A Framework for Policies over Provenance

Tyrone Cadenhead, Murat Kantarcioglu
and Bhavani Thuraisingham

The University of Texas at Dallas

TaPP 2011 : 3rd USENIX Workshop on the Theory and Practice of Provenance
Heraklion, Crete, Greece
What is Provenance?

- Provenance records the history of a document
 - Takes the form of directed graph
 - Captures the causality among documents
- Provenance is the lineage or pedigree of a resource
- Provenance determines the trustworthiness of shared information
 - Used for conducting their day-to-day with high quality information
- Metadata about the origin and history of a piece of item
 - Annotations about data items
 - Account of the history affecting data items
- A data item can be electronic or physical

- Provenance is essential
 - *In healthcare*: tracks the activities of healthcare professionals, regulatory compliance
 - *In E-science*: replicates experiments and verify the steps and the results
 - *In business*: provides an audit trail, which can be used for accountability
 - *In intelligence*: verifies the sources of information
 - *In courts*: provides trace and evidence
 - *Data quality*: estimates data reliability and trustworthiness
Unified Framework

- Provides intermediary policy languages that specify policies over a provenance graph
- Translates policies into graph operations over a provenance graph
 - Make use of regular expression queries
- Evaluates different policy sets over a provenance graph
 - View their outcomes graphically
- Compare the words described by regular expression queries
 - Determine equivalence and subsumption of policies
- Write more compact policies
 - Eliminate redundancies and inefficiencies
- Interface accepts a high level policy
 - translate into the required format for our graph rewriting system
 - abstract the details of the framework from a user
High Level Policy Language (Access Control)

```xml
<policy ID="1">
  <target>
    <subject>anyuser</subject>
    <record>Report3</record>
    <restriction>
      Report3 [WasGeneratedBy] process AND process [WasTriggeredBy] country
    </restriction>
    <scope>non-transferable</scope>
  </target>
  <condition>purpose == research</condition>
  <effect>Permit</effect>
</policy>
```

- **subject**: name of a user or any collection of users
- **record**: name of a resource
- **restriction**: refines the applicability of subject or record
- **scope**: indicate whether target applies only to record or its ancestry
- **condition**: describes conditions access is permitted.
- **effect**: if policy is positive or negative authorization

Current Drawbacks:

- Typically defined for systems with single data items.
- The number of resources in a provenance graph is exponential in the number of single resources.
- To identify all these resources, we need to iterate all of them.
- Lead to administration burdens, when done manually.

No support the provenance directed graph structure

- The relationships between the single data items is what sets a provenance access policy apart from the existing access control policies.
High Level Policy Language (Redaction)

```xml
<policy ID="2">
  <lhs>
    start=Report3
    chain=[WasGeneratedBy] process AND
    process [Used] report AND
    report [WasGeneratedBy] process.
  </lhs>
  <rhs>
    start=Report3
    chain=[WasGeneratedBy] process AND
  </rhs>
  <condition>
    <application>null</application>
    <attribute>null</attribute>
  </condition>
  <embedding>
    <pre>null</pre>
    <post>(ProcessJ,Used, Report3)</post>
  </embedding>
</policy>
```

- **What is Redaction**
 - Process that **protects** sensitive information **by** removing or **circumventing** it
 - A process that focuses on **sharing** information

- **What is a Redaction policy?**
 - **Rules** that govern how to completely or partially remove sensitive attributes of the information being shared

- **Commercially available redaction tools**
 - **block out** (or delete) the sensitive parts of documents
 - available as text and images
Why we need graphs?

- **Graphs are a very natural representation of data in many application domains**
 - Precedence networks, path hierarchy, family tree and concept hierarchy
- **Provenance has a directed structure**
 - Captures history, captures causal relationships
- **Open provenance Model (OPM) describes provenance as a directed acyclic graph (DAG)**
- **Policy operations conceptualized as graph operations over provenance**
- **Provenance can be realized as a directed graph in order to visualize the causal relationships among entities**
 - A "happens before" B is well captured in a directed labeled graph
Graph Models:

- **Resource Description Framework (RDF)**
 - A graph data model
 - A Semantic Web technology
 - RDF is a W3C Recommendation for representing data on the web
 - Expresses metadata or descriptions about any resources on the web
 - A RDF triple is an ordered set (s p o)
 - the subject, predicate and object, respectively
 - A predicate makes an assertion about the subject
 - A set of RDF triples constitute a RDF graph
 - Represents the knowledge about a system

