to traditional trace replay, the
worst-case comparison is when Drive-Thru is only used
to generate a single data point. For the six traces that we
studied, Drive-Thru was 158–614 times faster than trace
replay for this task. Further, for the entire case study, we
only needed to generate the base trace once for each file
system trace. This means that the effort to generate the
base trace is amortized over many runs of the simulator.
In fact, if we were to generate the results in this study
using trace replay, it would have taken over 40,000 times
longer than the time required using Drive-Thru. Put in
raw terms, we can generate all the results in this case
study in less than 45 minutes using Drive-Thru; the same
results would take over 3 years to generate using trace
replay on a live system.

2005 USENIX Annual Technical Conference USENIX Association 259



4.3 The danger of microbenchmarks

Seemingly, our results for ext2 contradict previous re-
sults reported in the literature that show greater bene-
fit for these cache management strategies. We believe
that both measurements are accurate, but that the differ-
ence between the two results shows the danger of over-
reliance on microbenchmarks. We tried to confirm this
by replicating one experiment [8] where data is down-
loaded to a mobile computer and stored on local disk. In
our experiment, we download a 37 MB file over the iPAQ
serial port and write it to the microdrive. The download
rate over the serial link is approximately 8 KB/s.

We first generated a base trace by running the down-
load application. We then used Drive-Thru to produce
the results shown in Figure 6. Note that both flush on
spin-down and flush on write produce substantially larger
energy savings for this microbenchmark (61% and 62%
respectively). Once these policies are implemented, in-
creasing age buffer from 30 to 60 seconds yields a
37% reduction in energy usage.

Although these results are substantially more impressive
than those that are generated when we apply the policies
to our file traces, we believe that the two sets of results
are consistent. Some applications captured in the file sys-
tem trace may well have access patterns that yield bene-
fits similar to the download microbenchmark. However,
there may be many other applications using the file sys-
tem for which the policies under study are considerably
less effective.

We also believe that these results demonstrate the pri-
mary benefit of Drive-Thru: because evaluation is dra-
matically faster using our methodology, it is possible to
evaluate new storage power management policies on a
much wider set of data. As the scope of data used for
validation increases, the danger that results reflect a par-
ticular feature of the workload is diminished.

5 Case study: network file system

5.1 Methodology

We next examined how well the policies studied in the
previous section translate to a network file system. In
this study, we use BlueFS, described previously in Sec-
tion 3.3. As before, we do not allow BlueFS to use local
storage so as to isolate the effect of network storage.

Recall that 802.11b defines a high-performance Con-
tinuous Access Mode (CAM) and a low-power Power-
Saving Mode (PSM). The STPM policy used by BlueFS
adaptively switches between these two modes depending
upon observed network traffic [1]. In these experiments,

it switches to CAM before beginning the third consec-
utive foreground RPC received within a short time win-
dow, and it switches to PSM after the network interface
is idle for 300 ms. In the context of BlueFS and STPM,
we therefore define the three policies studied as:

• Flush on write. Whenever any single RPC contain-
ing a modification is sent to the server, all queued
modifications are also sent to the server.

• Flush on PSM. Before the network card is placed
in PSM to save power, all queued modifications are
sent to the server. This is the network equivalent of
flush on spin-down.

• Increasing queue delay. This allows a mod-
ification to be queued by the file system for
a longer period of time. This is the BlueFS
equivalent of age buffer. By default, BlueFS
sets queue delay equivalent to Linux’s default
age buffer of 30 seconds.

We used Drive-Thru to assess the potential benefit of
each strategy for BlueFS running on the iPAQ described
in Section 3. We again used the six full-length file traces
shown in Figure 3. However, since the results of the
study for all six traces were essentially equivalent, we
show results for only two traces in Figure 7.

5.2 Results

Comparing Figures 5 and 7, it is immediately apparent
that the three policies under study have a markedly dif-
ferent effect on the network file system than they do on
the local disk file system. The flush on PSM policy ap-
pears to have a slight negative effect, increasing file sys-
tem energy usage for all values of queue delay greater
than a few seconds. The flush on write policy has no no-
ticeable impact, using essentially the same energy as the
default policy. We have also observed that neither policy
has a significant effect on trace replay time.

