
Scmbug: Policy-based Integration of Software Configuration
Management with Bug-tracking

Kristis Makris
Department of Computer Science

and Engineering
Arizona State University

Tempe, AZ, 85287
kristis.makris@asu.edu

Kyung Dong Ryu
IBM T.J. Watson Research Center

1101 Kitchawan Rd
Yorktown Heights, NY 10598

kryu@us.ibm.com

Abstract
Software configuration management(SCM) and
bug-tracking are key components of a successful
software engineering project. Existing systems
integrating the two have failed to meet the needs
of the ASU scalable computing lab, powered by
open-source software. An improved solution to
the integration problem, designed to accomodate
both free and commercial systems alike, is pre-
sented.

Scmbug offers a policy-based mechanism of
capturing and handling integration of SCM
events, such as committing software change-
sets and labeling software releases, with a
bug-tracking system. Synchronous verification
checks and the flexibilty to match multiple devel-
opment models separate this approach from re-
lated work. We address design limitations of ex-
isting integration efforts, suggest improvements
in SCM and bug-tracking systems required to
achieve a scalable solution, and document our
early integration experiences.

1 Introduction

SCM is key[17] in maintaining quality in soft-
ware engineering. SCM systems, or even simple
version control systems, guarantee that a record
of all changes and enhancements to software is
maintained. When bugs creep in software, a trace
of how changes occurred is available, simplify-
ing the process of identifying regression points
and correcting defects.

Paired with SCM, bug-tracking is another key
in engineering quality software. Defect-tracking
systems guarantee that nothing gets swept under
the carpet; they provide a method of creating,
storing, arranging and processing defect reports

and enhancement requests. Those who do not use
a bug-tracking system tend to rely on shared lists,
email, spreadsheets and/or Post-It notes to moni-
tor the status of defects. This procedure is usually
error-prone and tends to cause those bugs judged
least significant by developers to be dropped or
ignored[10].

By examining a log of software changes from
an SCM tool, it is uncertain why the changes oc-
curred. By examining a defect report, it is un-
certain what changed in software in response to
the defect. Integration of SCM with bug-tracking
ties the reason why a feature/defect was devel-
oped/fixed with what software changes occurred
in the SCM system to accomplish this. Marry-
ing the SCM and bug-tracking systems improves
the traceability of software changesets, quality of
documentation in defect reports, and quality of
release documents.

SCM[11, 9, 18, 6, 5, 7, 3] and defect-
tracking[2, 4, 1] systems are widely popular and
in deployment. Commercial systems implement
a mostly inflexible integration of the two, and free
systems lack a variety of important verification
guarantees. None of the existing systems met the
integration demands of the ASU scalable com-
puting lab. At a minimum, an integration system
should provide:

• Integration of common denominator SCM
events, such as committing changesets and
labeling releases. When a changeset is
committed, the accompanying log message
should be inserted in the bug-tracker. The
list of affected files, and the older/newer
version numbers of each file, should be re-
flected in the bug report. When a release
is labeled, the release version should be in-
serted in the bug-tracker.

• Synchronous verification checks of SCM

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 11

actions against the bug-tracker. If a devel-
oper attempts to commit a changeset against
an invalid product or bug id, the commit ac-
tivity should fail, and the developer should
be informed immediately.

• Policy-based configuration. The integration
system should be able to match the develop-
ment model followed by an organization by
tuning run-time parameters.

• Secure deployment of the integration over
the public Internet.

• An interface to integrate any SCM system
with any bug-tracking system, overcoming
limitations of the involved systems where
possible.

• A mechanism to produce a Version Descrip-
tion Document (VDD) detailing the defects
corrected, and the changesets involved in
fixing a defect, between two releases of a
software.

Scmbug is designed to meet these require-
ments. It is implemented in Perl, an excellent,
cross-platform, glue programming language, for
UNIX-like systems, such as Linux, AIX, and So-
laris. It currently supports integration of CVS and
Subversion with Bugzilla.

The rest of this paper is structured as follows.
Section 2 outlines the limitations of existing sys-
tems that prompted our solution. The system de-
sign is presented in Section 3, and a short exam-
ple in Section 4. The system’s components are
analyzed in Sections 5, 6, and 7. Section 8 brings
to light the improved quality of release documen-
tation enabled by this system. Early experiences
using Scmbug are documented in Section 9, and
insight to future work is given in Section 10. Fi-
nally, Section 11 concludes this paper.

2 Related Work

In the realm of commercial products, Perforce[7]
and ClearCase/ClearQuest[3] only offer integra-
tion of their own SCM and bug-tracking sys-
tems, in a proprietary way. They do not read-
ily support integration with free SCM systems,
such as CVS[11], Subversion[9], and Arch[18]
or free bug-tracking systems such as Bugzilla[2]
MantisBT[4], and AntHill[1]. Work enabling
integration of Perforce with Bugzilla 2.0-16 is
available[8], but the integration API lacks an ab-
stract bug-tracker interface, and requires mod-
ifications released by the Perforce integration
team every time the Bugzilla database schema

changes. Additionally, integration with other
bug-tracking systems requires implementing a
communication interface with the target bug-
tracker. Finally, the integration is unsuitable for
deployment across the public Internet, for rea-
sons explained in Section 5.1.

