Opportunities for Computing Research and Education in a Sustainability Context

Panel on The Present and Future of Sustainability R&D at the First USENIX Workshop on Sustainable Information Technology

Douglas H. Fisher
Program Director
National Science Foundation (NSF)
Directorate for Computer & Information Science & Engineering (CISE)
Division of Information & Intelligent Systems (IIS)
Robust Intelligence Program (RI)

dhfisher@nsf.gov
Questions to ask

As educators

What should be sustained? What are the “needs” of future generations referenced in the Brundtland report? Why? Are the reasons compelling?

As computing professionals

Is the low hanging fruit being implemented (e.g., distance meetings)? What are the factors influencing implementation decisions?

What are the lifecycle costs? What are aspirations? Lifecycles $\rightarrow \infty$?

As computer scientists

What is the (likely) growth rate (of adoption, of resource depletion, of energy demand, of improvement)? (across all societal/technical areas)

What is the complexity class (of growth rate, of change to growth rate)?

What other communities are prospective partners?

Douglas H. Fisher (NSF)
Don’t (too) short shrift *direct* effects, because the 2% of “today” (2007) is the 30% of tomorrow (*growth rates, growth rates, growth rates!*)

Douglas H. Fisher (NSF)
New Robot Monitors Seafloor Life

Special Notice

Building a Sustainable Energy Future: U.S. Actions for an Effective Energy Economy Transformation

Latest News

NSF Advisory Committee for Environmental Research and Education Releases New Report
Released September 9, 2009
Press Release

Global Warming Causes Outbreak of Rare Algae in Caribbean Corals
Released September 9, 2009
Press Release
Finding 1: … A comprehensive coordinated Federal strategy is required …

Finding 2: … Private and Federal support … R&D is inadequate.

Finding 3: … The U.S. energy economy … does not adequately value the environment …

Finding 4: Human capital development in the sustainable energy sector is vital.

Finding 5: … Limited international engagement and collaboration inhibits progress …

Finding 6: … Strong public consensus and support … are needed to achieve a national transformation …

and 6 corresponding recommendations

Douglas H. Fisher (NSF)
Among the report’s recommendations are that:

Increase support of interdisciplinary environmental research and coupled human and natural systems.

Evolve to better promote and support interdisciplinary approaches that address environmental challenges.

Lead in developing sensor networks that monitor environmental variables and human activities with environmental consequences.

Redouble efforts promoting environmental education and public engagement.

Helping policymakers develop/utilize knowledge of environmental/socio-economic systems, complexities and tipping points is a priority.

Promote environmental literacy of all citizens

To successfully pursue an environmental agenda, the public must be actively engaged, encouraging a greater role for "citizen scientists."

Two recommendations *ed, but all computing-relevant

http://www.nsf.gov/geo/ere/ereweb/advisory.cfm

Douglas H. Fisher (NSF)
Search done by exact match

"Climate change" awards

Caveats abound; the form of the function more important than the precise values

"Climate Change over the Polar Ocean", McGill University, $37,000 Award #670A765
Climate Change Science Program (PDF)
The Climate Change Science Program (CCSP) engages thirteen U.S. agencies in a concerted interagency program of basic research, comprehensive observations, integrative modeling, and development of products for decision makers. NSF provides support for the broad range of fundamental research activities that form a sound basis for other mission-oriented agencies in the CCSP and the nation at large.

Cyber-enabled Discovery and Innovation (PDF)
The Cyber-enabled Discovery and Innovation (CDI) investment promotes the advancement of science and engineering along fundamentally new pathways opened by computational thinking.

Cyberinfrastructure (PDF)
Investments in FY 2009 are designed to capitalize on the results of the pioneering early forays into cyberinfrastructure and to advance research and education through the implementation of strategies laid out in the document, A Cyberinfrastructure Vision for the 21st Century.

Dynamics of Water Processes in the Environment (PDF)
The goal of investments in Dynamics of Water Processes in the Environment is to increase our fundamental understanding of the Earth’s freshwater systems and provide the scientific basis for decision making about water resources.
FY 2011 Budget Request to Congress

Goal: To generate the discoveries and capabilities in climate and energy science and engineering needed to inform societal actions that lead to environmental and economic sustainability.

<table>
<thead>
<tr>
<th>SEES Portfolio Funding Levels</th>
<th>FY 2010 Estimate</th>
<th>FY 2011 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td>$121.00</td>
<td>$126.00</td>
</tr>
<tr>
<td>Computer and Information Science and Engineering</td>
<td>17.00</td>
<td>29.36</td>
</tr>
<tr>
<td>Engineering</td>
<td>108.20</td>
<td>120.00</td>
</tr>
<tr>
<td>Geosciences</td>
<td>195.50</td>
<td>230.70</td>
</tr>
<tr>
<td>Mathematical and Physical Sciences</td>
<td>87.00</td>
<td>110.50</td>
</tr>
<tr>
<td>Social, Behavioral and Economic Sciences</td>
<td>20.78</td>
<td>27.98</td>
</tr>
<tr>
<td>Office of Cyberinfrastructure</td>
<td>5.50</td>
<td>5.00</td>
</tr>
<tr>
<td>Office of International Science and Engineering</td>
<td>2.50</td>
<td>8.20</td>
</tr>
<tr>
<td>Office of Polar Programs</td>
<td>65.26</td>
<td>69.26</td>
</tr>
<tr>
<td>Office of Integrative Activities</td>
<td>26.50</td>
<td>26.50</td>
</tr>
<tr>
<td>Total, R&RA</td>
<td>$649.24</td>
<td>$753.50</td>
</tr>
<tr>
<td>Education and Human Resources</td>
<td>$11.50</td>
<td>$12.00</td>
</tr>
<tr>
<td>Total, NSF</td>
<td>$660.74</td>
<td>$765.50</td>
</tr>
</tbody>
</table>

