
QEMU, a Fast and Portable Dynamic Translator

Fabrice Bellard

Abstract

We present the internals of QEMU, a fast machine em-
ulator using an original portable dynamic translator. It
emulates several CPUs (x86, PowerPC, ARM and Sparc)
on several hosts (x86, PowerPC, ARM, Sparc, Alpha and
MIPS). QEMU supports full system emulation in which
a complete and unmodified operating system is run in a
virtual machine and Linux user mode emulation where a
Linux process compiled for one target CPU can be run
on another CPU.

1 Introduction

QEMU is a machine emulator: it can run an unmodified
target operating system (such as Windows or Linux) and
all its applications in a virtual machine. QEMU itself
runs on several host operating systems such as Linux,
Windows and Mac OS X. The host and target CPUs can
be different.

The primary usage of QEMU is to run one operating
system on another, such as Windows on Linux or Linux
on Windows. Another usage is debugging because the
virtual machine can be easily stopped, and its state can
be inspected, saved and restored. Moreover, specific em-
bedded devices can be simulated by adding new machine
descriptions and new emulated devices.

QEMU also integrates a Linux specific user mode em-
ulator. It is a subset of the machine emulator which runs
Linux processes for one target CPU on another CPU. It
is mainly used to test the result of cross compilers or to
test the CPU emulator without having to start a complete
virtual machine.

QEMU is made of several subsystems:

• CPU emulator (currently x861, PowerPC, ARM and
Sparc)

• Emulated devices (e.g. VGA display, 16450 se-
rial port, PS/2 mouse and keyboard, IDE hard disk,

NE2000 network card, ...)

• Generic devices (e.g. block devices, character de-
vices, network devices) used to connect the emu-
lated devices to the corresponding host devices

• Machine descriptions (e.g. PC, PowerMac, Sun4m)
instantiating the emulated devices

• Debugger

• User interface

This article examines the implementation of the dy-
namic translator used by QEMU. The dynamic transla-
tor performs a runtime conversion of the target CPU in-
structions into the host instruction set. The resulting bi-
nary code is stored in a translation cache so that it can
be reused. The advantage compared to an interpreter is
that the target instructions are fetched and decoded only
once.

Usually dynamic translators are difficult to port from
one host to another because the whole code generator
must be rewritten. It represents about the same amount
of work as adding a new target to a C compiler. QEMU
is much simpler because it just concatenates pieces of
machine code generated off line by the GNU C Compiler
[5].

A CPU emulator also faces other more classical but
difficult [2] problems:

• Management of the translated code cache

• Register allocation

• Condition code optimizations

• Direct block chaining

• Memory management

• Self-modifying code support

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 41

• Exception support

• Hardware interrupts

• User mode emulation

2 Portable dynamic translation

2.1 Description

The first step is to split each target CPU instruction into
fewer simpler instructions called micro operations. Each
micro operation is implemented by a small piece of C
code. This small C source code is compiled by GCC to
an object file. The micro operations are chosen so that
their number is much smaller (typically a few hundreds)
than all the combinations of instructions and operands
of the target CPU. The translation from target CPU in-
structions to micro operations is done entirely with hand
coded code. The source code is optimized for readability
and compactness because the speed of this stage is less
critical than in an interpreter.

A compile time tool called dyngen uses the object
file containing the micro operations as input to generate a
dynamic code generator. This dynamic code generator is
invoked at runtime to generate a complete host function
which concatenates several micro operations.

The process is similar to [1], but more work is done
at compile time to get better performance. In particu-
lar, a key idea is that in QEMU constant parameters can
be given to micro operations. For that purpose, dummy
code relocations are generated with GCC for each con-
stant parameter. This enables the dyngen tool to locate
the relocations and generate the appropriate C code to re-
solve them when building the dynamic code. Relocations
are also supported to enable references to static data and
to other functions in the micro operations.

2.2 Example

Consider the case where we must translate the following
PowerPC instruction to x86 code:

addi r1,r1,-16 # r1 = r1 - 16

The following micro operations are generated by the
PowerPC code translator:

movl_T0_r1 # T0 = r1
addl_T0_im -16 # T0 = T0 - 16
movl_r1_T0 # r1 = T0

The number of micro operations is minimized with-
out impacting the quality of the generated code much.
For example, instead of generating every possible move
between every 32 PowerPC registers, we just generate

moves to and from a few temporary registers. These reg-
isters T0, T1, T2 are typically stored in host registers by
using the GCC static register variable extension.

