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Abstract

We observed that the Condor batch execution system ex-
poses a lot of information about the jobs that run in the
system. This observation led us to explore whether this
system information could be used for provenance. The
result of our explorations is Provenance Aware Condor
(PAC), a system that transparently gathers provenance
while jobs run in Condor. Transparent provenance gath-
ering requires that the application not be altered in order
to run in the provenance system. This requirement al-
lows any application that can run in Condor to also run
in PAC. Through SQL queries, PAC is able to answer a
wide range of questions about the files used by a job and
the machines that execute jobs.

1 Introduction

Provenance, in the broadest use of the word, is the ori-
gin and history of an item. In computer science we fo-
cus on gathering provenance about data with the goal
of being able to answer questions about where the data
came from and the process that created it. There has
been a great deal of work on the semantics of provenance
and there are many proposals and systems for gathering
provenance about specific types of data. While we think
that work is essential, our work focuses on a largely or-
thogonal issue. Rather than aiming for ideal provenance
or designing a provenance system for a specific type of
application, we examine the possibility of gathering in-
formation that is useful for provenance while having little
or no impact on the people writing applications or on the
systems executing these applications.

We are motivated by our observations of the Condor
system [3]. Condor is a production system that executes
user jobs on clusters of machines, and is used on over
100,000 CPUs worldwide. It is used by groups of all
sizes in universities, government labs, and private com-
panies. A wide variety of applications are run in Condor,

representing a diverse set of fields that includes computer
engineering, biology, chemistry, physics, finance, and in-
surance.

We observed that Condor is privy to a lot of informa-
tion about the jobs it runs. This led us to wonder if we
could use Condor as the base for a system that trans-
parently gathers provenance [11]. A transparent prove-
nance system gathers information without requiring that
applications be altered. Because we start with an exist-
ing job execution system, we also aim to transparently
add provenance gathering capabilities to Condor by only
changing the system in ways that are not visible on the
surface.

A benefit of using Condor as the base of our prove-
nance system is its ability to run a wide range of appli-
cations. Any application that runs on the same operating
system as at least one machine in the cluster and is able
to run as a background batch job can run in Condor.

A number of interesting questions arise from our pro-
posed provenance system design. The most obvious
question is if it is actually possible to gather provenance
information without making changes that are visible to
the application designer, Condor user, or Condor system
administrator. Once we found that it is possible to de-
sign a transparent system, our next question was whether
the provenance gathered by such a system is useful. We
also wondered about the overhead imposed by this prove-
nance system on applications and Condor in terms of
running time and data storage. In order to explore these
questions we built a prototype provenance system on top
of Condor. We call the combination of Condor and our
provenance system Provenance Aware Condor (PAC).

By adding provenance capabilities to the Condor sys-
tem, our goal is to provide a baseline amount of prove-
nance for any application that runs in Condor. We rec-
ognize that, by gathering provenance for a wide range of
applications, we are not able to gather all of the informa-
tion provided by special–purpose provenance systems.
For this reason, we expect special–purpose provenance



systems to continue to be used and developed for appli-
cations that are widely used, and for those that will be in
use for a long duration of time. However, there are many
applications that are unlikely to ever be modified solely
for the purpose of gathering provenance. These applica-
tions are the target of our provenance system. Our ques-
tion is not whether our system is as powerful as a special–
purpose system, rather it is whether it can be useful at all
while requiring virtually no modifications to user pro-
grams or the execution system.

2 Key Features

There are a number of features that are unique to our
provenance system. In this section we identify these key
features and compare them with the features offered by
other provenance systems.

2.1 Transparency

A transparent provenance system is able to gather prove-
nance from many types of applications without requiring
the user to alter the application to conform with require-
ments of the provenance system. The trade off of trans-
parency is that it can result in a reduction in the detail or
specificity of the provenance, or in a decreased ease of
use. In contrast, provenance systems that require a user
to express her computation in a specific framework, or
that embed application specific semantics, can provide
detailed information related to the logical properties of
the application.

