
Faster Secure Two-Party Computation Using Garbled Circuits

http://MightBeEvil.org

Yan Huang David Evans
University of Virginia

Jonathan Katz
University of Maryland

Lior Malka
Intel∗

Abstract
Secure two-party computation enables two parties to
evaluate a function cooperatively without revealing to ei-
ther party anything beyond the function’s output. The
garbled-circuit technique, a generic approach to secure
two-party computation for semi-honest participants, was
developed by Yao in the 1980s, but has been viewed
as being of limited practical significance due to its in-
efficiency. We demonstrate several techniques for im-
proving the running time and memory requirements of
the garbled-circuit technique, resulting in an implemen-
tation of generic secure two-party computation that is
significantly faster than any previously reported while
also scaling to arbitrarily large circuits. We validate our
approach by demonstrating secure computation of cir-
cuits with over 109 gates at a rate of roughly 10 µs per
garbled gate, and showing order-of-magnitude improve-
ments over the best previous privacy-preserving proto-
cols for computing Hamming distance, Levenshtein dis-
tance, Smith-Waterman genome alignment, and AES.

1 Introduction

Secure two-party computation enables two parties to
evaluate an arbitrary function of both of their inputs with-
out revealing anything to either party beyond the output
of the function. We focus here on the semi-honest set-
ting, where parties are assumed to follow the protocol
but may then attempt to learn information from the pro-
tocol transcript (see further discussion in Section 1.2).

There are two main approaches to constructing proto-
cols for secure computation. The first approach exploits
specific properties of f to design special-purpose proto-
cols that are, presumably, more efficient than those that
would result from generic techniques. A disadvantage of
this approach is that each function-specific protocol must
be designed, implemented, and proved secure.
∗Work done while at the University of Maryland.

The second approach relies on completeness theorems
for secure computation [7, 8, 34] which give protocols
for computing any function f starting from a Boolean-
circuit representation of f . This generic approach to se-
cure computation has traditionally been viewed as being
of theoretical interest only since the protocols that result
require several symmetric-key operations per gate of the
circuit being executed and the circuit corresponding to
even a very simple function can be quite large.

Beginning with Fairplay [22], several implementa-
tions of generic secure two-party computation have been
developed in the past few years [11, 21, 27] and used
to build privacy-preserving protocols for various func-
tions (e.g., [4,13,16,26,29]). Fairplay and its successors
demonstrated that Yao’s technique could be implemented
to run in a reasonable amount of time for small circuits,
but left the impression that generic protocols for secure
computation could not scale to handle large circuits or in-
put sizes or compete with special-purpose protocols for
functions of practical interest. Indeed, some previous
works have explicitly rejected garbled-circuit solutions
due to memory exhaustion [16, 26].

The thesis of our work is that design decisions made
by Fairplay, and followed in subsequent work, led re-
searchers to severely underestimate the applicability of
generic secure computation. We show that protocols con-
structed using Yao’s garbled-circuit technique can out-
perform special-purpose protocols for several functions.

1.1 Contributions

We show a general method for implementing privacy-
preserving applications using garbled circuits that is both
faster and more scalable than previous approaches. Our
improvements are of two types: we improve the effi-
ciency and scalability of garbled circuit execution itself,
and we provide a flexible framework that allows pro-
grammers to optimize various aspects of the circuit for
computing a given function.



Hamming Distance (900 bits) Levenshtein Distance AES
Online Time Overall Time Overall Time† Overall Time‡ Online Time Overall Time

Best Previous 0.310 s [26] 213 s [26] 92.4 s 534 s 0.4 s [11] 3.3 s [11]
Our Results 0.019 s 0.051 s 4.1 s 18.4 s 0.008 s 0.2 s

Speedup 16.3 4176 22.5 29 50 16.5

Table 1: Performance comparisons for several privacy-preserving applications.
† Inputs are 100-character strings over an 8-bit alphabet. The best previous protocol is the circuit-based protocol of [16].

‡ Inputs are 200-character strings over an 8-bit alphabet. The best previous protocol is the main protocol of [16].

Garbled-circuit execution. In previous garbled-circuit
implementations including Fairplay, the garbled circuit
(whose length is several hundreds bits per binary gate)
is fully generated and loaded in memory before circuit
evaluation starts. This impacts both the efficiency of the
resulting implementation and severely limits its scalabil-
ity. We observe that it is unnecessary to generate and
store the entire garbled circuit at once. By topologically
sorting the gates of the circuit and pipelining the process
of circuit generation and evaluation we can significantly
improve overall efficiency and scalability. Our imple-
mentation never stores the entire garbled circuit, thereby
allowing it to scale to effectively an unlimited number of
gates using a nearly constant amount of memory.

We also employ all known optimizations, includ-
ing the “free XOR” technique [18], garbled-row reduc-
tion [27], and oblivious-transfer extension [14]. Sec-
tion 2 provides cryptographic background and explains
the protocol and optimizations we use.

Programming framework. Developing and debugging
privacy-preserving applications using existing compil-
ers is tedious, cumbersome, and slow. For example, it
takes several hours for Fairplay to compile an AES pro-
gram written in SFDL, even on a computer with 40 GB
of memory. Moreover, the high-level programming ab-
straction provided by Fairplay and other tools for secure
computation obscures important opportunities for gener-
ating more compact circuits. Although this design de-
cision stems from the worthy goal of providing a high-
level programming interface for secure computation, it is
severely detrimental to performance. In particular, exist-
ing compilers (1) automatically garble the entire circuit,
even when portions of the circuit can be computed lo-
cally without compromising privacy; (2) use more gates
than necessary, since they always use the maximum num-
ber of bits needed for a particular variable, even when the
number of bits needed at some intermediate stage might
be significantly lower; (3) miss important opportunities
to replace general gates with XOR gates (which can be
garbled “for free” [18]); and (4) miss opportunities to use
special-purpose (e.g., multiple input/output) gates that
may be more efficient than binary gates. TASTY [11]
provides a bit more control, by allowing the programmer

to decide when to use depth-2 arithmetic circuits (which
can be computed using homomorphic encryption) rather
than Boolean circuits. However, this is not enough to
support many important circuit optimizations and there
are limited places where using homomorphic encryption
improves performance over an efficient garbled-circuit
implementation.

We present a new method and supporting framework
for generating efficient protocols for secure two-party
computation. Our method enables programmers to gen-
erate a secure protocol computing some function f from
an existing (insecure) implementation of f , while pro-
viding enough control over the circuit design to enable
key optimizations to be employed. Our approach al-
lows users to write their programs using a combination
of high-level and circuit-level Java code. Programmers
need to be able to design Boolean circuits, but do not
need to be cryptographic experts. Our framework en-
ables circuits to be built and evaluated modularly. Hence,
even very complex circuits can be generated, evaluated,
and debugged. This also provides the programmer with
opportunities to introduce important circuit-level opti-
mizations. Although we hope that such optimizations
can eventually be done automatically by sophisticated
compilers, our emphasis here is on providing a frame-
work that makes it easy to implement privacy-preserving
applications. Section 3 provides details about our imple-
mentation and efficiency improvements.

Results. We explore applications of our framework
to several problems considered in prior work including
secure computation of Hamming distance (Section 4)
and Levenshtein (edit) distance (Section 5), privacy-
preserving genome alignment using the Smith-Waterman
algorithm (Section 6), and secure evaluation of the AES
block cipher (Section 7). As summarized in Table 1, our
implementation yields privacy-preserving protocols that
are an order of magnitude more efficient than prior work,
in some cases beating even special-purpose protocols de-
signed (and claimed) to be more efficient than what could
be obtained using a generic approach.1

1Results for the Smith-Waterman algorithm are not included in the
table since there is no prior work for meaningful comparison, as we
discuss in Section 6.



