
Provenance Query Patterns for Many-Task

Scientific Computing

Luiz Gadelha, Marta Mattoso
Federal University of Rio de Janeiro

Michael Wilde, Ian Foster
University of Chicago/Argonne National Laboratory

3rd USENIX Workshop on the Theory and Practice of Provenance (TaPP ’11)
Heraklion, Crete, Greece

June 20, 2011

Introduction

◮ Problem definition: provenance modeling, gathering and
querying for many-task computing (MTC).

◮ Data model for MTC provenance (OPM specialization).
◮ Identification of query patterns for MTC provenance.
◮ Creating support for the identified query patterns.
◮ Implemented in the Swift parallel scripting system.

2 / 14

Provenance Model

◮ Requirements:

1. Gather consumption and production relationships between
datasets and processes.

2. Gather hierarchical relationships between datasets.
3. Allow for the users to enrich their provenance records with

annotations.
4. Gather versioning information about scientific workflows and

their component applications.
5. Gather runtime information about external applications

invoked from a Swift script.
6. Provide a usable and useful query interface for provenance.

3 / 14

Provenance Model

◮ The following entities are part of this data model:
◮ Process. Can take artifacts as input, perform some

computation, and produce artifacts as output.
◮ Data set. Are given by artifacts that are consumed or

produced by processes.
◮ Application invocation. A type of process that is given by an

invocation of a component applications of a scientific workflow.
◮ Application execution. Are given by execution attempts of an

external application.
◮ Script run. Refers to the execution (successful or unsuccessful)

of a Swift script.
◮ Annotation. A name-value pair associated with either a

dataset, process, or workflow.

4 / 14

Provenance Query Patterns

Queries patterns identified in the Provenance Challenge series and
in Swift’s provenance system usage:

◮ Entity Attribute (EA). Attributes of an entity of the data
model.

◮ One-step Relationship (R). Entities involved in a relationship
of the data model.

◮ Multiple-step Relationship (R∗). Entities involved in the
transitive closure of a relationship of the data model.

◮ Lineage Graph Matching (LGM). Similarity between lineage
graphs.

5 / 14

Provenance Query Patterns

◮ Run summary (RS). Application specific attributes.
◮ Run resource-level performance (RRP). Runtime behavior of

scientific computations.
◮ Run science-level performance (RSP). Input and output

scientific parameters.

◮ Run comparisons (RCp). Comparisons between multiple runs with
respect to some attribute.

◮ Run correlations (RCr). Correlation between multiple runs with
respect to a set of attributes.

6 / 14

Provenance Query Patterns

Table: Provenance Challenge Query Patterns.

Pattern
PC1/PC2 PC3 PC3 (Optional Queries)

1 2 3 4 5 6 7 8 9 1 2 3 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EA ×××××××××××××××××××××× × × × × × ×
R ××× ××××××××× ×××××××× × × × × × ×
R∗ ××× ×× ×××× × × ×× × × × ×
LGM × ×

RS ××× ××××× ×× × × × × ×
RCp ××××× × ××××× ×
RCr ×

7 / 14

Implementation

◮ Provenance extracted from Swift’s log files and stored in a
relational database.

◮ To abstract common provenance query patterns, we wrote
SQL functions and stored procedures to hide the complexity
of the database schema by encapsulating frequently used
relational joins.

◮ RCp and RCr query patterns are abstracted with stored
procedures:

◮ compare run(〈 list of parameters and annotation keys〉) returns
a table with the values of the annotations and parameters per
run.

◮ R∗ query pattern can be abstracted with functions that use
WITH RECURSIVE recursive queries.

8 / 14

Case Study: Open Protein Simulator

9 / 14

Case Study: Open Protein Simulator

What was the correlation between root mean square distance

(RMSD) and the number of simulation (loopModel) steps for a
given protein? (RCr pattern)

SELECT run_id, r.value as nSim, t.value as rmsd

FROM compare_run_by_param(’proteinId’) as r

INNER JOIN

compare_run_by_param(’nSim’) as s USING (run_id)

INNER JOIN

compare_run_by_annot(’rmsd’) as t USING (run_id)

WHERE r.value=’TR567’ and run.id LIKE ’psim.loops%’;

run_id | nSim | rmsd

-----------------------------------+------+---------

psim.loops-20100604-2215-cdifsnb3 | 256 | 3.33123

psim.loops-20100613-0125-keyyyc35 | 512 | 0.76274

psim.loops-20100616-1512-h6q4g4ja | 1024 | 0.68426

...

10 / 14

Case Study: Open Protein Simulator

Common Table Expressions can be used to define functions
supporting the R∗ pattern:

CREATE OR REPLACE FUNCTION ancestors(varchar)

RETURNS SETOF varchar AS $$

WITH RECURSIVE anc(ancestor,descendant) AS

(

SELECT parent AS ancestor, child AS descendant

FROM prov_graph

WHERE child=$1

UNION

SELECT prov_graph.parent AS ancestor,

anc.descendant AS descendant

FROM anc, prov_graph

WHERE anc.ancestor=prov_graph.child

)

SELECT ancestor FROM anc

$$ LANGUAGE SQL;

Where prov graph is a database view that defines the edges of
the provenance graphs stored in the database.

11 / 14

Case Study: Open Protein Simulator

An invocation of the previous function returns:

SELECT *

FROM ancestors(’dataset:20100618-0402-ia0bqb73:72000045’);

ancestor

--

execute:psim.loops-20100618-0402-qhm9ugg4:451006

dataset:20100618-0402-ia0bqb73:72000039

...

12 / 14

Concluding Remarks

◮ We identified provenance query patterns from:
◮ Provenance Challenge series.
◮ Users of the Swift parallel scripting system.

◮ We implemented functions and stored procedures to support
query patterns in Swift’s provenance management system.

◮ Future work:
◮ Compare how different data/storage models perform for

provenance queries.
◮ Provenance query language.

13 / 14

Concluding Remarks

Thank you!

14 / 14

	Introduction
	A Provenance Model for Scientific Scripting Applications
	Provenance Query Patterns
	Case Study: Open Protein Simulator
	Concluding Remarks