PAC is transparent because it is able to gather prove-
nance from any program that runs in Condor. Although
PAC does require a program to run in Condor, we con-
sider PAC to be transparent for two reasons. First, Con-
dor is able to run any program that can run in the back-
ground. Second, any program that currently runs in
Condor can utilize PAC without making any changes to
the program or to how it is submitted to Condor. PAC
provides provenance to programs that currently run in
Condor for “free”. The Earth System Science Server
(ES3) [6, 7] uses a similar approach for transparently col-
lecting provenance. ES3 gathers provenance by monitor-
ing programs as they run. Users do not need to alter their
programs in order to use ES3.

Another strategy for obtaining detailed provenance is
to require certain behaviors from applications. For exam-
ple, Trio [1] requires the data used by the application to
be stored in its database, and only records provenance for
computations expressed as queries over this data. This
design allows Trio to gather provenance at the granular-
ity of a database tuple, but it excludes applications that do
not conform to its data storage and computation model.

2.2 Complete Information

A provenance system has complete information when it
collects information about everything the application did
while it executed. This includes information about what
files were used, along with details about the files. It also
includes information about how the job used the execu-
tion system.

2.2.1 Files

Because PAC collects file information by monitoring the
open and close file calls made by a program, it obtains
information about every file used by a job. The files used
by a job will be recorded even if the user is not aware
that some files are accessed through a shared file system.
Information about system files and libraries allows the
user to track problems related to changes in these files.

Another system that gathers information by monitor-
ing system activity is the Provenance–Aware Storage
System (PASS) [10]. PASS is implemented as a layer on
top of a conventional file system and stores provenance
in an in–kernel port of Berkeley DB. Because PASS is
a storage system, it maintains provenance for every file
and detects all file activities. By integrating a provenance
system with the storage system, PASS has knowledge of
everything that happens to a file. In contrast, PAC is only
able to record information about files when they are used
by an application that is running in PAC. If a file is re-
named or altered by a process that is not part of PAC,
then PAC will have no knowledge of the alteration. A
drawback of PASS is that it requires the use of its stor-
age system. In contrast, PAC runs as on application on
existing desktop computer systems.

2.2.2 System Information

Because PAC is incorporated within a job execution sys-
tem, it is able to record information about the system and
about how a job uses the system. For each machine in the
system, PAC records the machine architecture, operating
system, and amount of memory. Information about the
process that matches jobs with machines can be used to
determine why Condor is not able to match a specific job
with a machine in the cluster. For each job, PAC records
the machine that executed the job and the environment
variables used during job execution. PASS is the only
other provenance system we are aware of that is tightly
integrated with the underlying computing system.

2.3 Integration with an existing distributed
computing system

By collecting provenance from with the Condor system,
PAC records details about the job as the events occur.



Other systems use a wrapper around the execution sys-
tem to collect information. The wrapper is unable to
gather information about processes that occur entirely
within the execution system.

The Pegasus system [9] refines an abstract workflow
into an executable workflow. It uses Condor as the exe-
cution environment. Pegasus collects two sets of prove-
nance: information about the workflow refinement, and
information about the execution. Pegasus uses a wrapper
around each job in the workflow to gather provenance
from the job execution process. Because Pegasus per-
forms its provenance collection outside of Condor, it can-
not detect the use of system files, libraries, and other files
that are not explicitly declared by the job.

2.4 PAC as a Base for a Workflow Manage-
ment System

PAC can reconstruct a workflow by chaining jobs to-
gether based on one job using the same file for input as
another job wrote as output. Because PAC does not have
a concept of a workflow as an entity, it is unable to pro-
vide information about how a workflow was created or
how it changes over time. Workflow management sys-
tems, such as Pegasus [9] and VisTrails [12] have the
capability to provide detailed information about work-
flows, but lack detailed information about the execution
of individual workflow nodes. Combining PAC with a
provenance system that gathers higher level information
would result in the collection of more provenance than
either system could collect alone.