1.2 Threat Model
In this work we adopt the semi-honest (also known as
honest-but-curious) threat model, where parties are as-
sumed to follow the protocol but may attempt to learn
additional information about the other party’s input from
the protocol transcript. Although this is a very weak
security model, it is a standard security model for se-
cure computation, and we refer the reader to Goldreich’s
text [7] for details.

Studying protocols in the semi-honest setting is rele-
vant for two reasons:

∙ There may be instances where a semi-honest threat
model is appropriate: (1) when parties are legit-
imately trusted but are prevented from divulging
information for legal reasons, or want to protect
against future break-ins; or (2) where it would be
difficult for parties to change the software without
being detected, either because software attestation
is used or due to internal controls in place (for ex-
ample, when parties represent corporations or gov-
ernment agencies).

∙ Protocols for the semi-honest setting are an impor-
tant first step toward constructing protocols with
stronger security guarantees. There exist generic
ways of modifying the garbled-circuit approach to
give covert security [1] or full security against ma-
licious adversaries [19, 20, 25, 30].

Further, our implementation could be modified eas-
ily so as to give meaningful privacy guarantees even
against malicious adversaries. Specifically, consider a
setting in which only one party P2 (the circuit evaluator;
see Section 2.1) receives output, and the protocol is im-
plemented not to reveal to the other party P1 anything
about the output (including whether or not the protocol
completed successfully). If an oblivious-transfer proto-
col with security against malicious adversaries is used
(see Section 2.2), our implementation achieves full se-
curity against a malicious P2 and privacy against a ma-
licious P1. In particular, neither party learns anything
about the other party’s inputs beyond what P2 can infer
about P1’s input from the revealed output. Understand-
ing how much private information the output itself leaks
is an important and challenging problem, but outside the
scope of this paper.

Note that this usage of our protocols provides privacy,
but does not provide any correctness guarantees. A mali-
cious generator could construct a circuit that produces an
incorrect result without detection. Hence, this approach
is insufficient for scenarios where the circuit generator
may be motivated to trick the evaluator by producing
an incorrect result. Such scenarios would require fur-
ther defenses, including mechanisms to prevent parties

from lying about their inputs. Many interesting privacy-
preserving applications do have the properties needed for
our approach to be effective. Namely, (1) both parties
have a motivation to produce the correct result, and (2)
only one party needs to receive the output. Examples
include financial fraud detection (banks cooperate to de-
tect fraudulent accounts), personalized medicine (a pa-
tient and drug company cooperate to determine the best
treatment), and privacy-preserving face recognition.

2 Cryptographic Background

This section briefly introduces the cryptographic tools
we use: garbled circuits and oblivious transfer. We adapt
and implement protocols from the literature, and there-
fore do not include proofs of security in this work. The
protocol we implement can be proven secure based on
the decisional Diffie-Hellman assumption in the random
oracle model [2].

2.1 Garbled Circuits
Garbled circuits allow two parties holding inputs x and
y, respectively, to evaluate an arbitrary function f (x,y)
without leaking any information about their inputs be-
yond what is implied by the function output. The ba-
sic idea is that one party (the garbled-circuit genera-
tor) prepares an “encrypted” version of a circuit com-
puting f ; the second party (the garbled-circuit evalua-
tor) then obliviously computes the output of the circuit
without learning any intermediate values.

Starting with a Boolean circuit for f (which both par-
ties fix in advance), the circuit generator associates two
random cryptographic keys w0

i ,w
1
i with each wire i of the

circuit (w0
i encodes a 0-bit and w1

i encodes a 1-bit). Then,
for each binary gate g of the circuit with input wires i, j
and output wire k, the generator computes ciphertexts

Enck

w
bi
i ,w

b j
j

(
w

g(bi,b j)

k

)
for all inputs bi,b j ∈ {0,1}. (See Section 3.4 for details
about the encryption used.) The resulting four cipher-
texts, in random order, constitute a garbled gate. The
collection of all garbled gates forms the garbled circuit
that is sent to the evaluator. In addition, the generator
reveals the mappings from output-wire keys to bits.

The evaluator must also obtain the appropriate keys
(that is, the keys corresponding to each party’s actual in-
put) for the input wires. The generator can simply send
wx1

1 , . . . ,wxn
n , the keys that correspond to its own input

where each wxi
i corresponds to the generator’s ith input

bit. The parties use oblivious transfer (see Section 2.2)
to enable the evaluator to obliviously obtain the input-
wire keys corresponding to its own inputs.



Given keys wi,w j associated with both input wires i, j
of some garbled gate, the evaluator can compute a key for
the output wire of that gate by decrypting the appropriate
ciphertext. As described, this requires up to four decryp-
tions per garbled gate, only one of which will succeed.
Using standard techniques [22], the construction can be
modified so a single decryption suffices. Thus, given one
key for each input wire of the circuit, the evaluator can
compute a key for each output wire of the circuit. Given
the mappings from output-wire keys to bits (provided by
the generator), this allows the evaluator to compute the
actual output of f . If desired, the evaluator can then send
this output back to the circuit generator (as noted in Sec-
tion 1.2, sending the output back to the generator is a pri-
vacy risk unless the semi-honest model can be imposed
through some other mechanism).

Optimizations. Several optimizations can be applied
to the standard garbled circuits protocol, all of which
we use in our implementation. Kolensikov and Schnei-
der [18] introduce a technique that eliminates the need
to garble XOR gates (so XOR gates become “free”, in-
curring no communication or cryptographic operations).
Pinkas et al. [27] proposed a technique to reduce the size
of a garbled table from four to three ciphertexts, thus sav-
ing 25% of network bandwidth.2

2.2 Oblivious Transfer

One-out-of-two oblivious transfer (OT2
1) [5, 28] is a cru-

cial component of the garbled-circuit approach. An OT2
1

protocol allows a sender, holding strings w0,w1, to trans-
fer to a receiver, holding a selection bit b, exactly one of
the inputs wb; the receiver learns nothing about w1−b,
and the sender does not learn b. Oblivious transfer
has been studied extensively, and several protocols are
known. In our implementation we use the Naor-Pinkas
protocol [24], secure in the semi-honest setting. We also
use oblivious-transfer extension [14] which can achieve
a virtually unlimited number of oblivious transfers at the
cost of (essentially) k executions of OT2

1 (where k is a sta-
tistical security parameter) plus a marginal cost of a few
symmetric-key operations per additional OT. In our im-
plementation, the time for computing the “base” k = 80
oblivious transfers is about 0.6 seconds, while the on-line
time for each additional OT2

1 is roughly 15 µs.
For completeness, we note that there are known

oblivious-transfer protocols with stronger security prop-
erties [10], as well as techniques for oblivious-transfer
extension that are secure against malicious adver-
saries [9]. These could easily be integrated with our im-
plementation to provide the stronger privacy properties

2A second proposed optimization reduces the size by approximately
50%, but cannot be combined with the free-XOR technique.

for situations where the result does not go back to the
circuit generator as discussed in Section 1.2.

3 Implementation Overview

Our implementation allows programmers to construct
protocols in a high-level language while providing
enough control over the circuit design to enable efficient
implementations. The source code for the system and all
the applications described in this paper are available un-
der an open-source license from http://MightBeEvil.org.
Our code base is very small: the main framework is
about 1500 lines of Java code, and a circuit library (see
Section 3.3) contains an additional 700 lines of code.
The main features of our framework that enable efficient
protocols are its support for pipelined circuit execution
(Section 3.1) and the optimizations enabled by its circuit-
level representation that allow developers to minimize
the number of garbled gates needed (Section 3.2). Sec-
tion 3 describes our circuit library and how a programmer
defines a new circuit component. Section 3.4 describes
implementation parameters used in our experiments.