We believe that the observed difference in effectiveness
is due to the difference between disk and network power
management. While a disk is spun-down to save power,
no data may be read from the drive; it must therefore spin
up to service any write request that it receives. In con-
trast, when the network interface is in PSM, it can still
transmit and receive data. While the latency of each RPC
increases in PSM, the energy usage does not. Since write
RPCs are asynchronous (i.e. they are sent by a back-
ground thread), STPM can (and does) leave the network
interface in PSM while they are sent and received. Be-
cause write RPCs can efficiently be serviced in PSM, it is
not necessary to flush them from the queue before tran-
sitioning the network card.

2005 USENIX Annual Technical Conference USENIX Association260



0 20 40 60

queue_delay (seconds)

0

200

400

600
Fi

le
 sy

st
em

 e
ne

rg
y 

(J
ou

le
s)

Default
Flush on Write
Flush on Spin-down
Flush on Both

0 20 40 60

queue_delay (seconds)

0

200

400

600

800

Fi
le

 sy
st

em
 e

ne
rg

y 
(J

ou
le

s)

Default
Flush on Write
Flush on Spin-down
Flush on Both

(a) Berlioz (b) NFS15

Each graph shows the results of implementing the three cache management policies described in Section 5.1 for BlueFS. We show
only energy results since the policies studied had negligible performance impact. Note that the scales are different in each graph.

Figure 7. Results from network file system case study

The effect of queue delay in Figure 7 is also strik-
ing. While all six traces show considerable benefit
from setting queue delay greater than zero, no trace
showed more than a trifling benefit from increasing
queue delay beyond two seconds. This came as a com-
plete surprise to us (the creators of BlueFS), since we
expected the effect of queue delay to mirror that of
age buffer for ext2.

In BlueFS, queue delay directly affects the durability
of file data, since writes are only guaranteed to be safe
from client crash once the server replies to a RPC. Since
there is almost no performance or energy cost, this study
made a convincing case to us that we should decrease
queue delay from 30 to 2 seconds for the BlueFS server
write queue—we explore this further in the next section.

The speedup obtained by using Drive-Thru is somewhat
less for network file systems than for local file systems.
The base trace takes longer to generate since operations
must be performed synchronously and each operation re-
quires a network round-trip. However, even for the gen-
eration of a single data point, Drive-Thru was 38–116
times faster than trace replay for the file system traces we
studied. In total, we were able to generate the results in
this case study over 13,000 times faster using Drive-Thru
than we would have been able to generate them them if
we had used trace replay on a live system.

6 Optimizing the Blue file system

We are applying the lessons from these case studies to
BlueFS. Since BlueFS layers its client disk cache on top
of ext2, the results of the first case study apply to its local
cache, whereas the results of the second case study apply
to its network communication.

The first lesson is that different storage devices require
different policies. Policies such as flush on spin-down
that benefit disk storage are detrimental to network stor-
age. We therefore changed BlueFS to allow these poli-
cies to be selectively applied to each network or local
storage device attached to the mobile computer. Note
that BlueFS already allowed each network or local stor-
age device to select its own queue delay.

Our second lesson is that we should implement flush on
spin-down for local disk-based storage. We modified the
disk power management module used by BlueFS to call
the Linux kernel routine that flushes dirty cache blocks
for a particular device (fsync dev) before the module
spins down the disk. This required only 20 lines of
source code.

We ran the 45-minute Purcell trace used in Section 3 on
BlueFS with and without our modification. Our experi-
mental setup was the same as before, except that we al-
lowed BlueFS to use both the network server and a local
cache on the microdrive’s ext2 file system. As shown in
Figure 8, using flush on spin-down for the local cache re-
duces file system energy usage by 12.4%. Note that this
improvement is for a file system that has already been
substantially optimized to reduce energy usage. Given
that this change also reduces trace execution time, it
seems a nice improvement. Although total energy sav-
ings for the entire system is only 1.4%, our experiment
assumes that the handheld does not hibernate or employ
similar system-wide power-saving modes during periods
of inactivity. We make this conservative assumption be-
cause our file system traces do not record sufficient in-
formation to predict when the system would hibernate.