3 The Provenance Gathering System

Provenance Aware Condor is composed of three parts.
The first part is the Condor job scheduling system [3].
Quill [3, 8], the second part of PAC, was added to Con-
dor to capture more information about Condor and make
the information available through a SQL interface. In
this work we are examining the use of Quill as part of a
provenance system. We added FileTrace, the final part
of PAC, to take care of some deficiencies with respect to
provenance in the Condor with Quill system.

One of our major design principles is that the addi-
tions we make to Condor are not disruptive to how Con-
dor runs or to how a user interacts with Condor. We use
the word “transparency” to describe this design princi-
pal. Because Condor is a production system, transparent
changes allow users who are interested in provenance to
utilize the new features while allowing other users to re-
main unaware of the changes.
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Figure 1: Interactions in a Condor System

3.1 Condor

Condor [3] is a high throughput computing system that
matches user submitted computational jobs with avail-
able machines. A Condor system consists of three types
of machines: the central manager, submit machines, and
execute machines. The system contains a single cen-
tral manager machine, which is responsible for matching
jobs with execute machines. There is at least one submit
machine and execute machine in the system, and systems
often have many machines that fill these roles. Figure 1
illustrates the interactions between entities in a Condor
system.

3.1.1 Roles of Machines in a Condor System

The central manager matches the user–submitted jobs
with execute machines. Jobs and machines announce
their presence by sending a message to the central man-
ager. The message sent by a job specifies the hardware
and software requirements of the job. Execute machines
send information about their hardware and software re-
sources to the central manager. Periodically, the central
manager enters a match cycle where it matches jobs with
machines. Any jobs that were not matched with a ma-
chine are carried over to the next match cycle.

The submit machine accepts jobs from users and sends
information about these jobs to the central manager.
When a job is matched with an execute machine, the
submit machine transfers the executable and any input
files to the execute machine. After the job finishes, the
submit machine downloads output files from the execute
machine. A submit machine can manage many jobs from
many users at the same time.

The role of an execute machine is, simply, to run jobs.



When matched with a job, the execute machine first re-
ceives the executable and any input files from the submit
machine. Next, it runs the job. When the job finishes,
the execute machine sends the output files to the submit
machine.

3.1.2 How Condor Accesses Files

The file access methods that are available to a Condor
job depend on the Condor runtime environment, known
as a universe. In this paper, we only consider the Vanilla
Universe, a commonly used and flexible universe. The
Vanilla Universe allows a job to access files through two
methods: Condor file transfers and a shared file system.
The Condor file transfer mechanism transfers files be-
tween the user’s local storage and the execute machine,
through the submit machine. The user provides the path-
name of the executable and input files as part of the job
specification. When an execute machine is ready to run
a job the submit machine transfers the executable and in-
put files to the execute machine. When the job finishes,
the execute machine transfers all files that were created
or modified by the job to the submit machine, and the
submit machine sends the files to the user. When a job
uses a shared file system, such as AFS, the job accesses
files in the same way as it does when the user runs the
executable outside of Condor.

A major difference between using the file transfer
mechanism or a shared file system is how the job ac-
cesses files. The file transfer mechanism requires the
user to specify all input files when the job requirements
are sent to the submit machine. Condor transfers these
files to the execute machine and they are the only input
files available to the job. With a shared file system, the
job can access any files, provided it has the proper per-
missions. It is possible for a job to access files using both
file mechanisms.

3.1.3 Condor Logs

The machines in a Condor system record operational in-
formation in log files. This information is used by the
user and system administrator to monitor jobs and ma-
chines, and by developers for debugging. Users and ad-
ministrators use command–line tools to access informa-
tion from the Condor logs. Because these logs already
existed, we began our evaluation of provenance in Con-
dor by examining the logs. But the logging system was
not designed for the purpose of collecting provenance,
and we found that the information provided by the logs
is insufficient for provenance.