In the free software arena, the most fre-
quently attempted integration involves CVS[11],
the dominant open-source network transparent
version control system, with Bugzilla, a free de-
fect tracking software that tracks millions of bugs
and issues for hundreds of organizations around
the world. Steve McIntyre’s website[21] docu-
ments an approach using trigger scripts to email
CVS’s actions to an account (Bugzilla Email
Gateway) configured to parse the email and pro-
cess it accordingly. This approach is not syn-
chronous. If a user accidentally commits against
the wrong bug number, or a bug against which he
is not the owner, the SCM system will proceed
with the commit action regardless. The user will
not be given the option to correct her actions. Ad-
ditionally, if the email gateway is not active, the
developer will not be immediately aware that in-
tegration failed.

The somewhat dated CVSZilla[15] project also
integrates SCM events produced by CVS with
Bugzilla 2.10. It does not support integration of
events produced by any SCM system in a generic
way. Moreover, it modifies the Bugzilla schema,
and as a result does not work with current ver-
sions of Bugzilla, such as 2.18. Finally, this in-
tegration is unsuitable for deployment across the
public Internet.

John C. Quillan was first to conceive and im-
plement synchronous verification checks and a
VDD generator, in work that was never pub-
licly released. He integrated CVS with Bugzilla,
but his design did not support any SCM sys-
tem with any bug-tracking system, or deployment
over the public Internet. Scmbug incorporates
these features, and proposes a more flexible de-
sign that can accommodate both free and com-
mercial SCM and bug-tracking systems.

3 System Architecture

Scmbug is a client/server system. As shown in
Figure 1, it consists of a set of SCM system hooks
that capture standard SCM events and a generic
glue mechanism of handling these events on
the machine hosting an SCM repository. These
events are translated into integration requests and
transported to a server daemon. The daemon em-

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association12

Integration
DaemonGlue

CVS

loginfo,
verifymsg,
taginfo hooks

Subversion

post−commit hooks
pre−commit,

Bugzilla

Mantis

Bugzilla API:
globals.pl
CGI.pm

native
Mantis API

TCP
port 3872

activity.pl

Scmbug

Figure 1: Scmbug system architecture diagram

ploys a generic mechanism of handling these re-
quests and contains functionality that can process
these requests per bug-tracking system.

The integration glue follows a common in-
terface of handling SCM events, and groups
the logic driving the behavior of the integra-
tion. SCM-specific implementation idiosynchra-
cies, such as parameter decoding from SCM
hooks, are isolated in separate modules. The ab-
straction of an integration glue is what permits
any SCM system to be integrated using Scmbug.
The integration functionality is always executed
on the machine hosting the SCM repository.

Respectively, the integration daemon imple-
ments a common interface of accepting and pro-
cessing integration requests. Bugtracker-specific
functionality, such as reading metadata and up-
dating bug comments, is implemented in separate
modules. The abstraction of an integration dae-
mon is what permits any bug-tracking system to
be integrated using Scmbug. The SCM reposi-
tory and the integration daemon can be hosted on
separate machines.

4 Integration example

Lets examine an actual integration sequence us-
ing CVS and Bugzilla. Σ-Watch is a perfor-
mance monitoring tool created by the ASU scal-
able computing lab. Monitoring the performance
of a Zaurus SL-6000 PDA using this tool fails,
and this defect is recorded in bug 417. After some
initial investigation, the failure point is identi-
fied and documented in comment 6. A devel-
oper implements a fix, and attempts to commit his
changeset using the command ’cvs commit’.
This command brings up a predefined log mes-
sage template, in which the developer explains
the source code change and enters the matching
bug id (417) the changeset applies to, as shown in
Figure 2.

Figure 3 presents the log comment stored in
CVS, produced in a more readable Changelog
format using the cvs2cl tool, in response to
this changeset. This entry clearly details what
changed: a global variable is introduced to hold
the name of the network device. However, it does
not explain why this change was required. Why
must a global variable be used instead of a hard-
coded value? To identify the reason why these
files were modified one must consult the bug-
tracking system. This log entry refers the reader
to bug id 417.

Figure 4 captures the comment entered in
Bugzilla in response to the changeset. The origi-
nal SCM log message is included in the bug com-
ments. The integration also generates a list of af-
fected files, matched with the older/newer version
numbers of each file, and appends it to the log
message to show what changed in response to the
bug fix. To identify why this changeset occured,
one only needs to scroll in past history in Bugzilla
to comment 6, with minimal effort, which reveals
the root of the problem, as shown in Figure 5:
PDAs use wireless, rather than ethernet, for net-
work connectivity. The traceability of software
changesets back to the root of problems is dra-
matically improved.

Note that a complete fix to the bug does not end
with a single changeset. One day later, the devel-
oper drafts documentation on how the codebase
can be configured with different network device
names. He commits this new document in later
changesets, in comments 13-16. By consulting
this bug, the entire list of what changesets oc-
cured to handle the bug is readily available.

