Provenance for System Troubleshooting

Marc Chiarini
Harvard University

Abstract

System administrators use a variety of techniques to
track down and repair (or avoid) problems that occur in
the systems under their purview. Reviewing log files,
cross-correlating events on different machines, establish-
ing liveness and performance monitors, and automating
configuration procedures are just a few of the approaches
used to stave off entropy. These efforts are often stymied
by the presence of hidden dependencies between com-
ponents in a system (e.g., processes, pipes, files, etc).
In this paper we argue that system-level provenance can
help expose these dependencies, giving system admin-
istrators a more complete picture of component interac-
tions thus easing the task of troubleshooting.

1 Introduction

Most highly experienced system administrators can re-
member a time in their career when they were virtu-
ally clueless about the configuration of their systems.
Whether learning on the job as a junior sysadmin or
walking into a brand new infrastructure, nobody is ever
handed a comprehensive guide to “the way things work
around here.” Instead, sysadmins must slowly develop a
mental model of the systems in their care [4]. They study
existing documentation and Internet sources, solicit ex-
pert advice, explore component interactions, and much
more. While this process is valuable in the long run, it is
also time-consuming and error prone, and competes with
the efficiency of whatever task is at hand (e.g., tracking
down and fixing the root causes of problems). Addition-
ally, mental models are developed on an as-needed ba-
sis and fail to account for hidden dependencies between
system components, resulting in large gaps and inaccu-
racies.

This paper explores how system-level provenance can
effectively expose hidden dependencies, improve men-
tal models, and help improve the troubleshooting process
for system administrators.

2 Dependencies

Efficient troubleshooting requires mental models that
are sufficiently accurate and complete to suggest proper
courses of action. One part of a good mental model is
a map of dependencies between the various components
in a system. At a high level, components can be thought
of as subsystems (e.g., the web subsystem depends upon
the networking subsystem). At the lowest level of ab-
straction, components consist of programs and their in-
dividual configuration parameters. At this level, a good
mental model maps how parameter changes affect a pro-
gram’s dependencies.

For the purposes of this research, we loosely define de-
pendency as the relationship created when information
must be transmitted from one component to another in
order for the receiver of that information to function cor-
rectly. For example, when a process loads a library, func-
tions necessary to the core behavior of the process are
transmitted to it from a file. The process is dependent on
the library being loaded into some part of memory and
being made accessible. Likewise, when Apache starts,
it reads necessary parameters from an external source of
information (e.g., httpd.conf). Furthermore, Apache
depends upon its runtime environment to properly spec-
ify the location of httpd. conf.

The PASS project [7] currently collects system-level
provenance from inside a running kernel and builds a
directed acyclic graph that describes ancestral relation-
ships between files, pipes, and processes'. The graph can
then be queried using a custom query language, called
PQL [3]. PQL operates on a semi-structured data model
that allows us to ask questions about ancestors and de-
scendants as well as about paths in the graph, specified
as regular expressions. We can issue simple queries such
as “show me all objects with at least three immediate an-
cestors” and complex queries such as “find all objects

IThis includes variables and other information about the environ-
ment in which they execute.



that result from the same (or similar) sequence of trans-
formations”, which is a path finding query.

If we think of files, pipes, and processes as system
components between which information flows, then the
provenance graph can be viewed as a graph of potential
dependencies. Nodes of the graph represent components
and edges represent a “may depend upon” relationship
from one component to another. In practical terms, for a
process P that reads from a file F, there exists a directed
edge from the descendant P to the ancestor F. Likewise,
if the same process writes to a pipe /, an edge from / to P
will be generated in the graph. The graph describes only
potential dependencies, because in the absence of code
and dataflow analysis, we cannot be certain that any de-
scendant depends upon its ancestor to function correctly.

3 Troubleshooting

In the past decade, there has been exciting research
on improving failure diagnosis for system administra-
tors. Some approaches use visualization to help oper-
ators rapidly detect and diagnose problems [10]. Others
use event correlation in log-file analysis to identify extant
and potential problems [8]. Wang et al. [11, 12] use com-
parisons of current system configurations against golden
state configurations that have been generated via statisti-
cal analysis of machine populations. None of these con-
tributes very much to exposing complex system depen-
dencies.