Finally, we decreased the value of queue delay for the
server write queue from 30 seconds to 2 seconds. Us-
ing the same 45-minute Purcell trace, we evaluated the

2005 USENIX Annual Technical Conference USENIX Association 261



Original BlueFS with Percentage
BlueFS flush on spin-down improvement

Time (s) 2674 (2671–2677) 2663 (2661–2665) 0.4%
Total energy (J) 5482 (5465-5506) 5408 (5394–5423) 1.4%
File system time (s) 118 (115–121) 105 (105–107) 11.0%
File system energy (J) 597 (580–621) 523 (509–537) 12.4%

This shows the results of implementing the flush on spin-down policy in BlueFS. Each value reports measured replay time or energy
usage for an approximately 45 minute segment of the Purcell file system trace. Each value shows the mean of three trials with the
minimum and maximum given in parentheses.

Figure 8. Flush on spin-down in BlueFS

behavior of these two settings for the network-only con-
figuration of BlueFS (omitting the local disk cache). Our
results showed that the difference in energy usage be-
tween these two values was within experimental error of
the 6 Joule difference predicted by Drive-Thru. Further,
the time to replay the trace was equivalent within experi-
mental error for the two settings. The benefit of less data
loss after a crash seems well worth this cost.

7 Related Work

To the best of our knowledge, Drive-Thru is the first
system to quickly and accurately evaluate storage power
management by separating out time-dependent and time-
independent behavior. The foundations of our method-
ology lie in trace replay, which has long been used as
an evaluation technique in the storage research commu-
nity [5, 16, 20, 29]. Recent efforts to improve the accu-
racy of trace replay [3] could benefit our methodology.
However, our key observation is that trace replay that
does not preserve operation interarrival times is too inac-
curate to model storage power management, while trace
replay that preserves interarrival times is too slow. Thus,
while trace replay has been used previously to evaluate
storage power management [1, 2, 19], the traces used in
those studies have been, of necessity, quite short.

Drive-Thru’s process of generating the base trace can
be viewed as instance of a gray-box system [4]. Both
Drive-Thru and the gray-box File Cache Content Detec-
tor (FCCD) use a real file cache to estimate cache con-
tents. In contrast to our work, FCCD provides on-line
estimates of cache contents to applications. Drive-Thru’s
cache content prediction is fundamentally off-line. Our
current approach for evaluating each storage hierarchy is
to modify the Drive-Thru simulator parameters in order
to reflect the file system, cache, and device power man-
agement strategies for the system under study. Poten-
tially, it may be feasible to automatically extract Drive-
Thru parameters using techniques such as those outlined
for semantically-smart disk systems [25].

Discrete event simulation of disk [5] and network [12,
26] behavior is not a contribution of this work. In fact, we

use the Dempsey disk simulator directly in our method-
ology. Similarly, we could potentially use a network
simulator such as QualNet [26] or NS-2 [12] to improve
Drive-Thru’s estimates for network file systems. The fo-
cus of our work is above the physical device in the stor-
age hierarchy. We concentrate on the file system, file
cache, and device driver where storage power manage-
ment algorithms are typically implemented.

Similarly, all of the power management strategies that we
investigate in our case study have been previously pro-
posed by the research community. The contribution of
our work is that we perform the first systematic study of
these proposals that uses substantial traces of actual user
activity to measure impact on typical file system work-
loads. Given the several surprising results that we gener-
ated through our case study, we believe that this type of
comprehensive evaluation is of considerable merit.

A very large number of fixed and adaptive strategies have
been proposed for controlling the power state of hard
disks [7, 6, 9, 24]. This decision can be augmented by
considering additional information provided by applica-
tions [2, 8, 28] or based on an OS-level energy bud-
get [31]. It has also been observed that since disk power
management algorithms are limited by the lengths of
continuous idle time, it might be beneficial to rearrange
or prevent disk accesses so that idle times could become
longer [8, 22, 28].