Condor uses a flexible set of attribute–value pairs to
store information about current and past jobs in the log
files. This set of attribute–value pairs is flexible in that

there are no attributes that are guaranteed to be used for
every job, and the set of attributes is not necessarily con-
stant between jobs. Additionally, the user is allowed to
create arbitrary attributes for each job. Despite this flexi-
bility, there is a set of common attributes that are used by
most jobs.

Command-line tools allow the user and administrator
to access information about the Condor system. The ba-
sic information available is the names of machines in the
pool and their usage over time, and the names of users
who have ran jobs in a given time period. The basic in-
formation can be used to derive more detailed informa-
tion about system utilization. The Condor Team at the
University of Wisconsin has developed visual represen-
tations of system utilization and displays the information
on a series of web pages.

The job history log does not necessarily contain com-
plete information about the files used by a job. The file
information that is recorded depends on the information
provided by the user during job submission and on how
the executable accesses files. If the user provides rela-
tive pathnames, based on the directory where the job is
submitted from, the initial working directory and output
directory attributes could be used to obtain the absolute
pathname. If the job has access to a shared filesystem it
can access input and output files that are not specified by
the user. Condor only allows one file to be specified as
the output file; additional output files are not recorded in
the job history log.

3.2 Condor with Quill

As part of the CondorDB research group, we observed
that we could collect more information from a Condor
system than is accessible (or easily accessible) from Con-
dor’s log files. We developed Quill [3, 8], an exten-
sion to Condor that gathers operational information and
saves the information in a relational database. In addition
to providing information that is not accessible in Con-
dor, Quill’s relational database makes it easier to obtain
information that is not available from one of Condor’s
command–line tools.

We designed Quill to transparently interface with Con-
dor, so that a user or an administrator who is not in-
terested in Quill can remain unaware of its presence.
The changes we made to Condor were superficial and
we left the operational portions of Condor untouched.
In order to achieve this goal of transparency, Quill fol-
lows Condor’s data collection method of having the vari-
ous daemons write information to log files. Periodically,
Quill reads the logs and inserts the data into a relational
database that is shared by all machines in the pool.

Queries to the Quill database can provide the same in-
formation as Condor’s command–line tools. Two ben-



efits of storing information about a Condor system in
Quill’s relational database are that SQL queries are of-
ten faster than running the command–line tool, and that
custom queries are easy to write in SQL.

Quill provides more information about files than is
available from Condor. For the files that use Condor’s
file transfer mechanism, Quill records the absolute path,
checksum, size, and last modified time, thus providing
version information.

3.3 PAC: Condor with Quill and FileTrace

As discussed above, the main area where Quill lacks
provenance information is when a job accesses a file
without using the file transfer utility. We address this
problem with FileTrace, a program that gathers file in-
formation from the file system calls made by a program.

FileTrace is a modified version of the strace pro-
gram [13]. FileTrace required relatively minor modifi-
cations to strace. The biggest change was adding the ca-
pability to obtain the file checksum. The remainder of
the changes involved filtering and formatting the output
so it is more human–readable and easier to insert into
the database. We only altered how strace handles open
and close operations, so the strace output for all of the
other system calls remains unchanged. This approach of
making minor modifications to only the necessary com-
ponents fits with our goal of developing a transparent
provenance collection system.

We added FileTrace to Condor using methods that are
transparent to the user and have little or no affect on the
operation of Condor. In order for FileTrace to gather in-
formation from an executable, the executable and its ar-
guments are provided to FileTrace as arguments. Condor
allows the pool administrator to create a wrapper for ex-
ecutables that are run by Condor. We use this wrapper to
run all Condor jobs with FileTrace. The data collected by
FileTrace is handled in the same way as data collected by
Quill: the output from FileTrace is written to a file and is
imported into the database by a process that is separate
from the standard Condor operations. FileTrace is a pro-
totype that we developed for the purposes of our research
and is not currently shipped with Condor.