5 Integration Daemon

Inadequacies of existing systems called for a so-
lution based on the abstraction of an integration
daemon, as discussed next.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 13

SCMBUG ID: 417
SCMBUG NOTE: Now using the name of the appropriate network device on
each system SigmaWatch runs. This name is set through a global
variable.

Figure 2: Documenting a fix for bug 417 during a ’cvs commit’.

2004-08-21 Saturday 11:47 mkgnu

* src/host_node/userspace/server/readnet.c (1.9,
p_kpm_prior_to_bug424_fixes),
src/host_node/userspace/server/readnet.h.in (1.1,
p_kpm_prior_to_bug424_fixes), configure.in (1.33): SCMBUG ID:
417 SCMBUG NOTE:Now using the name of the appropriate network
device on each system SigmaWatch runs. This name is set
through a global variable.

Figure 3: Log comment entered in CVS for Bug 417, presented in a more readable Changelog format
using cvs2cl. Through integration, this CVS entry is also documented in Bug 417, comment 10 of
product Σ-Watch in Bugzilla, shown in Figure 4.

5.1 Public Internet Deployment

First, deployment over the public Internet was re-
quired to meet our development model. Mem-
bers of our research group maintain individual
SCM repositories on their personal laptops, to al-
low offline development. For our defect-tracking
needs, a publicly available bug-tracking system
is shared. Even though integration with bug-
tracking is not possible when a user is working
offline, it is still possible to produce the differ-
ences between a repository and a working copy
(e.g. using ’cvs diff’), and commit change-
sets at a later time. Hence, this method of de-
velopment is encouraged. When problems arise
and development of personal research prototypes
stalls, pointing each other to a bug-report, for
help, is beneficial. By describing a problem in a
public defect-tracker, rather than a defect-tracker
running on personal laptops, easy accessibility
and quick resolution of defects are facilitated.

We also collaborate with researchers from dif-
ferent labs and research organizations on jointly
funded projects, and do not wish to permit them
access in our LAN using a VPN. Similarly, the
security policy of collaborators sometimes does
not grant us access to their internal resources. Us-
ing a public defect-tracker overcomes this prob-
lem, and reduces the administrative overhead of
managing separate, private defect-trackers per
project or organization. Experience has shown
that limited labor and system administration ex-
pertise resources exist in an academic environ-
ment.

5.1.1 Minimizing exposure
Bugzilla, our defect-tracker of choice, uses
MySQL as a database backend. Inserting log
messages and version numbers in Bugzilla re-
quires accessing the database. Opening the
MySQL TCP port over the public Internet is a
serious security risk, since it exposes access to
other applications running on the database sys-
tem. By using a separate integration daemon, and
keeping this TCP port closed, only an integration
interface is exposed.

5.1.2 Stand-alone backends
Some bug-tracking systems may not use a
database backend that listens to a TCP port at all,
such as the Berkley DB backend. Another exam-
ple is debbugs[16], the bug-tracking software of
the popular Debian Linux distribution. It uses it’s
own file-based database and is accessible through
an email gateway. The abstraction of an inte-
gration daemon permits access to such file-based,
stand-alone backends from the Internet.

5.1.3 Integration Security
Our development model does not match the vi-
sion of existing integration systems, such as Per-
force, ClearCase, CVSZilla, or McIntyre’s and
Quillan’s integration work. These solutions are
deployed in a local area network environment
and directly connect to the bug-tracking database.
The general assumption is that no malicious users
exist in the local network. Since the integration
daemon listens on a public port, it cannot be as-
sumed that all integration requests will originate

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association14

------- Additional Comment #10 From Kristis Makris 2004-08-21 11:47 -------

Now using the name of the appropriate network device on each system
SigmaWatch runs. This name is set through a global variable.

Affected files:

1.8 --> 1.9 system/src/host_node/userspace/server/readnet.c
NONE --> 1.1 system/src/host_node/userspace/server/readnet.h.in

Figure 4: Bug 417, comment 10 of product Σ-Watch in Bugzilla. The reason why this changeset
occured was documented 2 days earlier in comment 6, shown in Figure 5.

------- Additional Comment #6 From Kristis Makris 2004-08-19 12:16 -------

The module that collects network information consults the hardcoded
"eth0" network device, which does not exist in PDAs. A "wlan0" should
be used in them instead, since they have wireless access; not
ethernet.

Figure 5: Root of the problem documented in bug 417, comment 6 of product Σ-Watch in Bugzilla.
The problem is not documented in CVS.

from trusted developers of our lab.
The integration communication protocol in-

cludes the SCM username of the developer com-
mitting a changeset. This information is needed
to identify the developer originating the software
change. It is also needed to map to the user-
name of the developer in the bug-tracking sys-
tem. However, it is possible for an attacker to
produce phony integration requests with prop-
erly matched usernames, and either pollute the
bug-tracking system with misleading comments
or add/delete product version numbers. As a rem-
edy, public key authentication can be used to con-
firm the identity of integration requests in com-
munications between the glue and the daemon.

5.2 Public Integration Interface
There’s no public interface that system integra-
tors can use to communicate with a bug-tracking
system. Integration efforts currently duplicate
functionality implemented in the codebase of the
bug-tracking system. CVSZilla and Quillan’s in-
tegration work followed this approach. When the
database schema is modified in the next release of
the bug-tracking system, the integration breaks.
All SCM repositories must have their glue up-
dated for the new bug-tracking system in order
to proceed.