3.1 Pipelined Circuit Execution
The primary limitation of previous garbled-circuit imple-
mentations is the memory required to store the entire cir-
cuit in memory. There is no need, however, for either
the circuit generator or evaluator to ever hold the entire
circuit in memory. The circuit generation and evaluation
processes can be overlapped in time (pipelined), elim-
inating the need to ever store the entire garbled circuit
in memory as well as the need for the circuit generator
to delay transmission until the entire garbled circuit is
ready. In our framework, the processing of the garbled
gates is pipelined to avoid the need to store the entire cir-
cuit and to improve the running time. This is automated
by our framework, so a user only needs to construct the
desired circuit.

At the beginning of the evaluation both the circuit
generator and the circuit evaluator instantiate the cir-
cuit structure, which is known to both of them and is
fairly small since it can reuse components just like a non-
garbled circuit. When the protocol is executed, the gener-
ator transmits garbled gates over the network as they are
produced, in an order defined by the circuit structure. As
the client receives the garbled gates, it associates them
with the corresponding gate of the circuit. Note that the
order of generating and evaluating the circuit does not
depend on the parties’ inputs (indeed, it cannot since that
would leak information about those inputs), so there is no
overhead required to keep the two parties synchronized.

The evaluator then determines which gate to evaluate
next based on the available output values and tables. Gate



evaluation is triggered automatically when all the neces-
sary inputs are ready. Once a gate has been evaluated it
is immediately discarded, so the number of truth tables
stored in memory is minimal. Evaluating larger circuits
does not significantly increase the memory load on the
generator or evaluator, but only affects the network band-
width needed to transmit the garbled tables.

3.2 Generating Compact Circuits

To build an efficient two-party secure computation pro-
tocol, a programmer first analyzes the target applica-
tion to identify the components that need to be com-
puted privately. Then, those components are translated
to digital circuit designs, which are realized as Java
classes. Finally, with support from our framework’s core
libraries, the circuits are compiled and packaged into
server-side and client-side programs that jointly instan-
tiate the garbled-circuit protocol.

The cost of evaluating a garbled circuit protocol scales
linearly in the number of garbled gates. The efficiency
of our approach is due to the pipelined circuit execu-
tion technique described above, as well as several meth-
ods we use to minimize the number of non-XOR gates
that need to be evaluated. One way to reduce the num-
ber of gates is to identify parts of the computation that
only require private inputs from one party. These com-
ponents can be computed locally by that party so do not
require any garbled circuits. By designing circuits at the
circuit level rather than using a high-level language like
SFDL [22], we are able to take advantage of these op-
portunities (for example, by computing the key schedule
for AES locally; see Section 7). For the parts of the com-
putation that need to be done cooperatively, we exploit
several opportunities enabled by our approach to reduce
the number of non-XOR gates needed.

Minimizing bit width. To improve performance, our
circuits are constructed with the minimal width required
for the correctness of the programs. Our framework sup-
ports this by allowing most library circuits to be instan-
tiated with a parameter that specifies the sizes of the in-
puts, a flexibility that was not present in prior implemen-
tations of secure computation. For example, SFDL’s sim-
plicity encourages programmers to count the number of
1s in a 900-bit number by writing code that leads to a
circuit using 10-bit accumulators throughout the compu-
tation even though narrower accumulators are sufficient
for early stages. The Hamming distance, Levenshtein
distance, and Smith-Waterman applications described in
this paper all reduce width whenever possible. This has
a significant impact on the overall efficiency: for exam-
ple, it reduces the number of garbled gates needed for our

Levenshtein-distance protocol by 20% (see Section 5.2).

Fast table lookups. Constant-size lookup tables are fre-
quently used in real-world applications (e.g., the score
matrix for Smith-Waterman and the SBox for AES).
Such lookup tables can be efficiently implemented as a
single generalized m-to-n garbled gate, where m is num-
ber of bits needed to represent the index and n is the num-
ber of bits needed to represent each table entry. This,
in turn, can be implemented within as a garbled cir-
cuit using a generalization of the standard “permute-and-
encrypt” technique [22]. The advantage of this technique
is that the circuit evaluator only needs to perform a single
decryption operation to look up an entry in an arbitrarily
large table. On the other hand, the circuit generator still
needs to produce and transmit the entire table, so the cost
for the circuit generator and the bandwidth are high. If
the table entries have any structure there may be more
efficient alternatives (see Section 7 for an example).

3.3 Circuit Library

Our framework includes a library of circuits defined for
efficient garbled execution. Applications can be built by
composing these circuits, but more efficient implementa-
tions are usually possible when programmers define their
own custom-designed circuits.

The hierarchy of circuits is organized following the
Composite design pattern [6] with respect to the build()
method. Circuits are constructed in a modular fashion,
using Wire objects to connect them together. Appendix A
provides a UML class diagram of the core classes of our
framework. The Wire and Circuit classes follow a varia-
tion of the Observer pattern, which offers a kind of pub-
lish/subscribe functionality [6]. The main difference is
that when a wire w is connected to a circuit on port p
(represented as a position index to the inputWires array
of the circuit), all the observers of the port p automati-
cally become observers of w.

The SimpleCircuit abstract class provides a library of
commonly used functions starting with 2-to-1 AND, OR,
and XOR gates, where the AND and OR gates are im-
plemented using Yao’s garbled-circuit technique and the
XOR gate is implemented using the free-XOR optimiza-
tion. Implementing a NOT gate is also free since it can
be implemented as an XOR with constant 1.

The circuit library also provides more complex circuits
for, e.g., adders, muxers, comparators, min, max, etc.,
where these circuits were designed to minimize the num-
ber of non-XOR gates using the techniques described in
Section 3.2. Optimized circuits for additional functions
can be added, as needed. A circuit for some desired func-
tion f can be constructed from the components provided
in our circuit library, without needing to build the circuit



entirely from AND/OR/NOT gates.
Composite circuits are constructed using the build()

method, with the general structure shown below:

public void build() throws Exception {
createInputWires();
createSubCircuits();
connectWires();
defineOutputWires();
fixInternalWires();

}

To define a new circuit, a user creates a new subclass
of CompositeCircuit. Typically it is only necessary to
override the createSubCircuits(), connectWires(), and de-
fineOutputWires() methods. If internal wires are fixed to
known values, these can be set by overriding fixInternal-
Wires(). Our framework automatically propagates known
signals which improves the run-time whenever any inter-
nal wires are fixed in this way. For example, given a cir-
cuit designed to compute the Hamming distance of two
1024-bit vectors, we can immediately obtain a circuit
computing the Hamming distance of two 512-bit vectors
by fixing 512 of each party’s input wires to 0. Because of
the way we do value propagation, this does not incur any
evaluation cost. As another example, when running the
Smith-Waterman algorithm (see Section 6) certain values
are fixed to public constants and these can be fixed in our
circuit implementing the algorithm in the same way.

3.4 Implementation Details
Throughout this paper, we use 80-bit wire labels for gar-
bled circuits and statistical security parameter k = 80
for oblivious-transfer extension. For the Naor-Pinkas
oblivious-transfer protocol, we use an order-q subgroup
of ℤ∗p with ∣q∣= 128 and ∣p∣= 1024. These settings cor-
respond roughly to the ultra-short security level as used
in TASTY [11]. We used SHA-1 to generate the garbled
truth-table entries. Each entry is computed as:

Enck

w
bi
i ,w

b j
j

(
w

g(bi,b j)

k

)
= SHA-1

(
wbi

i ∥w
b j
j ∥k

)
⊕w

g(bi,b j)

k .

All cryptographic primitives were used as provided by
the Java Cryptography Extension (JCE). Our experi-
ments were performed on two Dell boxes (Intel Core Duo
E8400 3GHz) connected on a local-area network.