3.4 Answering Provenance Questions with
PAC

Because PAC stores provenance in a relational database,
it is able to answer any question that can be expressed as
a SQL query over these tables. The portions of the PAC
schema that are relevant to provenance include informa-
tion about jobs, machines, and events in the Condor sys-
tem. In this discussion we focus only on the information
that is relevant to the provenance of jobs and files.

Table 1 provides a summary of the PAC schema. The
full Quill schema is available in the Condor Manual [3].
The Jobs table contains information about the machine
that ran the job, names of files used by the job, and
whether the job finished successfully. PAC stores infor-
mation about jobs that are currently in the Condor sys-
tem, as well as jobs that have exited the system. Infor-
mation recorded about machines includes the hardware,
operating system, and state of a machine. One result of
transparently building PAC on top of Condor is that PAC
has four tables that store information about files. We are
only discussing the File Transfers and FileTrace tables.
We are omitting the other two tables because they contain
redundant information, and they only provide informa-
tion about files that are listed in the job submission file.
The FileTrace table contains the information gathered by
the FileTrace program, including when the file was used
by Condor and information that can be used to determine
the version of the file. The File Transfers table contains
information about files that used Condor’s File Transfer
mechanism to move between the submit and execute ma-
chines. PAC contains separate tables for Matches and
Rejects, but the schemas of these tables are nearly iden-
tical. At the end of a matchmaking cycle, information
about matches between jobs and machines is recorded in
the Matches table, and information about jobs that failed
to match with a machine is recorded in the Rejects table.
When a job runs in Condor, information about the run is
recorded in the Runs table.

The information gathered by PAC can be used to an-
swer a wide variety of questions. We show two example
queries in Tables 2 and 3. These tables show a truncated
version of the query results. The queries return a large
number of rows due to two factors: PAC records all sys-
tem files that are used by a program; and the program
we used has many input and output files. We selected
rows that provide a good illustration of the capabilities
of PAC.

The first query (Table 2) finds the files that were used
by a specific job. Our result shows the executable, in-
put, and output files that were used by the job. A user
can determine if this job used the current input and exe-
cutable files by comparing the version information from
her files with the information returned by the query. This
query can also return information about the system files
and libraries that the job used.

In the second query (Table 3) we are looking for files
that were created by a bad machine. A user can compare
the list of files returned by this query with her files in
order to determine if she has any files that might be bad.



Table 1: Portions of the PAC Schema Relevant to Provenance

PAC Schema
Table Attributes
Jobs job id; submission date; user id; id of the execute machine; Condor version; machine

platform; initial working directory; execution environment; Condor log file name;
names of files where stdin, stdout, and stderr are redirected; name and size of the
executable; exit status; completion time

Machines machine id; operating system; architecture; memory; state; time when it entered cur-
rent state; other information that allows Condor to know if amachine is available and
for Condor to derive matchmaking information.

FileTrace job id; file access time; activity type; pathname; openflags; filesystem permissions;
return value of filesystem call; filepointer; lastmodified time; size; checksum

File Transfers job id; direction of transfer; bytes transferred; timestamp; elapsed time; checksum;
last modified time

Matches and Rejects timestamp; id of the user who submitted the job; job id; machine the job matched with
(only for matches)

Runs run id; job id; id of machine that ran the job; start and end time of the run; image size
of the executable

Table 2: Example Query: What files were used by this job?