- **Open Provenance Model (OPM)**
 - Abstract model
 - Provenance as a directed acyclic graph that captures causal relationships
 - OPM graph can be further enriched annotations
 - About time, location and other relevant contextual information
 - The OPM model identifies three categories of entities
 - Artifacts, Processes and Agents
 - Abstract vocabulary describe relationships between the entities
 - RDF Triples:
 - `<opm:Process>` `<opm:WasControlledBy>` `<opm:Agent>`
 - `<opm:Process>` `<opm:Used>` `<opm:Artifact>`
 - `<opm:Artifact>` `<opm:WasDerivedFrom>` `<opm:Artifact>`
 - `<opm:Artifact>` `<opm:WasGeneratedBy>` `<opm:Process>`
 - `<opm:Process>` `<opm:WasTriggeredBy>"`
Provenance Graph: A Definition

- Provenance graph is a restricted RDF graph
 - Directed edges indicating that an event happened before another event
 - Causal dependencies between the node entities
 - Edges start at a node called the effect and points to another node called the cause of the event
 - Acyclic, indicating that history is non-cyclic and immutable

- RDF graph (set of RDF triples)
- A RDF triple \((s, p, o)\)
 - represented graphically as
 \[s \rightarrow o \]
 - \(s\) is causally dependent on \(o\)
 - \(s\) as the effect and \(o\) as the cause of \(s\)

- \(V = \{\text{WasControlledBy, Used, WasDerivedFrom, WasGeneratedBy, WasTriggeredBy}\}\)
 - Path \((s_1, (P), o_n)\)
 - Define \(P\) over \(V\) using regular expressions
 - \((x, [p]^*, y)\) and \((x, [p]^+, y)\)
 - \((x \ [\text{WasGeneratedBy}] / \ [\text{WasControlledBy}] y)\)
Provenance Graph *(in Intelligence domain)*

Figure 2
Graph Rewriting

- A graph rewriting system is a three tuple, \((G^\ell, q, P)\)
 - \(G^\ell\) is a labeled directed graph
 - \(q\) is a request on \(G^\ell\) that returns a subgraph \(G_q\)
 - \(P\) is a policy set

- For every policy \(p = (r, e)\) in \(P\), \(r = (se, re)\) is a production rule
 - where \(se\) is a starting entity and \(re\) is a regular expression string; and \(e\) is an embedding instruction

- A production rule, \(r : L \rightarrow R\) where \(L\) is a subgraph of \(G_q\) and \(R\) is a graph
 - We also refer to \(L\) as the left hand side (LHS) of the rule and \(R\) as the right hand side (RHS) of the rule

- During a rule manipulation, \(L\) is replaced by \(R\) and we embed \(R\) into \(G_q - L\)

- Embedding Information, \(e\):
 - This specifies how to connect \(R\) to \(G_q - L\)
 - Gives special post-processing instructions for graph nodes and edges on the RHS of a graph production rule
• rule in Figure 5(a) that replaces a one subgraph with a null (or empty) graph.
• Figures 5(b) is the result of performing a transformation using the rule in Figure 5(a) and the following embedding instruction:
 • <ex:Report3> <opm:WasGeneratedBy> <mil:CovertOperation1>
 • <ex:Report3> <opm:WasGeneratedBy> <ex:P1>
Valid Provenance Graph

- Figures 5(c) is the result of performing a transformation using the rule in Figure 5(a) but with an empty embedding instruction.
- Valid OPM graph, but the causal relationships are not preserved, for example there is a causal relationship between ex:Report3 and cia:Agent.

- Figure 5(d) is the result of performing a transformation using the rule in Figure 5(a) and the following embedding instruction:
 - <ex:P1> <opm:WasGeneratedBy> <mil:CovertOperation1>
 - RDF triple <ex:P1> <opm:WasGeneratedBy> <mil:CovertOperation1> does not conform to the OPM nomenclature convention.
Conclusions

- Solution not limited
 - no restriction on input provenance format
 - Any format XML, Relational or RDF

- Causal relationships
 - Easily visualized
 - Supports directed structure of provenance

- Propose a unified framework
 - Allows a domain user a choice of policies
 - Protecting and sharing provenance information

- Extends previous policy definitions
 - Support provenance

- Leverage over open technologies
 - RDF, SPARQL, OPM