4 Hamming Distance

The Hamming distance Hamming(aaa,bbb) between two ℓ-
bit strings aaa = aℓ−1 ⋅ ⋅ ⋅a1a0 and bbb = bℓ−1 ⋅ ⋅ ⋅b1b0 is sim-
ply the number of positions i where bi ∕= ai. Here we
consider secure computation of Hamming(aaa,bbb) where
one party holds aaa and the other has input bbb. Secure

Figure 1: Circuit computing Hamming distance.

Hamming-distance computation has been used as a sub-
routine in several privacy-preserving protocols [15, 26].
As part of their SciFI work, Osadchy et al. [26] show
a protocol based on homomorphic encryption for secure
computation of Hamming distance. To reduce the on-
line cost of the computation, SCiFI uses pre-computation
techniques aggressively. They report that for ℓ = 900
their protocol has an “off-line” running time of 213s and
an “on-line” running time of 0.31s. (Note that their mea-
sure of “off-line running time” includes the time for any
processing done locally by one party before sending a
message to the other party, even when the local process-
ing depends on that party’s input.)

4.1 Circuit-Based Approach

We explore a garbled-circuit approach to secure Ham-
ming-distance computation. The high level design of a
circuit Hamming for computing the Hamming distance is
given in Figure 1. The circuit first computes the XOR
of the two ℓ-bit input strings vvv,vvv′, and then uses a sub-
circuit Counter to count the number of 1s in the result.
The output is a k-bit value, where k = ⌈logℓ⌉.

A naı̈ve design of the Counter submodule is to use ℓ
copies of a k-bit AddOneBit circuit, so that in each of
the ℓ iterations the Counter circuit accumulates one bit
of vvv⊕ vvv′′′ in the k-bit counter.

Since XOR gates are free and an k-bit Adder needs
only k non-XOR gates [17], the Hamming circuit with
the naı̈ve Counter needs ℓ ⋅ ⌈logℓ⌉ non-free gates. We
improve upon this by changing the Counter design so as
to reduce the number of gates while enabling the gates to
be evaluated in parallel.

First, we observe that the widths of the early one-bit
adders can be far smaller than k bits. At the first level,
the inputs are single bits, so a 1-bit adder with carry is
sufficient; at the next level, the inputs are 2-bits, so a 2-bit
adder is sufficient. This follows throughout the circuit,
halving the total number of gates to (ℓ⌈logℓ⌉)

2 .
Second, the serialized execution order is unnecessary.

We improved the naı̈ve design to yield a parallel ver-
sion of Counter given in Figure 2. Our current execution
framework does not support parallel execution, but is de-
signed so that this can be readily supported in a future
version.



0

0

0

0

0

Figure 2: Parallelized Counter circuit.

4.2 Results
We implemented a secure protocol for Hamming-
distance computation using the circuit from the previous
section and the Java framework described in Section 3.
Computing the Hamming distance between two 900-bit
vectors took 0.019 seconds and used 56 KB bandwidth
in the online phase (including garbled circuit generation
and evaluation), with 0.051 seconds (of which the OT
takes 0.018 seconds) spent on off-line preprocessing (in-
cluding garbled circuit setup and the OT extension proto-
col setup and execution). For the same problem, the pro-
tocol used in SCiFI took 0.31 seconds for on-line com-
putation, even at the cost of 213 seconds spent on pre-
processing.3 The SCiFI paper did not report bandwidth
consumption, but we conservatively estimate that their
protocol would require at least 110 KB. In addition to
the dramatic improvement in performance, our approach
is quite scalable. Figure 3 shows how the running time
of our protocol scales with increasing input lengths.

The garbled-circuit implementation has another ad-
vantage as compared to the homomorphic-encryption
approach taken by SCiFI: if the obliviously calculated
Hamming distances are not the final result, but are only
intermediate results that are used as inputs to another
computation, then a garbled-circuit protocol is much bet-
ter in that by its nature it can be readily composed with
any subsequent secure computation. In contrast, this
is very inconvenient for homomorphic-encryption-based
protocols because arbitrary operations over the encryp-
tions are not possible. As an example, in the SCiFI ap-
plications the parties do not want to reveal the computed
Hamming distance h directly but instead only want to
determine if h > hmax for some public value hmax. Os-
adchy et al. had to design a special protocol involving
adding random noise to the h values and using an obliv-

3Osadchy et al. [26] used a 2.8 GHz dual core Pentium D with 2 GB
RAM for their experiments, so the comparison here is reasonably close.
Also note that for their experiments, Osadchy et al. configured their
host to turn off the Nagle ACK delay algorithm, which substantially
improved network performance. This is not realistic for most network
settings and was not done in our experiments.

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
u
n

n
in

g
 T

im
e 

(m
il

is
ec

o
n
d

s)

Input Size (bits in each vector)

Figure 3: On-line running time of our Hamming-distance
protocol for different input lengths.

ious transfer protocol to handle this. In our case, how-
ever, we would only need to add a comparator circuit af-
ter the Hamming-distance computation. In fact, with our
approach further optimizations would be possible when
hmax is known since at most the ⌈loghmax⌉ low-order bits
of the Hamming distance need to be computed.

5 Levenshtein Distance

The Levenshtein distance (also known as edit dis-
tance) between two strings has applications in DNA and
protein-sequence alignment, as well as text comparison.
Given two strings α and β , the Levenshtein distance be-
tween them (denoted Levenshtein(α,β )) is defined as the
minimum number of basic operations (insertion, dele-
tion, or replacement of a single character) that are needed
to transform α into β . In the setting we are concerned
with here, one party holds α and the other holds β and
the parties wish to compute Levenshtein(α,β ).

Algorithm 1 is a standard dynamic-programming al-
gorithm for computing the Levenshtein distance between
two strings. The invariant is that D[i][j] always rep-
resents the Levenshtein distance between α[1 . . .i] and
β [1 . . .j]. Lines 2–4 initialize each entry in the first row
of the matrix D, while lines 5–8 initialize the first col-
umn. Within the two for-loops (lines 8–13), D[i][j] is
assigned at line 11 to be the smallest of D[i−1][j] + 1,
D[i][j−1] + 1, or D[i−1][j−1] + t (where t is 0 if
α[i] = β [j] and 1 if they are different). These corre-
spond to the three basic operations insert α[i], delete
β [j], and replace α[i] with β [j].

5.1 State of the Art
Jha et al. give the best previous implementation of a se-
cure two-party protocol for computing the Levenshtein
distance [16]. Instead of using Fairplay, they developed
their own compiler based on Fairplay, while borrow-



Algorithm 1 Levenshtein(α , β )

1: Initialize D[α.length][β .length];
2: for i← 0 to α.length do
3: D[i][0]← i;
4: end for
5: for j← 0 to β .length do
6: D[0][j]← j;
7: end for
8: for i← 1 to α.length do
9: for j← 1 to β .length do

10: t← (α[i] = β [j]) ? 0 : 1;
11: D[i][j]← min(D[i−1][j]+1, D[i][j−1]+1,

D[i−1][j−1]+t);
12: end for
13: end for

ing the function-description language (SFDL) and the
circuit-description language (SHDL) directly from Fair-
play. Jha et al. investigated three different strategies for
securely computing the Levenshtein distance. Their first
protocol (Protocol 1) directly instantiated Algorithm 1
as an SFDL program, which was then compiled into a
garbled-circuit implementation. Because their garbled-
circuit execution approach required keeping the entire
circuit in memory, they concluded that garbled circuits
could not scale to large inputs. The largest problem size
their compiler and execution environment could handle
before crashing was where the parties’ inputs were 200-
character strings over an 8-bit (256-character) alphabet.

Their second protocol combined garbled circuits with
an approach based on secure computation with shares.
The resulting protocol was scalable, but extremely slow.
Finally, they proposed a hybrid protocol (Protocol 3) by
combining the first two approaches to achieve better per-
formance with scalability.