SELECT pathname, activity type, openflags, lastmodified, size, checksum
FROM filetrace WHERE globaljobid=‘my job id’;
program.exe exe 2008-10-06 687 8FC8316B8930835C9085E

17:52:16-05 953F2D36745C2877346
/path/to/input.xml open O RDONLY 2008-10-06 9554599 57B7A53ACF390B1928A6

17:52:28-05 C4B6E935DD9F2CBE9F46
/path/to/output.xml open O WRONLY| 2008-10-06 0 DA39A3EE5E6B4B0D3255

O CREAT 17:55:18-05 BFEF95601890AFD80709
/path/to/input.xml close 2008-10-06 9554599 57B7A53ACF390B1928A6

17:52:28-05 C4B6E935DD9F2CBE9F46
/path/to/output.xml close 2008-10-06 19895258 9D32885FDCD9171E44F9

17:55:19-05 302BB0141DFC1FC6B772

Table 3: Example Query: Were any of my files generated by the bad machine?

SELECT f.globaljobid, f.pathname, f.last modified, f.checksum, f.size
FROM filetrace f,
(SELECT f1.globaljobid, f1.pathname, f1.activity time, f1.file pointer
FROM filetrace f1, jobs horizontal history j
WHERE j.lastremotehost=‘foo.cs.wisc.edu’ AND j.globaljobid=f1.globaljobid
AND f1.open flags LIKE ‘%O WRONLY%’) fopen
WHERE f.activity type=‘close’ AND f.globaljobid=fopen.globaljobid AND f.pathname=fopen.pathname
AND f.file pointer=fopen.file pointer AND f.activity time>=fopen.activity time;
job id /path/to/output.xml 2008-08-25 14:43:40-05 A0CA0D7D2D35C0AE6A4BD657A 185191

115387B33167031
job id /path/to/log.txt 2008-08-25 14:43:40-05 7A41E9EDF98605F67307C6404 148

D314C012F4B828E
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Figure 2: Estimated Size of FileTrace Table After Run-
ning Application for One Year

4 Performance and Storage Implications
of PAC

In order to examine the impacts of PAC on the perfor-
mance of Condor and to measure the growth rate of the
FileTrace table, we performed experiments using a syn-
thetic program. The program writes random numbers to
files. In the arguments to the program we specify the
number of files to be generated and the approximate du-
ration of the run of the program.

For these experiments we used two identical clusters
of machines. Each machine runs Red Hat Enterprise
Linux 5, and has a Pentium 2.40 GHz Intel Core 2 Duo
processor, 4GB RAM, and two 250GB SATA-I hard
disks. One cluster runs Condor without Quill or File-
Trace. The other cluster runs PAC: Condor with Quill
and FileTrace. Each cluster consists of a central manager
machine, a submit machine, and 10 execute machines.
The PAC cluster also has a machine for the PostgreSQL
database. Because Condor counts each processor as a
machine, each of our clusters has 20 execute machines
from the perspective of Condor.

4.1 Database Size

An issue faced by PAC, and by provenance systems
in general, is the amount of data that must be stored.
Recording and saving provenance produces a continu-
ously increasing amount of data. We use two methods to
estimate the growth rate of the FileTrace table: calcula-
tions based on resource usage data for a set of programs,
and by directly measuring the size of the FileTrace ta-
ble after running programs in our cluster. We have not
performed any compression on the FileTrace table. It

is likely that compression would significantly reduce the
size of the table.

Our first estimation of the FileTrace table growth rate
uses resource usage data for seven scientific applica-
tions [2]. The seven applications are: BLAST (ge-
netics); IBIS (earth system simulation); CMS (high–
energy physics); Nautilus (molecular dynamic simula-
tion); Messkit Hartree–Fock (HF) (interactions between
atomic nuclei and and electrons); AMANDA (astro-
physics); and SETI@home (searches space noise for in-
dications of extraterrestrial intelligence). Each of these
applications has a different combination of number of
files used and run time.

We estimate the growth rate of the FileTrace table by
computing the resulting table size for each application
when it is continuously run for one year on 1000 ma-
chines. Figure 2 shows the result of these computations.
The FileTrace table is a reasonable size for all of these
applications. The largest table is 1.15 terabytes, and
would easily fit on a couple of currently available disks.
As expected, the size of the FileTrace table is affected by
both the number of files used by each run of the appli-
cation and by the time it takes for the application to run.
A large value for either variable leads to a big FileTrace
table. The biggest FileTrace table, at 1.15 terabytes, is
created by Blast. Blast uses the smallest number of files
per job, but the large number of runs per year results in a
large table size. The second largest table, approximately
900 gigabytes, is generated by Nautilus. Nautilus uses
the most files per run and has a medium run time.