In the absence of formal documentation, sysadmins
have few resources for determining the dependencies of
a program. There exist tools that support static extrac-
tion of dependencies via analysis of package manage-
ment repositories [5] and program images [9], but these
have quite limited capabilities. Brown et al. [1] are able
to automatically construct operational dependency mod-
els by actively perturbing live systems, but this may be
dangerous in a production environment.

Although one may assume that documentation is avail-
able for general-use tools, many organizations develop
in-house solutions. When these solutions are intended
for internal use only, there is little economic incentive
to create polished user interfaces or comprehensive doc-
umentation; tools must simply be “good enough.” As
the number of internal libraries, scripts, and programs
increases, making changes to the system becomes in-
creasingly difficult. For example, deleting old libraries
becomes virtually impossible when sysadmins have no
knowledge of what programs utilize which libraries. The
complexity of these poorly understood systems will con-
tinue to grow without bound as long as they are actively
developed. Sysadmins in this situation would benefit
greatly from a comprehensive and explorable graph of
component dependencies.

As suggested earlier, a clear and accurate system
model is paramount to troubleshooting. Although sysad-
mins already troubleshoot in the absence of such models,
their efforts have been significantly hindered by com-
plexity. When something fails in a system, knowing
where to look first is usually a “gimme”. Under progres-
sively greater pressure, knowing where to look second,
third, fourth, and so on, requires experience and perse-
verance.

For example, in most UNIX distributions, the re-
solver, which sends DNS queries to translate names
into IP addresses, loads its configuration from the file
/etc/resolv.conf. Traditionally, this file was edited
manually. In modern distributions such as Ubuntu, the
file is now automatically generated and modified by the
NetworkManager daemon. Various options for the net-
work manager can be configured via GUI or the com-
mand line, but not resolver-specific options. Instead,
if the host obtains its network configuration via DHCP,
changes to resolv.conf are governed by the network
manager’s communication with the dhclient daemon,
using D-Bus IPC?. The behavior of dhclient is in turn
configured via the file /etc/dhcp3/dhclient.conf.

Given the dependencies just described, where does the
system administrator look when she determines there is a
problem with name resolution? The first place she looks
is resolv.conf. Luckily for her, there is a comment
in the file that states it has been automatically gener-
ated by the network manager. However, this is where
the trail goes lukewarm. The manual page for the net-
work manager says nothing about the resolver. Per-
haps the sysadmin recalls that name resolution failures
can be symptomatic of DHCP misconfiguration, lead-
ing her to check the dhclient manpage and subsequently
dhclient.conf. She may find some useful information
there, but she is hard pressed to discover that the net-
work manager is modifying the resolver’s configuration
by talking to the DHCP client. Also, dhclient.conf
may have been configured by an automated script. The
trail goes cold until Google is consulted and a solution is
discovered. But this is unsustainable as a standard proce-
dure for troubleshooting; eventually, even Google is out
of answers.

Using a provenance graph (Figure 1) and the right
query types (or tools we build specifically for this pur-
pose), our fearless administrator would more quickly dis-
cover the dependencies in our example. Let us walk
through the troubleshooting session once more with the
help of provenance. The graph has been trimmed and
condensed for clarity, so the steps taken in an actual ses-
sion may be more involved. Also, the following analysis

2The D-Bus implements inter-process communication (IPC) via
Unix sockets, with each endpoint represented as an inode object and
two file objects in the kernel.



dhclient.conf ‘ ‘ other inputs

dhclient
socket many
endpoint other inputs

NetMan
socket
endpoint other inputs

network
manager,

resolv.conf

Figure 1: A partial provenance graph representing poten-
tial dependencies between components involved in Linux
name resolution.

suggests that we are able to collect provenance for re-
mote sockets. This is not currently the case for PASS,
but we are working on such a mechanism.