The micro operation movl T0 r1 is typically coded
as:

void op_movl_T0_r1(void)
{

T0 = env->regs[1];
}

env is a structure containing the target CPU state.
The 32 PowerPC registers are stored in the array
env->regs[32].
addl T0 im is more interesting because it uses a

constant parameter whose value is determined at run-
time:

extern int __op_param1;
void op_addl_T0_im(void)
{

T0 = T0 + ((long)(&__op_param1));
}

The code generator generated by dyngen takes a mi-
cro operation stream pointed by opc ptr and outputs
the host code at position gen code ptr. Micro opera-
tion parameters are pointed by opparam ptr:

[...]
for(;;) {
switch(*opc_ptr++) {
[...]
case INDEX_op_movl_T0_r1:
{
extern void op_movl_T0_r1();
memcpy(gen_code_ptr,
(char *)&op_movl_T0_r1+0,
3);

gen_code_ptr += 3;
break;

}
case INDEX_op_addl_T0_im:
{
long param1;
extern void op_addl_T0_im();
memcpy(gen_code_ptr,
(char *)&op_addl_T0_im+0,
6);

param1 = *opparam_ptr++;
*(uint32_t *)(gen_code_ptr + 2) =
param1;

gen_code_ptr += 6;
break;

}

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association42

[...]
}

}
[...]
}

For most micro operations such as movl T0 r1, the
host code generated by GCC is just copied. When con-
stant parameters are used, dyngen uses the fact that
relocations to op param1 are generated by GCC to
patch the generated code with the runtime parameter
(here it is called param1).

When the code generator is run, the following host
code is output:

movl_T0_r1
ebx = env->regs[1]
mov 0x4(%ebp),%ebx
addl_T0_im -16
ebx = ebx - 16
add $0xfffffff0,%ebx
movl_r1_T0
env->regs[1] = ebx
mov %ebx,0x4(%ebp)

On x86, T0 is mapped to the ebx register and the CPU
state context to the ebp register.

2.3 Dyngen implementation

The dyngen tool is the key of the QEMU translation
process. The following tasks are carried out when run-
ning it on an object file containing micro operations:

• The object file is parsed to get its symbol table, its
relocations entries and its code section. This pass
depends on the host object file format (dyngen
supports ELF (Linux), PE-COFF (Windows) and
MACH-O (Mac OS X)).

• The micro operations are located in the code section
using the symbol table. A host specific method is
executed to get the start and the end of the copied
code. Typically, the function prologue and epilogue
are skipped.

• The relocations of each micro operations are ex-
amined to get the number of constant parame-
ters. The constant parameter relocations are de-
tected by the fact they use the specific symbol name
op paramN.

• A memory copy in C is generated to copy the micro
operation code. The relocations of the code of each
micro operation are used to patch the copied code so
that it is properly relocated. The relocation patches
are host specific.

• For some hosts such as ARM, constants must be
stored near the generated code because they are ac-
cessed with PC relative loads with a small displace-
ment. A host specific pass is done to relocate these
constants in the generated code.

When compiling the micro operation code, a set of
GCC flags is used to manipulate the generation of func-
tion prologue and epilogue code into a form that is easy
to parse. A dummy assembly macro forces GCC to al-
ways terminate the function corresponding to each micro
operation with a single return instruction. Code concate-
nation would not work if several return instructions were
generated in a single micro operation.

3 Implementation details

3.1 Translated Blocks and Translation
Cache

When QEMU first encounters a piece of target code, it
translates it to host code up to the next jump or instruc-
tion modifying the static CPU state in a way that cannot
be deduced at translation time. We call these basic blocks
Translated Blocks (TBs).

A 16 MByte cache holds the most recently used TBs.
For simplicity, it is completely flushed when it is full.

The static CPU state is defined as the part of the CPU
state that is considered as known at translation time when
entering the TB. For example, the program counter (PC)
is known at translation time on all targets. On x86, the
static CPU state includes more data to be able to generate
better code. It is important for example to know if the
CPU is in protected or real mode, in user or kernel mode,
or if the default operand size is 16 or 32 bits.

3.2 Register allocation

QEMU uses a fixed register allocation. This means that
each target CPU register is mapped to a fixed host regis-
ter or memory address. On most hosts, we simply map
all the target registers to memory and only store a few
temporary variables in host registers. The allocation of
the temporary variables is hard coded in each target CPU
description. The advantage of this method is simplicity
and portability.

The future versions of QEMU will use a dynamic tem-
porary register allocator to eliminate some unnecessary
moves in the case where the target registers are directly
stored in host registers.