According to their results, it took 92 seconds for Pro-
tocol 1 to complete a problem of size 100× 100 (i.e.,
two strings of length 100) over an 8-bit alphabet. This
protocol required nearly 2 GB of memory to handle the
200×200 case [16]. Their flagship protocol (Protocol 3),
which is faster for larger problem sizes, took 658 sec-
onds and used 364.3 MB bandwidth on a problem of
size 200×200 over an 8-bit alphabet.

5.2 Circuit-Based Approach
We observed that the circuit used for secure computation
of Levenshtein distance can be much smaller than the cir-
cuit produced from a high-level SFDL description. The
main reason is that the SFDL description does not dis-
tinguish parts of the computation that can be performed
locally by one of the parties, nor does it take advantage
of the actual number of bits required for values at inter-

mediate stages of the computation.
The portion of the computation responsible for initial-

izing the matrix (lines 2–7) does not require any collabo-
ration, and thus can be completed by each party indepen-
dently. Moreover, since the length of each party’s private
string is not meant to be kept secret, the two for-loops
(lines 8–9) can be managed by each party independently
as long as they keep the inner executions synchronized,
leaving only two lines of code (lines 10–11) in the inner-
most loop that need to be computed securely.

Let ℓ denote the length of the parties’ input strings, as-
sumed to be over a σ -bit alphabet. Figure 5a presents a
circuit, LevenshteinCore, that is computationally equiv-
alent to lines 10–11. The T (stands for “test”) circuit in
that figure outputs 1 if the input strings provided are dif-
ferent. Figure 4 shows the structure of the T circuit. (For
the purposes of the figures in this section, we assume
σ = 2 since this is the alphabet size that would be used
for genomic comparisons. Nevertheless, everything gen-
eralizes easily to larger σ .) For a σ -bit alphabet, the T
circuit uses σ −1 non-free gates.

The rest of the circuit computes the minimum of the
three possible edits (line 11 in Algorithm 1). We be-
gin with the straightforward implementation shown in
Figure 5a. The values of D[i−1][j], D[i][j−1], and
D[i−1][j−1] are each represented as ℓ-bit inputs to the
circuit. For now, this is fixed as the maximum value of
any D[i][j] value. Later, we reduce this to the maximum
value possible for a particular core component. Because
of the way we define ℓ there is no need to worry about
the carry output from the adders since ℓ is defined as the
number of bits needed to represent the maximum out-
put value. The circuit shown calculates exactly the same
function as line 11 of Algorithm 1, producing the out-
put value of D[i][j]. The full Levenshtein circuit has one
LevenshteinCore component for each i and j value, con-
nected to the appropriate inputs and producing the output
value D[i][j]. The output value of the last Levenshtein-
Core component is the Levenshtein distance.

Recall that each ℓ-bit AddOneBit circuit uses ℓ non-
free gates, and each ℓ-bit 2-MIN uses 2ℓ non-free
gates. So, for problems on a σ -bit alphabet, each ℓ-bit
NaiveLevenshteinCore circuit uses 7ℓ+ σ − 1 non-free
gates. Next, we present two optimizations that reduce
the number of non-free gates involved in computing the

Figure 4: T circuit.



(a) Naı̈ve (b) Better (c) Final

Figure 5: Implementations of the Levenshtein core circuit.

Levenshtein core to 5ℓ+σ .
Since min(D[i−1][j] + 1,D[i][j−1] + 1) is equiv-

alent to min(D[i−1][j],D[i][j−1]) + 1, we can com-
bine the two AddOneBit circuits (at the top left of Fig-
ure 5a) into a single one, and interchange it with the sub-
sequent 2-MIN as shown in Figure 5b. The circuits in
the dashed box in Figure 5b compute min(x+1,y+t),
where t ∈ {0,1}. This is functionally equivalent to:

if (y> x) then x+1 else y+t.

Hence, we can reuse one of the AddOneBit circuits by
putting it after the GT logic embedded in the MIN cir-
cuit. This leads to the optimized circuit design shown
in Figure 5c. Note that the 1-bit output wire connect-
ing the 2-MIN and 1-bit MUX circuits is essentially the
1-bit output of the GT sub-circuit inside 2-MIN. This
change reduces the number of gates in the core circuit
to 2×2ℓ+ ℓ+σ −1+1 = 5ℓ+σ .

The final optimization takes advantage of the obser-
vation that the minimal number of bits needed to repre-
sent D[i][j] varies throughout the computation. For ex-
ample, one bit suffices to represent D[1][1] while more
bits are required to represent D[i][j] for larger i’s and
j’s. The value of D[i][j] can always be represented using
⌈logmin(i,j)⌉ bits. The number of gates decreases by:

1−
∑
ℓ
i=1 ∑

ℓ
j=1

⌈
log
[

min(i, j)
]⌉

ℓ2⌈logℓ⌉
.

For ℓ = 200 this results in a 25% savings, but the effect
decreases as ℓ grows.

Although it would be possible to describe such a cir-
cuit using a high-level language like SFDL, it would be
very tedious and awkward to do so and would require a
customized program for each input size. Hence, SFDL
programs tend to allocate more than the number of bits
needed to ensure correctness of the protocol output.

5.3 Results

We implemented a protocol for secure computation of
Levenshtein distance using the circuit described above
and our framework from Section 3. The protocol handles
arbitrary input lengths ℓ (it also handles the case where
the input strings have different lengths) and arbitrary al-
phabet sizes 2σ . It completes a problem of size 200×200
over a 4-character alphabet in 16.38 seconds (of which
less than 1% is due to OT) using 49 MB bandwidth. The
dependence of the running time on σ is small: for σ = 8
our protocol takes 18.4 seconds in the 200× 200 case,
which is 29 times faster than the results of Jha et al. [16].

Our protocol is highly scalable, as shown in Figure 6.
The largest problem instance we ran is 2000× 10000
(not shown in the figure), which used a total of 1.29 bil-
lion non-free binary gates and completed in under 223
minutes (at a rate of over 96,000 gates per second). In
addition, our approach enables further optimizations for
many practical scenarios. For example, if the parties are
only interested in determining whether the Levenshtein
distance is below some threshold d, then only the ⌈logd⌉
low-order bits of the result need to be computed and the
number of bits for an entry can be reduced.

6 Smith-Waterman

The Smith-Waterman algorithm (Algorithm 2) is a popu-
lar method for genome and protein alignment [23,31]. In
contrast to Levenshtein distance which measures dissimi-
larity, the Smith-Waterman score measures similarity be-
tween two sequences (higher scores mean the sequences
are more similar). The algorithm has a basic structure
similar to the algorithm for computing Levenshtein dis-
tance. The differences are: (1) the preset entries (the first
row and the first column) are initialized to 0; (2) the al-
gorithm has a more sophisticated core (lines 10–12) that
involves an affine gap function gap and computes the
maximum score across all previous entries in the row and



10

100

1000

10000

200 800 3200 12800

R
u
n

n
in

g
 T

im
e 

(s
ec

o
n

d
s)

DNA Length

Figure 6: Overall running time of our Levenshtein-
distance protocol. (Plotted on a log-log scale; the prob-
lem size is 200×DNA Length and σ = 2.)

column; and (3) the algorithm uses a fixed 2-dimensional
score matrix score.

In practice, the gap function is typically of the form
gap(x) = a+ b ⋅ x where a, b are publicly known, neg-
ative integer constants. By choosing a and b appropri-
ately, one can account for the fact that the evolutionary
likelihood of inserting a single large DNA segment is
much greater than the likelihood of multiple insertions
of smaller segments (of the same total length). A typical
gap function is gap(x) = −12− 7x, which is what we
use in our evaluation experiments.