8 Discussion and Future Work

We believe that the results of our case studies demon-
strate the effectiveness of Drive-Thru’s approach to
power management evaluation. Because Drive-Thru
generates accurate results quickly, we were able to look
at a much larger set of data than previous researchers
have used in their evaluations. This led to a number of
surprising results, three of which we implemented in the
Blue file system that we are currently developing.

At the same time, Drive-Thru has several limitations
that must be acknowledged. First, our methodology re-
lies on the ability to separate time-dependent and time-

2005 USENIX Annual Technical Conference USENIX Association262



independent behavior in storage hierarchies. This sepa-
ration is not always clear. For instance, dirty blocks may
be prematurely evicted from the Linux file cache due to
memory pressure. Since the trace replay tool generates
little memory pressure of its own, we have never seen this
happen. However, Drive-Thru may not be able to handle
extremely write-intensive workloads that write blocks at
a faster rate than updated writes them to disk. We note
that even on an iPAQ with an extremely limited memory
capacity (64 MB), our results remain quite accurate.

A second limitation of Drive-Thru is that the accuracy of
its evaluation results depend upon how well the particular
traces used in the evaluation reflect the actual behavior of
the system under study. Good traces of file system activ-
ity are a rare commodity. Thus, it may be hard to find a
precisely representative sample. Certainly, the traces we
used in our study may not be representative of the work-
load one might see on a Linux handheld. However, we
note that this is a limitation of trace replay in general, and
is not specific to Drive-Thru. Further, we believe that file
system traces, even those not specifically collected on a
target platform, are often more representative than appli-
cation microbenchmarks. In the future, we plan to help
remedy this limitation by using the trace capture tool that
we have developed to generate traces of file system ac-
tivity from handhelds and other small, mobile devices.

A final limitation of the Drive-Thru methodology is that
we assume that the time-dependent component of stor-
age system behavior is easy to model. This assumption
has held for all the systems that we have modeled so far;
we have been able to specify time-dependent behavior
in a few hundred lines of source code or less. However,
as storage systems continue to evolve and become more
complex, it is possible that this assumption will no longer
hold. One remedy, mentioned in the previous section,
may be to use semantically-smart techniques to automat-
ically extract simulation parameters.

9 Conclusion

We believe that the speed, accuracy, and portability of
Drive-Thru make it an extremely valuable tool for the
evaluation of storage power management policies. For
our study of ext2, we were able to generate results over
40,000 times faster than trace replay on a live system that
preserves operation interarrival times. At the same time,
our results are within 3-5% of the values that trace replay
generates. Further, since our trace replay tool is POSIX-
compliant and our simulator is less than 1,000 lines of
source code, we believe that Drive-Thru will port rela-
tively easily to new file systems and platforms.

The case studies reported in this paper show the value of
our tool. By studying a more comprehensive set of work-

loads than those studied in the past, we have been able to
gain the following insights about the effect of cache be-
havior on storage power management:

• For the ext2 file system, a flush on spin-down
policy reduces file system energy usage by 11%
with no performance cost and without the need
to modify applications. Further, if flush on spin-
down is implemented, a flush on write policy
realizes little additional benefit.

• Conversely, for the BlueFS network file sys-
tem, flush on spin-down increases energy usage,
while flush on write has no significant effect.

• Increasing the Linux age buffer parameter to
a value greater than 30 seconds yields little en-
ergy savings (8%) to offset the additional dan-
ger of data loss during system crash.

• The BlueFS queue delay parameter for net-
work RPCs can be reduced to 2 seconds to im-
prove consistency without substantially sacri-
ficing performance or energy usage.

• Operating systems should not set age buffer
and the disk spin-down time to the same value.

The last two results came as complete surprises to us.
This demonstrates an additional benefit of Drive-Thru:
because we are able to evaluate a large parameter space
quickly, we have the opportunity to mine for insights that
would not otherwise be apparent. We are currently us-
ing Drive-Thru in our ongoing development of the Blue
file system. Our efforts have already yielded the three
enhancements described in Section 6. Based on these
results, we are confident that Drive-Thru can be of con-
siderable use in developing energy-efficient storage.