Instead, functionality from the bug-tracking
system’s codebase is directly reused. For exam-
ple, a variable in the integration daemon con-
figuration file points to the path were the Perl

libraries distributed with the Bugzilla codebase
are deployed. The Bugzilla-specific module of
the integration daemon issues calls to this library.
When the Bugzilla instance is upgraded, the new
Bugzilla codebase includes functionality already
updated by the bug-tracker’s developers to match
it’s database schema. One only needs to point this
path variable to the location of the new source
distribution and restart the integration daemon.
Therefore, an upgrade of the bug-tracking sys-
tem does not require upgrading the glue in each
SCM repository using this integration. Addition-
ally, if a user migrates from Bugzilla to a different
defect-tracking system she only has to specify the
name of the new system in the daemon configu-
ration file, and restart the daemon.

The bug-tracking system’s codebase does not
always provide all the functionality needed by
the verification logic. For example, some queries
specific to Bugzilla’s database schema had to be
implemented. Informing bug-tracker develop-
ers of such integration-related queries is impor-
tant in providing generic verification logic. The
Bugzilla developers are now planning[19] to use
XML-RPC to define a public, HTTP-based inter-
face for integration with 3rd party tools, which
will include all the functionality needed by Scm-
bug.

Implementation of a similar interface is also
missing in other bug-tracking systems, such as
MantisBT and AntHill. Still, integration with
other bug-tracking systems is desirable. Until

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 15

other systems implement a similar interface, the
daemon abstraction serves as a mediator, integra-
tion interface, where custom queries can be im-
plemented.

5.3 Lack of SCM Integration Sup-
port in Bugtrackers

Free bug-tracking systems, such as Bugzilla,
still lack support for SCM integration in their
database schema. For example, integration work
must be able to match the username used in
the SCM system with the username used in
the bug-tracking system to enforce a valid bug
owner check, as described in Section 7.4. A
bug-tracking system should provide space in it’s
database for each user’s SCM username. Since
this support is missing in some defect-trackers,
the need for username mapping is satisfied by the
integration daemon.

5.4 SCM System Limitations
The abstraction of an integration daemon also
makes it possible to develop solutions to some
known integration problems of existing SCM sys-
tems.

For example, CVS lacks atomic transactions.
As a side-effect, when the same log message
is used to commit files in two separate direc-
tories, two integration actions occur using the
same log message. Duplicate log messages are
then entered in the bug-tracking system. Com-
ing back to the integration example of Section
4, Figure 3 shows that revision 1.33 of the file
system/configure.in was produced dur-
ing the example changeset. However, Figure 4
is missing a corresponding entry for this modifi-
cation in the affected files list. This change was
documented in comment 11 with a duplicate log
message.

It is possible to solve this problem by caching
integration requests at the daemon for a config-
urable, short time interval. Reception of another
integration request with the same log message
indicates that the transaction should have been
atomic. The affected files list can be merged, and
the log message inserted in the bug tracking sys-
tem only once.

6 SCM Hooks

In modern version control systems, certain SCM
events can trigger scripts that perform additional
work handling the event. As a common denomi-

nator, SCM systems are expected today to offer
hooks on the following events:

• pre-commit. Used to verify if the commit
should proceed.

• post-commit. Used to integrate a com-
mit log message with a bug-tracking system.
Invoked only if pre-commit succeeded.

• pre-label. Used to verify if a creation of
a tag or branch should proceed.

• post-label. Used to integrate the tag
or branch name with a bug-tracking system.
Invoked only if pre-label succeeded.

Scmbug installs scripts in an SCM repository
which are executed as hooks for each event. Af-
ter information about each event is collected, in-
tegration proceeds through the SCM glue logic.
Integration of SCM systems that do not provide
these hooks is not possible.

Subversion does not provide the pre-label
and post-label hooks. Tags and branches
are created using the ’svn copy’ command
in predefined directories named /tags and
/branches[13]. They are later committed with
a regular ’svn commit’. Nevertheless, it is
still possible to detect during a pre-commit
event if a tag or branch action is underway. If
the commit activity indicates that a new subdi-
rectory is created under /tags or /branches,
then the transaction corresponds to a labeling ac-
tion.

7 Integration Policies

Central to the behavior of the common glue logic
is the notion of integration policies. It is essential
that the glue prevents developers from describ-
ing erroneous integration actions. At the same
time, the capability to match multiple develop-
ment models is equally important. A configura-
tion file stored in the SCM system controls the
overall behavior of the integration glue, as de-
scribed in the next sections.

7.1 Enabled Integration
The integration can be disabled at any time, by
changing the value of a flag in the glue config-
uration file. Hence, the SCM system can easily
back-out from using this integration.

7.2 Presence of Distinct Bug IDs
SCM systems prompt a developer with a log mes-
sage template prior to committing a changeset. In
order to integrate the log message of a changeset

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association16

SCMBUG ID:
SCMBUG NOTE:

Figure 6: Scmbug log message template. Es-
sential in determining the bug against which a
changeset is commited.

with a bug id in the bug-tracking system, a bug id
must be included in a parseable format in the log
message. Thus, Scmbug expects the predefined
template shown in Figure 6 to be filled-in during
a commit action.