The 2-dimensional score matrix score quantifies how
well two symbols from an alphabet match each other. In
comparing proteins, the symbols represent amino acids
(one of twenty possible characters including stop sym-
bols). The entries on the diagonal of the score matrix
are larger and positive (since each symbol aligns well
with itself), while all others are smaller and mostly neg-
ative numbers. The actual numbers vary, and are com-
puted based on statistical analysis of a genome database.
We use the BLOSUM62 [12] score matrix for computa-
tion over randomly generated protein sequences.

To obtain the optimal alignment, one first computes
matrix D using Algorithm 2, then finds the entry in D with
the maximum value and traces the path backwards to find
how this value was derived. In a privacy-preserving set-
ting, the full trace may reveal too much information. In-
stead, it may be used as an intermediate value for a con-
tinued secure computation, or just aspects of the result
(e.g., the score or starting position) could be revealed.

6.1 State of the Art

The only previous attempt to implement a secure Smith-
Waterman computation is by Jha et al. [16]. (An alternate
approach, suggested by Szajda et al. [32], is to perform
the computation normally but operating on transformed

Algorithm 2 Smith-Waterman(α , β , gap, score)

1: Initialize D[α.length][β .length];
2: for i← 0 to α.length do
3: D[i][0]← 0;
4: end for
5: for j← 0 to β .length do
6: D[0][j]← 0;
7: end for
8: for i← 1 to α.length do
9: for j← 1 to β .length do

10: rMax← max1≤o≤i(D[i−o][j]+gap(o));
11: cMax← max1≤o≤j(D[i][j−o]+gap(o));
12: D[i][j]← max(0,rMax,cMax,

D[i−1][j−1] + score[α[i]][β [j]]);
13: end for
14: end for

data instead of the parties’ private data. It is unclear,
however, what privacy or correctness properties can be
achieved by this approach.) Jha et al.’s protocol follows
a similar approach to their Levenshtein-distance proto-
cols described in Section 5, and led them to conclude
that garbled-circuit implementations could not handle
even small inputs (their garbled-circuit implementation
for Smith-Waterman could not handle a 25×25 size in-
put). Hence, they invented a hybrid protocol (Protocol 3)
to implement the Smith-Waterman algorithm.

Their prototype had two limitations that prevent direct
performance comparisons:

1. They use only 8 bits to represent each entry of the
dynamic-programming matrix, but for most protein-
alignment problems the similarity scores between
even two short sequences of length 25 can overflow
an 8-bit integer, and for larger sequences it is bound
to overflow. In the BLOSUM62 scoring table, the
typical score for two matching proteins is 6 (and as
high as 11).

2. They used a constant gap function (gap(x) = −4)
that is inappropriate for practical scenarios.

Despite these simplifications in their work, our complete
Smith-Waterman implementation (that does not make
any of these simplifications) still runs more than twice
as fast as their implementation.

6.2 Circuit-Based Approach

The core of the Smith-Waterman algorithm (lines 10–
12 of Algorithm 2) involves ADD and MAX circuits. To
reduce the number of non-free gates, we replace lines
10–11 with the code in Algorithm 3. This allows us to



Algorithm 3 Restructured Smith-Waterman core
rMax← 0;
for o← 1 to i do
rMax← max(rMax, D[i−o][j]+gap(o));

end for
cMax← 0;
for o← 1 to j do
cMax← max(cMax, D[i][j−o]+gap(o));

end for

use much narrower ADD and MAX circuits for some en-
tries since we know the value of D[i][j] is bounded by
⌈log(min(i, j) ⋅maxscore)⌉, where maxscore is the great-
est number in the score matrix. We only need to make
sure that values are appropriately sign-extended (a free
operation) when they are carried between circuits of dif-
ferent width.

We also note that gap(o), which serves as the second
operand to every ADD circuit, can always be safely com-
puted without collaboration since it does not depend on
any private input. Thus, instead of computing gap(o) us-
ing a complex garbled circuit, it can be computed directly
with the output value fed directly into the ADD circuit.
Being able to tightly bound the part of the computation
that really needs to be done privately is another advan-
tage of our approach.

The matrix-indexing operation on score does need to
be done in a privacy-preserving way since its inputs re-
veal symbols in the private inputs of the parties. Since
the row index and column index each can be denoted
as a 5-bit number, we could view the score table as
a 10-to-1 garbled circuit (whereas each entry in truth
table is an encryption of 5 wire keys representing the
output value). Using an extension of the permute-and-
encrypt technique, it leads to a garbled table contain-
ing 210 = 1024 ciphertexts (of which 624 are null en-
tries since the actual table is 20× 20, but which must
be transmitted as random entires to avoid leaking infor-
mation). However, observe that one of the two indexes
is known to the circuit generator since it corresponds to
the generator’s input value at a known location. Hence,
we use the index known to the circuit generator to spe-
cialize the two-dimensional score table lookup to a one-
dimensional table lookup. This reduces the cost of obliv-
ious table lookup to computing and transmitting 20 ci-
phertexts and 12 random entries (to fill the 25-entry ta-
ble) for the circuit generator, while the work for the cir-
cuit evaluator is still performing one decryption.

6.3 Results
Our secure Smith-Waterman protocol takes 415 seconds
and generates 1.17 GB of network traffic running on two

4

40

400

4000

20 40 80 160 320 640 1280

R
u
n

n
in

g
 T

im
e 

(s
ec

o
n

d
s)

Codon Sequence Length

Figure 7: Overall running time of the Smith-Waterman
protocol. (Plotted on a log-log scale; problem size
20×Codon Sequence Length.)

protein sequences of length 60. The garbled-circuit im-
plementation by Jha et al. did not scale to a 60×60 input
size, but their Protocol 3 was able to complete on this
input length in nearly 1000 seconds (but recall that due
to simplifications they used, their implementation would
not usually produce the correct result). Figure 7 shows
the running time of our implementation as a function of
the problem size.

7 AES

AES is a standardized block cipher. We focus on AES-
128 which uses a 128-bit key as well as a 128-bit block
length. The high-level operation of AES is shown in List-
ing 1 (based on Daemen and Rijmen’s report [3]). It takes
a 16-byte array msg and a large byte array key, which is
the output of the AES key schedule. The variable Nr de-
notes the number of rounds (for AES-128, Nr=10).

In privacy-preserving AES, one party holds the key k
and the other holds an input block x. At the end of the
protocol, the second party learns AESk(x). This function-
ality has a number of interesting applications including
encrypted keyword search (see Pinkas et al. [27]).

7.1 Prior Work
Pinkas et al. [27] implement AES as an SFDL program,
which is in turn compiled to a huge SHDL circuit con-
sisting of more than 30,000 gates. Henecka et al. [11]
used the same circuit, but obtained better online perfor-
mance by moving more of the computation to the pre-
computation phase. The best performance results they
reported are 3.3 seconds in total and 0.4 seconds online
per block-cipher evaluation.

7.2 Our Approach
We also use garbled circuits to implement privacy-
preserving AES. However, our technique is distinguished



public static byte[] Cipher(byte[] key, byte[] msg) {
byte[] state = AddRoundKey(key, msg, 0);
for (int round = 1; round < Nr; round++) {

state = SubBytes(state);
state = ShiftRows(state);
state = MixColumns(state);
state = AddRoundKey(key, state, round);

}

state = SubBytes(state);
state = ShiftRows(state);
state = AddRoundKey(key, state, Nr);
return state;

}

Listing 1: The AES block cipher.

from previous ones in that instead of constructing a huge
circuit, we derive our privacy-preserving implementation
around the structure of a traditional program, following
the code in Listing 1. Our guiding principle is to iden-
tify the minimal subset of the computation that needs to
be performed in a privacy-preserving manner, and only
use garbled circuits for that portion of the computation.
Specifically, we observe that the entire key schedule can
be computed locally by the party holding the key. There
is no need to use garbled circuits to compute the key
schedule since it only depends on one party’s data.