We may safely start at the network manager node
(hereafter referred to as netman), since we already know
the source of the generated resolv.conf. The ancestors
of netman include a socket endpoint (a “special” file) and
various other inputs, one of which will be a configuration
file. We can probably safely exclude the configuration
file, because there is nothing in netman’s documentation
about resolver options. But why has netman received in-
formation from a socket via the D-Bus? It has obviously
communicated with another process. Here is where we
run into a slight snag: D-Bus often has a plethora of

socket endpoints as inputs (in addition to other inputs),
so how can we determine the right ancestor? In many
cases we may not be able to directly identify the most
important ancestor but we can probably narrow down our
choices.

One possibility involves checking timestamps of the
provenance edges between objects of interest. In this
case we could compare the timestamp of outputs to net-
man’s socket endpoint with the timestamps of D-Bus in-
puts from any of its ancestors. We would discard D-Bus
inputs that occurred after outputs to the socket as well as
inputs that occur too long before outputs. Other techni-
cal solutions are also possible, including the recording of
socket descriptors in provenance objects.

Once we have reasonably narrowed our choices, we
will have to rely on experience to take us the rest of the
way. Knowing that our machine receives network con-
figuration parameters via DHCP will allow us to discard
many other D-Bus ancestors, such as the audio, printing,
and display subsystems. Once we reach the dhclient an-
cestor, we can determine which of its configuration op-
tions found in dhclient. conf are likely to be involved
in name resolution. Snippets of the provenance graph
and discoveries made therein can be added to a trou-
bleshooting knowledgebase that integrates with, e.g., a
trouble ticket system.

4 Graph Compression

While the provenance of a program’s outputs depends
upon the program’s inputs, the program itself is not nec-
essarily dependent on every input to function correctly.
For example, the program cat, which reads the contents
of an input stream, only depends upon three shared li-
braries to function correctly, yet a provenance graph in-
cludes edges to every distinct input object that cat opens.
Though the absence of these inputs may cause a script to
fail, none of them is essential to the core behavior of cat.
This is why we have described the provenance graph as
a graph of potential dependencies only.

A similar fact holds for many programs; almost every
file (or other input) that is necessary for them to function
properly is loaded with their image or shortly thereafter.
There are notable exceptions: programs such as Apache
and PERL frequently load modules on-demand; dae-
mons may reload their configuration files when a HUP
signal is received, but will rarely reload a library; and
shell scripts frequently defy all notions of predictability.

It would appear that the generated graph contains too
much information for our purposes. Too many potential
dependencies will make troubleshooting more difficult.
Thus we need a way to increase the probability that an
edge truly represents a program dependency. We can use
several simple observations to guide us:



e If a program opens the same file one or more times
on (nearly) every invocation, there is a high likeli-
hood of dependency.

e The first-order dependencies of many programs are
known a priori, either via direct experience, docu-
mentation, or technical detail, e.g. statically-linked
programs.

e Files residing in well-known configuration directo-
ries such as /etc can be labeled with a high proba-
bility when all other indicators are (nearly) equal.

e Files residing in well-known log directories can be
labeled with a low probability.

e Files that are created by and opened for reading
and writing in short intervals (e.g., Emacs tempo-
rary files) or across multiple invocations by a single
program might be safely excluded.

Acting intelligently on these observations will greatly
reduce the size and density of the graph. Certain edges
of which we are unsure may of course be left in the graph
until we are better able to classify them. Once we have a
graph of reasonable size and density, we can utilize PQL,
elementary graph algorithms, statistical techniques, and
even machine learning [6] to help answer troubleshoot-
ing queries.

5 Future Work

The current implementation of PASS examines prove-
nance as expressed only via pipes, shared memory
(mmap), process environments, and the filesystem. Un-
fortunately, more sources of provenance (and potential
dependencies) are expressed via other information vec-
tors, e.g. signals, sockets, and exit codes. As a result,
provenance graphs generated by our implementation are
not comprehensive. We believe that analysis of network
I/0O will prove to be a powerful technique. By track-
ing socket pairs, we can identify dependencies that span
physical machines. For example, a network-aware ap-
proach would be able to identify dependencies between
a web server and a DNS server. Expanding the collection
and analysis phases in this way will require considerable
effort.