Given a log message in this format, the glue
logic verifies that one or more bug ids were sup-
plied. Accepting multiple bug ids is required
when a changeset fixes a collection of defects.

Additionally, the glue verifies that the ids sup-
plied are unique. A duplicate bug id is most likely
an indication that a developer typed the wrong
bug id.

7.3 Valid Log Message Size
Project managers and SCM repository adminis-
trators often have to convince lazy programmers
that there is value in typing a detailed log mes-
sage during commits, and in SCM in general. An
optional policy that requires the log message to
meet a configurable, minimum message size is
used to address this problem. Messages with a
size less than the minimum cause an SCM com-
mit action to be rejected and force a programmer
to recommit with increased log comment ver-
bosity.

Simply printing a warning when a small log
message is entered and accepting the commit is
not enough. A small, incomplete, misleading, or
practically useless log comment can cause great
grief when a bug has creeped in the software.
Such inadequate documentation on a changeset
introducing the bug can send a developer in a la-
borious SCM history cross-examination and bug-
hunting trip.

7.4 Valid Bug Owner
Formal defect-tracking processes often define
a Change Control Board (CCB)[14] or project
manager that dispositions bug ids to developers
based on the components they touch. In such
settings, developers are not expected to commit
changesets that touch bugs assigned to other de-
velopers. A policy in Scmbug verifies that the
user issuing an integration action is the owner of
the bug id specified in the bug-tracking system.

This check ensures developers don’t step on each
other’s assigned work.

7.5 Open Bug State
Even more important than valid bug owner
checks is the capability to verify that a change-
set is committed against a bug id set in an open
state. For example, committing against a bug
id that has been already resolved, marked either
FIXED or INVALID (these are some resolution
states in Bugzilla), would be wrong. Such ver-
ification checks alarm the developer that some-
body else worked on the defect at hand already.
Another example would be committing against a
bug marked as NEW or UNCONFIRMED, where
the CCB has not yet assigned the bug id to a de-
veloper. Examples of valid, open states would
be ASSIGNED and REOPENED. This verification
check ensures that a formal bug dispositioning
process is followed.

7.6 Valid Product Name
A product name, specified in the glue configura-
tion file, is transmitted to the integration daemon
during an integration action. If the supplied bug
id is associated with the specified product name
in the bug-tracking system, the integration action
proceeds. This verification check often captures
cases where a developer enters the wrong bug
id in a log message in an organization actively
developing multiple products at the same time,
such as Mozilla.org, and the GNOME and KDE
projects.

This check assumes that an SCM system is
used to host a single product. In some develop-
ment models this may not be true. For example,
a contracting company may choose to maintain
documentation of multiple contracts in the same
SCM system, while assigning different product
names for them in the bug-tracking system. This
approach reduces the administrative overhead of
setting multiple SCM repositories. The valid
product name policy also permits specification of
multiple product names, to match such an alter-
native development model.

7.7 Convention-based Labeling
As software evolves through experimental, sta-
ble, or fork stages, the codebase may be labeled
accordingly using the SCM system. Common la-
beling needs are:

• Releases. The codebase is tagged with a
name indicating that it has reached a stable
state, justifying a release point.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 17

names => [
Convention for official releases.
For example:
SCMBUG_RELEASE_0-2-7
’ˆ.+?_RELEASE_[0-9]+-[0-9]+-[0-9]+$’,

Convention for development builds.
For example:
SCMBUG_BUILD_28_added_policies
’ˆ.+?_BUILD_[0-9]+_.+$’,

Convention for branches.
For example:
b_glue_side_policies
’ˆb_.+$’,

Convention for private developer
tags. Uses the developer’s initials
(either 2 or 3). For example:
p_kpm_pre_bug353_fixes
’ˆp_[a-zA-Z][a-zA-Z]?[a-zA-Z]_.+$’
]

Figure 7: Label name convention examples. A
list of regular expressions defines acceptable la-
bel names for releases, developer builds, forks
and private labels.

• Developer builds. The codebase
reached a developer milestone.

• Forks. A stable release will have im-
portant bug fixes supported in a separate
branch. Forks may also be used to to im-
plement experimental features without dis-
rupting mainline development.

• Private labels. A developer labels
the codebase either prior to or after intro-
ducing changesets that may introduce sig-
nificant regression. The significance of the
label is meaningful only to the developer.

In support of each of these labeling categories,
a policy is introduced that ensures the label name
used matches a configurable format defined as a
regular expression. Figure 7 shows examples of
label naming conventions that match these cate-
gories.

After a label name passes the convention
check, it is entered in the bug-tracking system
as an available version number on the specified
product. The naming policy ensures developers
apply a uniform labeling scheme. It also permits
3rd party tools to parse the available versions of
a product in a consistent manner.

The convention-based labeling policy can be
complemented by a role-based policy. A list of
SCM usernames, in the form of a regular expres-
sion, authorized to create labels from each cate-

gory could be specified. For example, only the re-
lease manager of a product should label releases
and create forks, a group of high-ranked devel-
opers should label developer builds, and all de-
velopers should be encouraged to create private
labels.