Totals may not add due to rounding.

http://www.nsf.gov/about/budget/fy2011/index.jsp
Science and Engineering Beyond Moore’s Law (SEBML) ($15 M)

February 1, 2010

http://www.nsf.gov/about/budget/fy2011/index.jsp

Douglas H. Fisher (NSF)
Cyber-physical /embedded Systems

Artificial intelligence, Machine learning, Data Mining

Social Computing

Science of Power Management

Mathematical Modeling (climate, eco-system, ...)

Cyber-Physical Systems (CPS)

AI and (cradle to cradle) design

(resource) Planning and decision making

Ecoinformatics

“...provide large-scale, distributed coordination (e.g., automated traffic control), are highly efficient (e.g., zero-net energy buildings),...”

CISE Pathways to Revitalized Undergraduate Computing Education (CPATH)

Award Abstract #0829619
CPATH CDP: Integrating Sustainability Into Undergraduate Computing Education

Douglas H. Fisher (NSF)
Computing and the Environment

• International Initiatives
e.g., OECD: http://www.oecd.org/sti/ict/green-ict
 Japan: http://www.greenit-pc.jp/

• Many conferences, workshops, symposia, white papers
e.g., http://www.cra.org/ccc/initiatives (and “visioning”)

• Many corporate initiatives and programs
e.g., GeSI: http://www.gesi.org/Media/tabid/61/Default.aspx

• Research community engagement starting to rev up (e.g.,
 http://www.computational-sustainability.org/compsust09 ;
 http://www.kd2u.org/NGDM09/;
 http://scipm.cs.vt.edu/ ;
 http://www.usenix.org/events/sustainit10/ ;
 http://www.cra.org/ccc/initiatives ;
 http://www/nsf.gov/awardsearch/showAward.do?AwardNumber=0950451)

Douglas H. Fisher (NSF)
Computational Sustainability: Computational Methods for a Sustainable Environment, Economy, and Society

Lead PI: Carla Gomes, Cornell University

Sustainability: “development that meets the needs of the present without compromising the ability of future generations to meet their needs.” Our Common Future, Brundtland Report, 1987

Vision: Computer scientists can — and should — play a key role in increasing the efficiency and effectiveness of the way we manage and allocate our natural resources, while enriching and transforming Computer Science.

Goals for Sustainability
To inject computational thinking into Sustainability,

• establishing computational sustainability as a new field
• bringing new insights to sustainability challenges
• preparing a new generation to grapple with long-term sustainability

Goals for Computational Studies
• to motivate transformative synthesis and new methodologies across computing sub-disciplines
• to broaden participation in the computing sciences and engineering, in part by
• broadening the public image of computing science, as a field of great societal importance

http://www.cis.cornell.edu/ics/
Vision: Computer scientists can — and should — play a key role in increasing the efficiency and effectiveness of the way we manage and allocate our natural resources, while enriching and transforming Computer Science.

For example, corridor design as a connection sub-graph problem:

Given a graph, G, which includes properties, to include reserves Find a sub-graph that (a) contains the reserves, (b) is connected, (c) has a ‘cost’ within budget, and (d) has acceptable utility
Can/should we change the functional form of research focus over time? of civic action and perception? Can computing help? ... by compensating for (versus simply accelerating the implications of) human myopia

elaborating on the systemic
Can/should we change the functional form of research focus over time? Of civic action and perception? Can computing help?

“The greatest potential risk, but also the most uncertain, is the effect of CO2 from burning coal and oil. ... we would have some warning and could perhaps act to mitigate the disaster.” (p. 99 of Energy and American Values by Barbour, Brooks, Lakoff, Opie, 1982).

Virtual Newscast: News at Seven
News Anchors: The Next Endangered Species?
(PI: Kris Hammond, Northwestern Univ)

Douglas H. Fisher (NSF)
Concluding Remarks

• Growth rates, growth rates, growth rates -- it’s not all (or even mostly) about efficiency – characterizing the complexity class of growth rate, as well as worrying about “the constant”

• Lifecycle, lifecycle, lifecycle, with aspirations to lifetime energy requirements and cradle to cradle.

• Researchers are often educators too – infuse sustainability into the curricula, particularly if we want to *look beyond emergencies*. What is to be sustained and why? The role of historians in learning from humanity’s reaction to climate change.

• Computing research and development has direct, indirect and systemic effects (pro and con) on the environment – what are the indirect and systemic effects, in particular?