This estimate of the size of the FileTrace table is useful
for obtaining a rough idea of how fast the table will grow.
But FileTrace also records information about the system
files and libraries. The table size estimate could also be
inaccurate if the application opens and closes the same
file multiple times. Including information about these
additional file open and close calls will provide a more
accurate estimate of the table size.

We used our synthetic program to compare our esti-
mate of the size of the FileTrace table with the table that
is produced by PAC. We ran four sets of the program,
with the parameters for each set loosely based on the sci-
entific applications that are described above. The param-
eters are the run time of the program and the number of
files produced by the program. The four sets of the pro-
gram represent the edges of the combined parameters:
long run time, many files; long run time, few files; short
run time, many files; and short run time, few files. We ran
an additional set of jobs that contained an equal number
of each of these four configurations. For each set, we
ran as many Condor jobs as would take approximately
12 hours to complete.

We found that the actual size of the FileTrace table
was half of the estimated size. The estimated and actual



Table 4: Size of FileTrace Table After Running a Synthetic Application

Size of FileTrace Table
Files/Job Time/Job (min) Num Jobs Est. Size (mb) Measured Size (mb)
500 20 720 303 134
300 5 2880 728 323
10 20 720 6.7 3.4
10 5 2880 27 13
mix mix 1800 266 119

Table 5: Comparison of Run Time in Condor and PAC

Run Time
Files/Job min/Job System Total time (hh:mm) time/job (sec) StdDev

500 20
Condor 11:00 1091 21
PAC 10:53 1090 18

300 5
Condor 13:09 328 6
PAC 13:11 328 6

10 20
Condor 13:07 1305 21
PAC 13:08 1307 25

10 5
Condor 13:11 328 6
PAC 13:13 329 6

FileTrace table sizes are listed in Table 4. The FileTrace
schema contains a number of variable size attributes. In
our estimate, we were conservative and assigned val-
ues on the large side of the expected range for the vari-
able size attributes. As stated above, our estimate does
not account for the system and library files recorded by
FileTrace, but these “invisible” files do not have enough
weight to overcome our conservative estimate of the size
per record. Although different applications will have dif-
ferent number of “invisible” files, this experiment con-
firms that the FileTrace table grows at the rate predicted
by the size we estimated.

4.2 Overhead of PAC

PAC requires Condor to write additional logs. Because
Condor already writes many logs, we do not expect this
additional log activity to impact the performance of Con-
dor. The interactions with the database are performed in
the background and should have little or no impact on the
performance of Condor.

In order to confirm that PAC has little impact on the
performance of Condor, we ran four sets of synthetic ap-
plications in a non–PAC Condor cluster and in a PAC
cluster. These are the same applications as used for the
FileTrace table size experiments in Section 4.1. For each
set, we used the Condor history data to obtain the execu-

tion time of each job as well as the total time from sub-
mitting all of the jobs to their completion. These results
are presented in Table 5. As expected, the job run time in
PAC is almost identical to the run time in Condor without
Quill or FileTrace. The variation in job run time, both be-
tween PAC and Condor and within each system, is well
within the variation expected due to the Condor matching
process. Condor typically begins a matchmaking cycle
every 5 minutes. Depending on when jobs are submitted
and when machines become available, machines could
remain idle for a few minutes until the next matchmak-
ing cycle begins. From this experiment, we conclude that
adding provenance awareness to Condor does not impact
the operation of Condor.