3.3 Condition code optimizations

Good CPU condition code emulation (eflags regis-
ter on x86) is a critical point to get good performances.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 43

QEMU uses lazy condition code evaluation: instead of
computing the condition codes after each x86 instruc-
tion, it just stores one operand (called CC SRC), the re-
sult (called CC DST) and the type of operation (called
CC OP). For a 32 bit addition such as R = A + B, we
have:

CC_SRC=A
CC_DST=R
CC_OP=CC_OP_ADDL

Knowing that we had a 32 bit addition from the con-
stant stored in CC OP, we can recover A, B and R from
CC SRC and CC DST. Then all the corresponding con-
dition codes such as zero result (ZF), non-positive result
(SF), carry (CF) or overflow (OF) can be recovered if
they are needed by the next instructions.

The condition code evaluation is further optimized at
translation time by using the fact that the code of a com-
plete TB is generated at a time. A backward pass is
done on the generated code to see if CC OP, CC SRC or
CC DST are not used by the following code. At the end
of TB we consider that these variables are used. Then
we delete the assignments whose value is not used in the
following code.

3.4 Direct block chaining

After each TB is executed, QEMU uses the simulated
Program Counter (PC) and the other information of the
static CPU state to find the next TB using a hash table. If
the next TB has not been already translated, then a new
translation is launched. Otherwise, a jump to the next TB
is done.

In order to accelerate the most common case where
the new simulated PC is known (for example after a con-
ditional jump), QEMU can patch a TB so that it jumps
directly to the next one.

The most portable code uses an indirect jump. On
some hosts (such as x86 or PowerPC), a branch instruc-
tion is directly patched so that the block chaining has no
overhead.

3.5 Memory management

For system emulation, QEMU uses the mmap() system
call to emulate the target MMU. It works as long as the
emulated OS does not use an area reserved by the host
OS.2

In order to be able to launch any OS, QEMU also sup-
ports a software MMU. In that mode, the MMU virtual to
physical address translation is done at every memory ac-
cess. QEMU uses an address translation cache to speed
up the translation.

To avoid flushing the translated code each time the
MMU mappings change, QEMU uses a physically in-
dexed translation cache. It means that each TB is indexed
with its physical address.

When MMU mappings change, the chaining of the
TBs is reset (i.e. a TB can no longer jump directly to
another one) because the physical address of the jump
targets may change.

3.6 Self-modifying code and translated
code invalidation

On most CPUs, self-modifying code is easy to handle
because a specific code cache invalidation instruction is
executed to signal that code has been modified. It suffices
to invalidate the corresponding translated code.

However on CPUs such as the x86, where no instruc-
tion cache invalidation is signaled by the application
when code is modified, self-modifying code is a special
challenge .3

When translated code is generated for a TB, the corre-
sponding host page is write protected if it is not already
read-only. If a write access is made to the page, then
QEMU invalidates all the translated code in it and re-
enables write accesses to it.

Correct translated code invalidation is done efficiently
by maintaining a linked list of every translated block con-
tained in a given page. Other linked lists are also main-
tained to undo direct block chaining.

When using a software MMU, the code invalidation is
more efficient: if a given code page is invalidated too of-
ten because of write accesses, then a bitmap representing
all the code inside the page is built. Every store into that
page checks the bitmap to see if the code really needs to
be invalidated. It avoids invalidating the code when only
data is modified in the page.

3.7 Exception support

longjmp() is used to jump to the exception handling
code when an exception such as division by zero is en-
countered. When not using the software MMU, host sig-
nal handlers are used to catch the invalid memory ac-
cesses.

QEMU supports precise exceptions in the sense that it
is always able to retrieve the exact target CPU state at the
time the exception occurred.4 Nothing has to be done for
most of the target CPU state because it is explicitly stored
and modified by the translated code. The target CPU
state S which is not explicitly stored (for example the
current Program Counter) is retrieved by re-translating
the TB where the exception occurred in a mode where S
is recorded before each translated target instruction. The
host program counter where the exception was raised is

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association44

used to find the corresponding target instruction and the
state S.

3.8 Hardware interrupts

In order to be faster, QEMU does not check at every TB if
an hardware interrupt is pending. Instead, the user must
asynchronously call a specific function to tell that an in-
terrupt is pending. This function resets the chaining of
the currently executing TB. It ensures that the execution
will return soon in the main loop of the CPU emulator.
Then the main loop tests if an interrupt is pending and
handles it.

3.9 User mode emulation

QEMU supports user mode emulation in order to run a
Linux process compiled for one target CPU on another
CPU.