Acknowledgments

We thank Fengzhou Zheng and the Dempsey team for making their tool
available to us. We would also like to thank Minkyong Kim, Jay Lorch,
and Lily Mummert for providing file system traces. Manish Anand, Ed-
mund B. Nightingale, Ya-Yunn Su, the anonymous reviewers, and our
shepherd, Carla Ellis, made many suggestions that improved the quality
of this paper. The work is supported by the National Science Founda-
tion under award CCR-0306251, and by an equipment grant from Intel
Corporation. Jason Flinn is supported by NSF CAREER award CNS-
0346686. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of NSF, Intel, the Univer-
sity of Michigan, or the U.S. government.

References
[1] ANAND, M., NIGHTINGALE, E. B., AND FLINN, J. Self-tuning

wireless network power management. In Proceedings of the 9th
Annual Conference on Mobile Computing and Networking (San
Diego, CA, September 2003), pp. 176–189.

[2] ANAND, M., NIGHTINGALE, E. B., AND FLINN, J. Ghosts in
the machine: Interfaces for better power management. In Pro-
ceedings of the 2nd Annual Conference on Mobile Computing

2005 USENIX Annual Technical Conference USENIX Association 263



Systems, Applications and Services (Boston, MA, June 2004),
pp. 23–35.

[3] ANDERSON, E., KALLAHALLA, M., UYSAL, M., AND SWAMI-
NATHAN, R. Buttress: A toolkit for flexible and high fidelity I/O
benchmarking. In Proceedings of the USENIX FAST ’04 Con-
ference on File and Storage Technologies (San Francisco, CA,
March 2004), Hewlett-Packard Laboratories, USENIX Associa-
tion, pp. 45–58.

[4] ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R. Informa-
tion and control in gray-box systems. In Procedings of the 18th
ACM Symp. on Operating Systems Principles (Banff, Canada, Oc-
tober 2001), pp. 43–56.

[5] BUCY, J. S., GANGER, G. R., AND CONTRIBUTORS. The
DiskSim simulation environment version 3.0 reference man-
ual. Tech. Rep. CMU-CS-03-102, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, January 2003.

[6] DOUGLIS, F., KRISHNAN, P., AND BERSHAD, B. Adaptive disk
spin-down policies for mobile computers. In Proceedings of the
2nd USENIX Symposium on Mobile and Location-Independent
Computing (Ann Arbor, MI, April 1995), pp. 121–137.

[7] DOUGLIS, F., KRISHNAN, P., AND MARSH, B. Thwarting the
power-hungry disk. In Proceedings of 1994 Winter USENIX Con-
ference (San Francisco, CA, January 1994), pp. 292–306.

[8] HEATH, T., PINHEIRO, E., AND BIANCHINI, R. Application-
supported device management for energy and performance. In
Proceedings of the 2002 Workshop on Power-Aware Computer
Systems (February 2002), pp. 114–123.

[9] HELMBOLD, D. P., LONG, D. D. E., AND SHERROD, B. A dy-
namic disk spin-down technique for mobile computing. In Mobile
Computing and Networking (1996), pp. 130–142.

[10] HITACHI GLOBAL STORAGE TECHNOLOGIES. Hitachi Micro-
drive Hard Disk Drive Specifications, January 2003.

[11] IEEE LOCAL AND METROPOLITAN AREA NETWORK STAN-
DARDS COMMITTEE. Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications. New York, New
York, 1997. IEEE Std 802.11-1997.

[12] INFORMATION SCIENCES INSTITUTE. NS-2 network simulator,
2003. http://www.isi.edu/nsnam/ns/.

[13] KIM, M., NOBLE, B., CHEN, X., AND TILBURY, D. Data prop-
agation in a distributed file system, July 2004.

[14] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected op-
eration in the Coda file system. ACM Transactions on Computer
Systems 10, 1 (February 1992).

[15] KRASHINSKY, R., AND BALAKRISHNAN, H. Minimizing en-
ergy for wireless web access with bounded slowdown. In Pro-
ceedings of the 8th Annual International Conference on Mobile
Computing and Networking (MOBICOM ’02) (Atlanta, GA, July
2002).

[16] MUMMERT, L., EBLING, M., AND SATYANARAYANAN, M. Ex-
ploiting weak connectivity in mobile file access. In Proceedings
of the 15th ACM Symp. on Op. Syst. Principles (Copper Moun-
tain, CO, Dec. 1995).