Overview. To make the implementation simpler, we ex-
plicitly group the wire labels of every 8-bit byte into a
State object, representing the intermediate results of gar-
bled circuits. Compared to the original code (Listing 1),
we only need to replace the built-in data type byte with
our custom type State in building the code for imple-
menting the garbled circuit. Since the state is repre-
sented by garbled wire labels, we can compose circuits
implementing each execution phase to perform the se-
cure computation.

As noted earlier, the value of the key which is the
output of the key schedule can be executed by Alice
alone, and then used as effective input to a circuit. This
enables us to replace the expensive privacy-preserving
key schedule computation with less expensive oblivious
transfers (which, due to the oblivious-transfer extension,
are cheaper than using garbled circuits).

Second, as in many other real-world AES cipher im-
plementations, the SubBytes subroutine dominates the
resource (e.g., time and hardware area) consumption.
We consider two possible designs for implementing the
SubBytes subroutine. The first design minimizes online
time for situations where preprocessing is possible; the
second minimizes total time in the absence of idle peri-
ods for preprocessing.

Third, the ShiftRows subroutine imposes no cost for

our circuit implementation since this subroutine merely
impacts the wiring but requires no additional gates.

The MixColumns subroutine requires secure compu-
tation, but we design a circuit for this that uses only
XORs. The AddRoundKey subroutine is realized by a Bit-
WiseXOR circuit that simply juxtaposes 128 XOR gates.

SubBytes. The SubBytes component dominates the
time for AES, so we consider two alternate designs.

Minimizing online time. Our first design seeks to min-
imize the online execution time by moving as much of
the work as possible to the preprocessing phase. The
SubBytes subroutine can be implemented with sixteen
8-bit-to-8-bit garbled tables, similar to the score matrix
used in the Smith-Waterman application. From the per-
spective of the circuit generator, this results in a garbled
“gate” with 28× 8 = 2048 ciphertexts. The circuit eval-
uator need only decrypt 8 of these (i.e., one table entry)
at a cost of 4 hash evaluations (since we use 80-bit wire
labels and SHA-1, with 160-bit output length, for the en-
cryption). This design is distinguished by its very low
online cost, so is well suited to situations where the pri-
mary goal is to minimize the online execution time.

Minimizing total time. Our second design aims to
minimize the total execution time by implementing
SubBytes with an efficient circuit derived from the work
of Wolkerstorfer et al. [33]. The two logical components
of SubBytes are computing an inverse over GF(28) and
an affine transformation over GF(2). The circuit we
use to compute the inverse over GF(28) is given in Fig-
ure 8. In essence, GF(28) is viewed as an extension
of GF(24), so that an element of GF(28) is mapped to
a vector of length two over GF(24). A series of oper-
ations over GF(24) are applied to these values, which
are then mapped back to an element in GF(28). In this
circuit diagram, Map and Inverse Map circuits realize
the bijection between GF(28) and (GF(24))2; ⊕ and ⊗
represent addition and multiplication over GF(24), re-
spectively. The affine transform over finite field GF(2)
and all of the component circuits except for the ⊗ and
GF(24)Inverse circuits can be implemented using XOR
gates alone. Since each ⊗ circuit has 16 non-free gates
and each GF(24)Inverse has 10 non-free gates, the to-
tal number of non-free gates per GF(28)Inverse circuit
is 16×3+10 = 58.

MixColumns. The core functionality of MixColumns is
to compute s′c(x) = a(x)⊗ sc(x), where 0≤ c < 4 speci-
fies the column, a(x)= {03}x3+{01}x2+{01}x+{02},
and ⊗ denotes multiplication over finite field GF(28).
Let sc(x) = s3,cx3 + s2,cx2 + s1,cx + s0,c and s′c(x) =



Figure 8: Inverse Circuit over GF(28).

s′3,cx3 + s′2,cx2 + s′1,cx+ s′0,c. This is equivalent to

s′0,c = ({02} ⋅ s0,c)⊕ ({03} ⋅ s1,c)⊕ s2,c⊕ s3,c

s′1,c = s0,c⊕ ({02} ⋅ s1,c)⊕ ({03} ⋅ s2,c)⊕ s3,c

s′2,c = s0,c⊕ s1,c⊕ ({02} ⋅ s2,c)⊕ ({03} ⋅ s3,c)

s′3,c = ({03} ⋅ s0,c)⊕ s1,c⊕ s2,c⊕ ({02} ⋅ s3,c).

It follows that:

s′0,c = ({02} ⋅ s0,c)⊕ ({02} ⋅ s1,c)⊕ s1,c⊕ s2,c⊕ s3,c

s′1,c = s0,c⊕ ({02} ⋅ s1,c)⊕ ({02} ⋅ s2,c)⊕ s2,c⊕ s3,c

s′2,c = s0,c⊕ s1,c⊕ ({02} ⋅ s2,c)⊕ ({02} ⋅ s3,c)⊕ s3,c

s′3,c = ({02} ⋅ s0,c)⊕ s0,c⊕ s1,c⊕ s2,c⊕ ({02} ⋅ s3,c).

The operation {02} ⋅ b is defined as multiplying b by
{02} modulo {1b} in GF(28). If b = b7 ⋅ ⋅ ⋅b1b0, and
z = z7 ⋅ ⋅ ⋅z1z0 = {02} ⋅b, the output bits can be computed
using only XOR gates:

z7 = b6, z6 = b5, z5 = b4, z4 = b3⊕b7,
z3 = b2⊕b7, z2 = b1, z1 = b0⊕ z7, z0 = b7

For every column of 4-byte numbers, the equations
above are implemented by the MixOneColumn circuit
(Figure 9). Each invocation of MixColumns involves
processing four columns, so we can build the Mix-
Columns circuit by juxtaposing four MixOneColumn cir-
cuits. Thus, the MixColumns circuit can be implemented
using only XOR gates.

7.3 Results
Using the first (online-minimizing) SubBytes design,
there are no non-free gates and 160 oblivious table
lookups. The total time for the computation is 1.6 sec-
onds without preprocessing. With preprocessing, the on-
line time to evaluate the circuit is 0.008 seconds (since
the evaluator can always identify the right entry in the

Figure 9: MixOneColumn Circuit.

table to decrypt), more than 50 times faster than the best
previous results [11].

With our second design, the total number of non-free
gates for the entire AES computation is 58× 16× 10 =
9280. The overall time is 0.2 seconds (of which 0.08
seconds is spent on oblivious transfer) without prepro-
cessing, more than 16 times faster than the best previous
results [11]. The online time is 0.06 seconds with pre-
processing enabled.

8 Conclusion

Misconceptions about the performance and scalability of
garbled circuits are pervasive. This perception has led
to the development of several complex, special-purpose
protocols for problems that are better addressed by gar-
bled circuits. We demonstrate that a simple pipelining
approach, along with techniques to minimize circuit size,
is enough to make garbled circuits scale to many large
problems, and practical enough to be competitive with
special-purpose protocols.

We hope improvements in the efficiency of privacy-
preserving computing will enable many sensitive appli-
cations to be deployed. Ours is just a first step towards
that goal, and more work needs to be done before se-
cure computation can be used routinely in practice. Al-
though our approach enables circuits to scale arbitrarily
and make evaluation substantially faster than previous
work, it is still far slower than normal computation. Fur-
ther performance improvements are needed before large
problems can be computed securely in interactive sys-
tems. In addition, our work assumes the semi-honest
threat model which is only suitable for certain scenarios
where only one party obtains the output or both parties
can rely on verified implementations. Efficient protocols
secure against a malicious adversary model appear to be
much more challenging to design.