At the CPU level, user mode emulation is just a sub-
set of the full system emulation. No MMU simulation is
done because QEMU supposes the user memory map-
pings are handled by the host OS. QEMU includes a
generic Linux system call converter to handle endianness
issues and 32/64 bit conversions. Because QEMU sup-
ports exceptions, it emulates the target signals exactly.
Each target thread is run in one host thread5.

4 Porting work

In order to port QEMU to a new host CPU, the following
must be done:

• dyngen must be ported (see section 2.2).

• The temporary variables used by the micro opera-
tions may be mapped to host specific registers in
order to optimize performance.

• Most host CPUs need specific instructions in or-
der to maintain coherency between the instruction
cache and the memory.

• If direct block chaining is implemented with
patched branch instructions, some specific assem-
bly macros must be provided.

The overall porting complexity of QEMU is estimated
to be the same as the one of a dynamic linker.

5 Performance

In order to measure the overhead due to emulation, we
compared the performance of the BYTEmark benchmark

for Linux [7] on a x86 host in native mode, and then
under the x86 target user mode emulation.

User mode QEMU (version 0.4.2) was measured to be
about 4 times slower than native code on integer code.
On floating point code, it is 10 times slower. This can be
understood as a result of the lack of the x86 FPU stack
pointer in the static CPU state. In full system emulation,
the cost of the software MMU induces a slowdown of a
factor of 2.

In full system emulation, QEMU is approximately 30
times faster than Bochs [4].

User mode QEMU is 1.2 times faster than valgrind
--skin=none version 1.9.6 [6], a hand coded x86
to x86 dynamic translator normally used to debug pro-
grams. The --skin=none option ensures that Val-
grind does not generate debug code.

6 Conclusion and Future Work

QEMU has reached the point where it is usable in every-
day work, in particular for the emulation of commercial
x86 OSes such as Windows. The PowerPC target is close
to launch Mac OS X and the Sparc one begins to launch
Linux. No other dynamic translator to date has supported
so many targets on so many hosts, mainly because the
porting complexity was underestimated. The QEMU ap-
proach seems a good compromise between performance
and complexity.

The following points still need to be addressed in the
future:

• Porting: QEMU is well supported on PowerPC and
x86 hosts. The other ports on Sparc, Alpha, ARM
and MIPS need to be polished. QEMU also depends
very much on the exact GCC version used to com-
pile the micro operations definitions.

• Full system emulation: ARM and MIPS targets
need to be added.

• Performance: the software MMU performance can
be increased. Some critical micro operations can
also be hand coded in assembler without much mod-
ifications in the current translation framework. The
CPU main loop can also be hand coded in assem-
bler.

• Virtualization: when the host and target are the
same, it is possible to run most of the code as is.
The simplest implementation is to emulate the tar-
get kernel code as usual but to run the target user
code as is.

• Debugging: cache simulation and cycle counters
could be added to make a debugger as in SIMICS
[3].

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 45

7 Availability

QEMU is available at

http://bellard.org/qemu

References

[1] Ian Piumarta, Fabio Riccardi, Optimizing direct threaded code by
selective inlining, Proceedings of the 1998 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation
(PLDI).

[2] Mark Probst, Fast Machine-Adaptable Dynamic binary Transla-
tion, Workshop on Binary Translation 2001.

[3] Peter S. Magnusson et al., SimICS/sun4m: A Virtual Workstation,
Usenix Annual Technical Conference, June 15-18, 1998.

[4] Kevin Lawton et al., the Bochs IA-32 Emulator Project,
http://bochs.sourceforge.net.

[5] The Free Software Foundation, the GNU Compiler Collection,
http://gcc.gnu.org.

[6] Julian Seward et al., Valgrind, an open-source memory debugger
for x86-GNU/Linux, http://valgrind.kde.org/.

[7] The BYTEmark benchmark program, BYTE Magazine, Linux ver-
sion available at
http://www.tux.org/˜mayer/linux/bmark.html.

Notes
1x86 CPUs refer to processors compatible with the Intel 80386 pro-

cessor.
2This mode is now deprecated because it needs a patched target OS

and because the target OS can access to the host QEMU address space.
3For simplicity, QEMU will in fact implement this behavior of ig-

noring the code cache invalidation instructions for all supported CPUs.
4In the x86 case, the virtual CPU cannot retrieve the exact eflags

register because in some cases it is not computed because of condition
code optimizations. This is not a major concern because the emulated
code can still be restarted at the same point in any cases.

5At the time of writing, QEMU’s support for threading is consid-
ered to be immature due to locking issues within its CPU core emula-
tion.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association46