[17] MUMMERT, L., AND SATYANARAYANAN, M. Long term dis-
tributed file reference tracing: Implementation and experience.
Software Practice and Experience 26, 6 (1996), 705–736.

[18] NETWORK WORKING GROUP. NFS: Network File System pro-
tocol specification, March 1989. RFC 1094.

[19] NIGHTINGALE, E. B., AND FLINN, J. Energy-efficiency and
storage flexibility in the Blue File System. In Proceedings of the
6th Symposium on Operating Systems Design and Implementa-
tion (San Francisco, CA, December 2004), pp. 363–378.

[20] OUSTERHOUT, J. K., COSTA, H. D., HARRISON, D., KUNZE,
J. A., KUFER, M., AND THOMPSON, J. G. A trace-driven anal-
ysis of the UNIX 4.2 BSD file system. In Proceedings of the
10th ACM Symp. on Op. Syst. Principles (Orcas Island, WA, Dec.
1985), pp. 15–24.

[21] PAPATHANASIOU, A. E., AND SCOTT, M. L. Increasing disk
burstiness through energy efficiency. Tech. Rep. 792, Computer
Science Department, University of Rochester, November 2002.

[22] PAPATHANASIOU, A. E., AND SCOTT, M. L. Energy efficiency
through burstiness. In Proceedings of the 5th IEEE Workshop
on Mobile Computing Systems and Applications (Monterey, CA,
October 2003), pp. 444–53.

[23] ROSENBLUM, M., BUGNION, E., HERROD, S. A., WITCHEL,
E., AND GUPTA, A. The impact of architectural trends on oper-
ating system performance. In Proceedings of the 15th ACM Sym-
posium on Operating Systems Principles (SOSP) (Copper Moun-
tain, CO, December 1995), pp. 285–298.

[24] SIMUNIC, T., BENINI, L., GLYNN, P., AND MICHELI, G. D.
Dynamic power management for portable systems. In Proceed-
ings of the 6th Annual International Conference on Mobile Com-
puting and Networking (MOBICOM ’00) (Boston, MA, August
2000), pp. 11–19.

[25] SIVATHANU, M., PRABHAKARAN, V., POPOVICI, F. I.,
DENEHY, T. E., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Semantically-smart disk systems. In Proceed-
ings of the 2nd USENIX Conference on File and Storage Technol-
ogy (San Francisco, CA, March/April 2003), pp. 72–88.

[26] TECHNOLOGIES, S. N. QualNet Simulator. http://www.scalable-
networks.com.

[27] VOGELS, W. File system usage in Windows NT 4.0. In Proced-
ings of the 15th ACM Symposium on Operating Systems Princi-
ples (Kiawah Island, SC, December 1999), pp. 93–109.

[28] WEISSEL, A., BEUTEL, B., AND BELLOSA, F. Cooperative I/O:
A novel I/O semanatics for energy-aware applications. In Pro-
ceedings of the 5th Symposium on Operating Systems Design and
Implementation (Boston, MA, December 2002), pp. 117–129.

[29] WILKES, J., GOLDING, R., STAELIN, C., AND SULLIVAN, T.
The HP AutoRAID hierarchical storage system. In Proceedings
of the 15th ACM Symp. on Op. Syst. Principles (Copper Moun-
tain, CO, Dec. 1995), pp. 96–108.

[30] ZEDLEWSKI, J., SOBTI, S., GARG, N., ZHENG, F., KRISHNA-
MURTHY, A., AND WANG, R. Modeling hard-disk power con-
sumption. In Proceedings of the 2nd USENIX Conference on File
and Storage Technology (San Francisco, CA, March/April 2003),
pp. 217–230.

[31] ZENG, H., ELLIS, C. S., LEBECK, A. R., AND VAHDAT, A.
Currentcy: A unifying abstraction for expressing energy man-
agement policies. In Proceedings of the 2003 USENIX Annual
Technical Conference (San Antonio, TX, June 2003), pp. 43–56.

2005 USENIX Annual Technical Conference USENIX Association264