Acknowledgments

The authors thank Ian Goldberg for his extensive and
very helpful comments and suggestions on this pa-
per. Peter Chapman, Jiamin Chen, Yikan Chen, Austin
DeVinney, Brittany Harris, Sang Koo, abhi shelat, Chi-
Hao Shen, Dawn Song, David Wagner, and Samee Zahur
also provided valuable comments on this work. The au-
thors thank Somesh Jha and Louis Kruger for providing
their Smith-Waterman secure computation implementa-
tion and answering our questions about it.

This work was partly supported by grants from the Na-
tional Science Foundation, DARPA, and a MURI award
from the Air Force Office of Scientific Research. The
contents of this paper do not necessarily reflect the posi-
tion or the policy of the US Government, and no official
endorsement should be inferred.

References

[1] Y. Aumann and Y. Lindell. Security against Covert
Adversaries: Efficient Protocols for Realistic Ad-
versaries. In 4th Theory of Cryptography Confer-
ence, 2007.

[2] M. Bellare and P. Rogaway. Random Oracles Are
Practical: A Paradigm for Designing Efficient Pro-
tocols. In ACM Conference on Computer and Com-
munications Security (CCS), 1993.

[3] J. Daemen and V. Rijmen. The Design of Rijn-
dael: AES — The Advanced Encryption Standard.
Springer Verlag, 2002.

[4] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser,
I. Lagendijk, and T. Toft. Privacy-preserving Face
Recognition. In 9th International Symposium on
Privacy Enhancing Technologies, 2009.

[5] S. Even, O. Goldreich, and A. Lempel. A Random-
ized Protocol for Signing Contracts. Communica-
tions of the ACM, 28(6), 1985.

[6] E. Gamma, R. Helm, R. E. Johnson, and J. Vlis-
sides. Design Patterns — Elements of Reus-
able Object-Oriented Software. Addison-Wesley,
March 1995.

[7] O. Goldreich. Foundations of Cryptography, Vol-
ume 2: Basic Applications. Cambridge University
Press, Cambridge, UK, 2004.

[8] O. Goldreich, S. Micali, and A. Wigderson. How
to Play Any Mental Game, or a Completeness The-
orem for Protocols with Honest Majority. In 19th
ACM Symposium on Theory of Computing (STOC),
1987.

[9] D. Harnik, Y. Ishai, E. Kushilevitz, and J. B.
Nielsen. OT-combiners via Secure Computation.
In 5th Theory of Cryptography Conference, 2008.

[10] C. Hazay and Y. Lindell. Efficient Secure Two-
Party Computation: Techniques and Constructions.
Springer, 2010.

[11] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider,
and I. Wehrenberg. TASTY: Tool for Automating
Secure Two-party Computations. In ACM Confer-
ence on Computer and Communications Security
(CCS), 2010.

[12] S. Henikoff and J. G. Henikoff. Amino Acid Sub-
stitution Matrices from Protein Blocks. In Proceed-
ings of the National Academy of Sciences of the
United States of America, 1992.

[13] Y. Huang, L. Malka, D. Evans, and J. Katz. Ef-
ficient Privacy-preserving Biometric Identification.
In Network and Distributed System Security Sym-
posium (NDSS), 2011.

[14] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Ex-
tending Oblivious Transfers Efficiently. In Ad-
vances in Cryptology — Crypto, 2003.

[15] A. Jarrous and B. Pinkas. Secure Hamming Dis-
tance Based Computation and its Applications.
In Applied Cryptography and Network Security
(ACNS), 2009.

[16] S. Jha, L. Kruger, and V. Shmatikov. Towards Prac-
tical Privacy for Genomic Computation. In IEEE
Symposium on Security & Privacy, 2008.

[17] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider.
Improved Garbled Circuit Building Blocks and Ap-
plications to Auctions and Computing Minima. In
Cryptology and Network Security (CANS), 2009.

[18] V. Kolesnikov and T. Schneider. Improved Garbled
Circuit: Free XOR Gates and Applications. In In-
ternational Colloquium on Automata, Languages,
and Programming (ICALP), 2008.

[19] Y. Lindell and B. Pinkas. An Efficient Protocol for
Secure Two-party Computation in the Presence of
Malicious Adversaries. In Advances in Cryptology
— Eurocrypt, 2007.

[20] Y. Lindell and B. Pinkas. Secure Two-party Com-
putation via Cut-and-Choose Oblivious Transfer. In
7th Theory of Cryptography Conference, 2011.

[21] Y. Lindell, B. Pinkas, and N. Smart. Implement-
ing Two-party Computation Efficiently with Secu-
rity against Malicious Adversaries. In International



Conference on Security and Cryptography for Net-
works (SCN), 2008.

[22] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fair-
play — a Secure Two-party Computation System.
In 13th USENIX Security Symposium, 2004.

[23] R. Mott. Smith-Waterman Algorithm. In Encyclo-
pedia of Life Sciences. John Wiley & Sons, 2005.

[24] M. Naor and B. Pinkas. Computationally Secure
Oblivious Transfer. Journal of Cryptology, 18(1),
2005.

[25] J. B. Nielsen and C. Orlandi. LEGO for Two-party
Secure Computation. In 6th Theory of Cryptogra-
phy Conference, 2009.

[26] M. Osadchy, B. Pinkas, A. Jarrous, and
B. Moskovich. SCiFI: A System for Secure
Face Identification. In IEEE Symposium on
Security & Privacy, 2010.

[27] B. Pinkas, T. Schneider, N. Smart, and S. Williams.
Secure Two-party Computation is Practical. In Ad-
vances in Cryptology — Asiacrypt, 2009.

[28] M. O. Rabin. How to Exchange Secrets with Obliv-
ious Transfer. Technical Report 81, Harvard Uni-
versity, 1981.

[29] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
Efficient Privacy-preserving Face Recognition. In
ICISC 09: 12th International Conference on Infor-
mation Security and Cryptology, 2009.

[30] A. Shelat and C.-H. Shen. Two-output Secure Com-
putation with Malicious Adversaries. In Advances
in Cryptology — Eurocrypt, 2011.

[31] T. F. Smith and M. S. Waterman. Identification
of Common Molecular Subsequences. Journal of
Molecular Biology, 1981.

[32] D. Szajda, M. Pohl, J. Owen, and B. G. Lawson.
Toward a Practical Data Privacy Scheme for a Dis-
tributed Implementation of the Smith-Waterman
Genome Sequence Comparison Algorithm. In Net-
work and Distributed System Security Symposium
(NDSS), 2006.

[33] J. Wolkerstorfer, E. Oswald, and M. Lamberger.
An ASIC Implementation of the AES S-boxes. In
Cryptographers’ Track — RSA, 2002.

[34] A. C.-C. Yao. How to Generate and Exchange Se-
crets. In 27th Symposium on Foundations of Com-
puter Science (FOCS), 1986.



A Core Classes

The core classes in our framework are shown in the UML diagram below.

CompositeCircuit

subCircuits : Circuit[]

build() : void
createSubCircuits() : void
connectWires() : void
defineOutputWires() : void
fixInternalWires() : void

AND_2_1

Circuit
inputWires : Wire[]
outputWires : Wire[]

build() : void
startExecuting(s : State) : State
update(o : TransitiveObservable,arg : Object) : void

SimpleCircuit_2_1

gtt : BigInteger[][]

build() : void
execute() : void

OR_2_1MUX_3_1GT_3_1 XOR_2_1

Wire
value : int
lbl : BigInteger
invd : boolean

connectTo(ws : Wire[],idx : int) : void
fixWire(v : int) : void

TransitiveObserver
<<interface>>

Circuit -> TransitiveObserver
<<realize>>

TransitiveObservable

1

1..*

11..*

ADD1_Lplus1_L