8 VDD Generator

Release management theory recommends soft-
ware releases be paired with a document de-
scribing the changes since the previous re-
lease. Producing this document directly out
of the SCM system, either using an auto-
mated tool, such as cvs2cl for CVS, or the
SCM system itself, such as the ’svn log -r
<rev old>:<rev new>’ command for Sub-
version, is not adequate. Changelog information
derived strictly out of the SCM system is overly
detailed. It describes software changesets at a
lower, developer level, and is of little value to
a user interested simply in a summary of added
features. Moreover, when multiple changesets
are committed in response to a defect such a
Changelog document becomes lengthy. It takes
considerable time to follow the history of changes
and decipher if, or how, a defect was corrected.

It is more appropriate to pair such Changelog
documents with a high-level summary of defects
stored in the bug-tracking system. Summary
fields are common in bugtrackers, but automat-
ing generation of this document involves deter-
mining exactly which bugs were worked on be-
tween releases. Identifying the date a release was
labeled is a required first step (CVS does not sup-
port this), but it is not enough without integration
of SCM with bug-tracking. Since the integration
inserts log messages in the bug-tracking system,
and the bug-tracker dates them, a list of bug ids
that were worked on can be compiled simply by
performing a date-range search on a product.

The bug-tracking system can then be re-
queried to report for each bug id not only the
summary, but additional useful information. For
example, it can report the resolution status(e.g.
FIXED, INVALID), the bug owner(publicly at-
tributing credit to the developer), resolution date,
severity, priority, etc.

This report can also reflect decisions of the de-
velopment team which are not documented in the
SCM logs, such as choosing to not add a feature,
resolving it as WONTFIX. It may also display
bugs that were added in the period between re-
leases but not worked yet, alerting users of newly

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association18

discovered defects.
A tool that can produce such a version descrip-

tion document is under active development.

9 Early Experience

Scmbug has been deployed in our lab since
March 2004 for integration of various research
prototypes. In hindsight, we were late in devel-
oping a verbose logging mechanism in the inte-
gration daemon. Project deadlines and rapid de-
velopment of Scmbug itself discouraged us from
continuously upgrading to the latest version. We
are unable to provide statistical information illus-
trating the frequency of developer integration er-
rors that were caught by the verification policies.

9.1 Integration Upgrades

Seamlessly upgrading the integration work is not
straight-forward. Between release 0.0.8 and 0.1.0
of Scmbug, the communication protocol between
the glue and the daemon was altered. Upgrading
the glue suddenly became a multi-stage process:
(a) disable the glue, (b) install a newer glue re-
lease, (c) restart the integration daemon, (d) en-
able the glue. Disabling and enabling the glue
was required to accept integration requests from
a glueing codebase that matched the communica-
tion protocol understood by the integration dae-
mon. It was also required for step (b) to suc-
ceed without communication with the daemon.
Even though an automated glue installation and
upgrading tool was employed, manual interven-
tion was required on step (c) on the machine run-
ning the integration daemon. An important dis-
advantage is that upgrading multiple repositories
requires all updated ones to remain without Scm-
bug integration until all repositories finish steps
(a) and (b), before (c) is carried out. However, ad-
ditional scripting by a system administrator could
further automate this process.

After rapid development of our integration
work, including rearranging of the Perl packag-
ing structure installed in an SCM repository, the
multi-stage process was proven to be defective
in its implementation. Upgrading from release
0.1.1 to 0.3.1 revealed that the glue libraries used
by the generic SCM hook processing script had
changed package names and path, and the hooks
were failing to carry out step (b). The solution to
this problem was to completely remove the hooks
rather than disable them through our configura-
tion file.

Another design problem is that older glue in-
stallations are not preserved in the SCM repos-
itory. If a newer Scmbug release contains grave
defects, one may not easily revert back to an older
revision of the integration work. For example,
CVS versions the hooks themselves. Committing
a disabling hook, which is a hook that no longer
invokes the glue processing script, still requires
the original hook invoked for the last time. If
this hook is defective, committing will fail. The
defective hook will not be disabled, reaching a
dead-end in upgrading the hook. In CVS one
must then locally modify the repository to disable
the hooks using separate RCS commands (RCS
is the underlying database store of CVS). The in-
stallation mechanism can be enhanced to install
permanently in an SCM repository every release
of the integration glue, and allow switching be-
tween glue releases. This installation mechanism
will need to be run locally on the machine host-
ing an SCM repository, to solve CVS’s dead-end
hooks problem. The integration daemon can also
be enhanced to dynamically support older com-
munication protocols.

9.2 Case Studies

Three undergraduate students in a microproces-
sor systems hardware course worked on one of
our research prototypes for 16 weeks. They were
introduced to our lab’s development model, and
a separate CVS branch was created for them to
commit their changesets. The students worked
on a total of 35 bugs. Being new to the concept
of SCM, they occasionally checked out the main
development line (often referred to as HEAD) in-
stead of their personal branch. Consequently,
they committed some changesets in HEAD instead
of their personal branch. A policy for tuning
fine-grained, branch-level, permission checks can
solve this problem. For example, committing and
labeling activities could be limited only to our-
selves in HEAD, and students could be confined
to committing only in their branch. Other devel-
opers using Scmbug also requested such a policy.