5 Running a Community Information
Management Program with PAC

We use DBLife, a community information management
program, to examine how well PAC works with a real–
world application. Community information manage-
ment (CIM) programs [5] provide a central location for
collecting information about an online community and
for discovering relationships between the entities in that
community. DBLife [4] is a CIM prototype that manages
information about the database research community.

As illustrated in Figure 3, DBLife creates and main-
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Figure 3: Conceptual Overview of DBLife. Adapted
from DeRose, et al. [4]

tains an entity-relationship graph that describes the
database community. It starts with domain knowl-
edge and a list of sources. Domain knowledge in-
cludes a dictionary of entity names (conferences, uni-
versities, etc.), and dictionaries of equivalent names for
entities (Robert/Rob/Bob; University of California, San
Diego/UC San Diego/UCSD). Sources are the database
community web pages where DBLife starts its crawl.
The process of building the entity-relationship graph is
performed by a series of modules that are organized into
three layers: data page layer, mention layer, and entity
layer.

The data page layer crawls the sources and saves local
copies of the pages. It obtains metadata for each page,
such as when it first appeared and when it last changed.
Additionally, the data page layer detects structural el-
ements in the pages, such as lists of names of people
and conferences. The mention layer uses the dictionar-
ies supplied by the domain expert to find mentions of
those entities in the downloaded pages. Finally, the entity
layer builds the entity-relationship graph. This series of
modules is run daily. Both the mention layer and entity
layer detect and track changes that occur between runs
of DBLife. The entity-relationship graph is used by a
web portal that displays news and information about the
database community and provides information about the
entities within the community. Screenshots of the web
portal are shown in Figure 4.

We chose DBLife as an example program because
DBLife uses a large, complex workflow that accesses
many files. DBLife illustrates the types of questions that
PAC can answer well, and types of provenance questions

Figure 4: Screenshots of the DBLife web portal.

that PAC is not able to answer.
Examples of questions that PAC provides useful an-

swers for are:

• Is this the version of the person name extraction pro-
gram that was used in the creation of the current
DBLife data set?

• Was this unreliable machine used in the creation of
any part of the DBLife data set?

• Has DBLife crawled the most recent version of my
web page?

Examples of questions that PAC cannot answer are:

• Why does the DBLife portal show that person X is
affiliated with institution Y?

• Why doesn’t my page on the DBLife portal include
that I am on the program committee of a conference,
even though the conference web page includes my
name?

From these example questions we see that PAC is able
to provide answers for the types of questions that devel-
opers and system administrators might ask about a run of
DBLife. The types of questions that PAC cannot answer
require knowledge about the semantics of the applica-
tion. This result is not surprising because we know that
PAC collects information about activities in the execu-
tion system, but does not collect information about the
internal processes of the jobs that run in the system.

We measured the size of the FileTrace table for
DBLife by executing a run of DBLife using 10 data
sources (web crawl start points). This run produced a
100 megabyte FileTrace table. A full scale run of DBLife



uses 1000 data sources. By scaling our test run up to full
scale we obtain an estimated table size of 10 gigabytes.
DBLife is scheduled to run on a daily basis so over the
course of a year the FileTrace table would grow to 3.7
terabytes. This size borders on being too large for some
users. We have not yet explored compressing the File-
Trace table. It is likely that compression will result in a
more manageable table size.

6 Conclusions

By instrumenting Condor with provenance awareness,
we found that it is possible to transparently gather useful
provenance with little impact on Condor. PAC provides
provenance for a wide variety of applications. This al-
lows users who do not have the resources or need for
a specialized provenance system to obtain useful prove-
nance. Our experiments show that PAC has reasonable
storage requirements and does not have a noticeable per-
formance impact on Condor.

One result of a provenance system that is able to ac-
commodate a wide range of applications is that it does
not gather some of the details that are gathered by prove-
nance systems that require certain behaviors from ap-
plications. But we observed that workflow manage-
ment systems can use PAC to run the individual work-
flow nodes. The combination of PAC and a more tar-
geted provenance system provides more provenance de-
tails than either system does on its own.
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