We plan to develop configurable tools that will lever-
age our existing knowledge of system administration to
construct efficient, domain-specific queries. We will
also explore the utility of graph visualization in narrow-
ing down the root causes of system problems. Finally,
we plan to incorporate ideas from machine-learning,
not only to help generate automatic analyses of prove-
nance graphs, but to augment graphs with information
gleaned from interactions of system administrators with
our tools [2].

6 Conclusions

In our introduction, we made the claim that complete
and accurate mental models are necessary to most tasks
performed by system administrators, including trou-
bleshooting and maintenance. As such, any tool that aids
in the timely development of accurate mental models will
be of huge benefit to sysadmins at both the junior and se-
nior level. In this paper, we have explored the idea that
analysis of provenance graphs can aid system adminis-
trators in troubleshooting problems that involve complex
hidden dependencies. We are confident that if system ad-
ministrators are amenable to automatic provenance col-
lection, then this idea will emerge as an effective utility
in everyday system administration.

References

[1] BROWN, A., KAR, G., AND KELLER, A. An active approach to
characterizing dynamic dependencies for problem determination
in a distributed environment. In Proceedings of the IEEE/IFIP
International Symposium on Integrated Network Management
(2001), pp. 377 -390.

[2] CUNNINGHAM, S.J., WITTEN, I. H., AND LITTIN, J. Applica-
tions of machine learning in information retrieval. Annual Review
of Information Science 34 (1999), 341-384.

[3] HOLLAND, D. A., BRAUN, U., MACLEAN, D., MUNISWAMY-
REDDY, K., AND SELTZER, M. Choosing a data model and
query language for provenance. In Proceedings of the 2nd Inter-
national Provenance and Annotation Workshop (Salt Lake City,
Utah, June 2008).

[4] HREBEC, D. G., AND STIBER, M. A survey of system adminis-
trator mental models and situation awareness. In SIGCPR (2001),
M. A. Serva, Ed., ACM, pp. 166-172.

[5] KAR, G., KELLER, A., AND CALO, S. B. Managing applica-
tion services over service provider networks: Architecture and
dependency analysis. In Proceedings of NOMS (Hawaii, 2000).

[6] MARGO, D., AND SMOGOR, R. Using provenance to extract
semantic file attributes. In Proceedings of the 2nd Conference on
Theory and Practice of Provenance (Berkeley, CA, USA, 2010),
TAPP’ 10, USENIX Association, pp. 7-7.

[71 MUNISWAMY-REDDY, K., BRAUN, U., HOLLAND, D. A.,
MACKO, P., MACLEAN, D., MARGO, D., SELTZER, M., AND
SMOGOR, R. Layering in provenance systems. In 2009 USENIX
Annual Technical Conference (San Diego, California, 2009).

[8] ROUILLARD, J. P. Real-time log file analysis using the simple
event correlator (SEC). In LISA (2004), USENIX, pp. 133-150.

[9] SUN, Y., AND COUCH, A. L. Global impact analysis of dynamic
library dependencies. In LISA (2001), USENIX, pp. 145-150.

[10] TAKADA, T., AND KOIKE, H. Mielog: A highly interactive vi-
sual log browser using information visualization and statistical
analysis. In LISA (2002), USENIX, pp. 133-144.

[11] WANG, H. J., PrATT, J. C., CHEN, Y., ZHANG, R., AND
WANG, Y.-M. Automatic misconfiguration troubleshooting with
peerpressure. In OSDI (2004), pp. 245-258.

[12] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y.,
WANG, H. J., YUAN, C., AND ZHANG, Z. Strider: A black-
box, state-based approach to change and configuration manage-
ment and support. In LISA (2003), USENIX, pp. 159-172.



	1 Introduction
	2 Dependencies
	3 Troubleshooting
	4 Graph Compression
	5 Future Work
	6 Conclusions