Development of another research prototype
was integrated with Scmbug. Two developers ex-
perienced in the concept of SCM worked in the
same lab, on 219 bugs, using CVS, for 15 weeks.
Empirically, we can report that the most frequent
verification check failed was a valid log message
size check for 50 characters. This check correctly
reminded the developers that they should be more
verbose in documenting changeset history. The
valid bug owner check was the second most fre-

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 19

quent to fail. This was a result of miscommu-
nication between developers. We speculate that
this check may fail more often in open-source
projects deploying Scmbug: the geographically
distributed nature of developers in such a set-
ting prohibits them from face-to-face communi-
cation on a daily basis. This check, along with
the valid product name check, also failed due
to typing errors while entering the bug id in the
log message template. Finally, the least frequent
verification check to fail was the open bug state
check. This resulted from developer error in us-
ing TortoiseCVS[12], a GUI CVS client, to com-
mit changesets. This client caches the most re-
cent log messages. Developers often selected one
of the previous messages in order to bring up the
default log message template and type in a new
message. After clearing out the old log message
and typing a new one, developers occasionally
forgot to change the bug id present in the cached
log message. They instead attempted to commit
against resolved bugs.

9.3 Just In Time Integration
Within five months of making Scmbug publicly
available, we received over 6300 hits(49 per
day) on the project’s webpage[20]. The soft-
ware distribution has been downloaded over 3200
times(26 per day). Other system integrators,
including members of the Bugzilla integration
team, discussed our design and recommended
policy features which we implemented. Users re-
ported deployment of Scmbug to successfully in-
tegrate both CVS and Subversion with Bugzilla,
an activity that is largely simplified via an auto-
matic installation script. It is clear that this in-
tegration tool fills a significant void in the open-
source development community.

Why wasn’t such an integration system built
already? We were unable to find papers doc-
umenting the benefits of integrating SCM with
bug-tracking, or proposing a similar solution.
The Scmbug design is very flexible, and at the
same time extremely simple. While the policy
mechanism proposed is remarkably useful, it is
not difficult to implement.

One reason might be that limited time is often
available by developers for work on open-source
projects. Sometimes, good-enough, quick hacks
are easier to implement and preferred, rather than
a full-blown, well-designed solution. For exam-
ple, a common limitation of other systems in-
tegrating CVS with bug-tracking resulted from
the inadequate mechanism CVS uses to provide

the list of affected files in a commit trigger. A
processing script using a single regular expres-
sion to parse these arguments gets confused if
the filenames contain either commas or whites-
paces. Scmbug handles this issue by employ-
ing a stateful parser, marginalizing the possi-
bility of getting confused. The single regular
expression method implemented in McIntyre’s
bugzilla-watcher script uses only 4 lines
of Perl code for parsing filenames. Our parser
was implemented in 145 lines of Perl code, and
required significantly more time to develop.

A plethora of open-source SCM systems
emerged in the past two years as alternatives
to the currently dominant CVS. Subversion and
OpenCM overcome various limitations of CVS
and are still in active development. Arch was
specifically designed for the distributed develop-
ment needs of open source projects, such as the
development model followed by the Linux ker-
nel, and is still enhancing. Monotone is still in an
alpha state and has been released only a year ago.
We theorize that as these tools are still progress-
ing to a stable state, integration with bug-tracking
has yet to become a priority in their to-do list, and
hence has not been addressed.

It is astonishing that mature, high-profile, pub-
lic open-source software development websites
still lack integration between their SCM and bug-
tracking services. Some examples are Source-
forge (hosting over 93,100 projects, 983,900
users, in service for 5 years) and GNU Savannah
(over 2,200 projects, 32,200 users, in service for
4 years). Our solution has been in high demand
for a long time.

10 On-Going Work

OpenCM can commit changesets in disconnected
mode[23], a feature also explored by Subversion
developers. Laptop users can cache a reposi-
tory and work offline. When connectivity is re-
stored, they can synchronize their working set
and resolve conflicts with the main repository.
Scmbug could be improved to support a discon-
nected mode of integration. An integration dae-
mon proxy, running on the user’s laptop, could
cache bug-tracking metadata required for policy
verification checks, such as the list of bug ids,
their state, bug owner, etc. All integration ac-
tivity generated by disconnected commits could
also be cached and synchronized later with the
bug-tracker.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association20

The star-topology development model as-
sumed by Arch increases the significance of in-
tegrating branch and repository names. In this
model, changesets may be produced by dis-
tributed SCM repositories, maintained by sepa-
rate development teams. For example, a pub-
lic Bugzilla instance tracks[22] defects in the
Linux Kernel. Independent developers and com-
panies maintaining private forks of the ker-
nel post patches to bugs reported by anyone.
However, they do not always report the name
and branch of their repository fixing the bug.
A user inspecting a bug report is uncertain
which public tree includes the fix. Captur-
ing a <branch, repository name> pair,
which uniquely identifies the source of a change-
set, could be supported by Scmbug. Providing
generic support for this integration, would require
all SCM systems to pass as arguments in integra-
tion hooks this information. The dominant CVS
system, does not provide this information.

Improvements in SCM and bug-tracking sys-
tems are critical for a successful, generic inte-
gration solution. These are: (a) Section 5.2’s
public integration interface by bug-tracking sys-
tems, (b) the SCM username support of Sec-
tion 5.3 by bug-tracking systems, (c) capturing
the date a release was labeled by SCM systems,
as mentioned in Section 8, (d) supplying a de-
fault log template in SCM systems, required by
Section 7.2 (Subversion does not support this),
the SCM hooks of Section 6 and (e) reporting
in SCM hooks the <branch, repository
name> pair just mentionied.

On-going work on Scmbug includes: (a) the
public key authentication scheme of Section
5.1.3, (b) the role-based policy described in Sec-
tion 7.7, (c) the fine-grained, branch-level per-
mission policy mentioned in Section 9.2, (d) the
VDD generator of Section 8, and (e) the im-
proved upgrading mechanism of Section 9.1.

11 Conclusion

We presented Scmbug, a system offering policy-
based integration of software configuration man-
agement with bug-tracking. Integration of SCM
with bug-tracking improves the traceability of
software changesets, the quality of documenta-
tion in defect reports, and quality of release doc-
uments.

Scmbug integrates activities such as commit-
ting software changesets and labeling software
releases. The integration policies can be tuned

to match multiple development models and pro-
vide synchronous verification checks. The design
is flexible enough to support any SCM system
with any bug-tracking system, can be deployed
over the public Internet, improves the quality of
release documentation, and can overcome limita-
tions of existing systems. Finally, improvements
in SCM and bug-tracking systems that are critical
for a successful, generic integration solution are
suggested.

12 Acknowledgments

Development of this system and paper benefited
tremendously from insight on SCM and bug-
tracking issues, along with invaluable feedback,
from John C. Quillan, Mark S. Reibert, Dave
Swegen, and the Bugzilla and Subversion devel-
opers. We regret Quillan’s integration was never
publicly released. We are convinced his work
could have evolved to what Scmbug is today, and
would have saved us considerable research effort.

We would also like to thank the existing Scm-
bug users for their increasing interest, testing, and
continuous support of this integration system, es-
pecially Jay Glanville for his fruitful feedback.

13 Availability

Scmbug is free software, licensed
under the GNU General Public Li-
cense (GPL). It is available from
http://freshmeat.net/projects/scmbug.

References

[1] AntHill. http://freshmeat.net/projects/anthill/,
2004.

[2] Bugzilla. http://www.bugzilla.org, 2004.

[3] ClearCase. http://www-
306.ibm.com/software/awdtools/clearcase,
2004.

[4] MantisBT. http://freshmeat.net/projects/mantis/,
2004.

[5] Monotone. http://freshmeat.net/projects/monotone/,
2004.

[6] OpenCM. http://freshmeat.net/projects/opencm/,
2004.

[7] Perforce. http://freshmeat.net/projects/perforce/,
2004.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 21

[8] Perforce Defect Tracking Integration.
http://freshmeat.net/projects/p4dti/, 2004.

[9] Subversion. http://subversion.tigris.org,
2004.

[10] The Bugzilla Guide.
http://www.bugzilla.org/docs/2.18/html/,
2004.

[11] The Concurrent Versions System (CVS).
http://www.cvshome.org, 2004.

[12] TortoiseCVS. http://www.tortoisecvs.org,
2004.

[13] Ben Collins-Sussman, Brian W. Fitzpatrick,
and C. Michael Pilato. Version Control with
Subversion. O’Reilly Media, 2004.

[14] Susan Dart. Concepts in configuration man-
agement systems. In Proceedings of the 3rd
international workshop on Software config-
uration management, pages 1–18, 1999.

[15] Tony Garnock-Jones. CVSZilla.
http://homepages.kcbbs.gen.nz/˜tonyg/,
2000.

[16] Ian Jackson. debbugs.
http://www.chiark.greenend.org.uk/ ian/debbugs/,
1994.

[17] Gregor Joeris. Change management
needs integrated process and configu-
ration management. In M. Jazayeri
and H. Schauer, editors, Proceedings of
the Sixth European Software Engineering
Conference (ESEC/FSE 97), pages 125–
141. Springer–Verlag, 1997.

[18] Tom Lord. Arch revision control system.
http://freshmeat.net/projects/archrevctl/,
2004.

[19] Kristis Makris. Provide an interface for
SCM integration. Bugzilla Bugzilla, ID
255400, 2004.

[20] Kristis Makris. Scmbug.
http://freshmeat.net/projects/scmbug/,
2004.

[21] Steve McIntyre. CVS/Bugzilla integration.
http://www.einval.com/˜steve/software/cvs-
bugzilla/, 2004.

[22] OSDL. Linux Kernel Bug Tracker.
http://bugme.osdl.org/, 2004.

[23] Jonathan Shapiro and John Vanderburgh.
CPCMS: A Configuration Management
System Based on Cryptographic Names. In
2002 USENIX Annual Technical Confer-
ence, FREENIX Track, 2002.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association22

