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Abstract
The Tor anonymisation network allows services, such as
web servers, to be operated under a pseudonym. In pre-
vious work Murdoch described a novel attack to reveal
such hidden services by correlating clock skew changes
with times of increased load, and hence temperature.
Clock skew measurement suffers from two main sources
of noise: network jitter and timestamp quantisation er-
ror. Depending on the target’s clock frequency the quan-
tisation noise can be orders of magnitude larger than the
noise caused by typical network jitter. Quantisation noise
limits the previous attacks to situations where a high
frequency clock is available. It has been hypothesised
that by synchronising measurements to the clock ticks,
quantisation noise can be reduced. We show how such
synchronisation can be achieved and maintained, despite
network jitter. Our experiments show that synchronised
sampling significantly reduces the quantisation error and
the remaining noise only depends on the network jit-
ter (but not clock frequency). Our improved skew esti-
mates are up to two magnitudes more accurate for low-
resolution timestamps and up to one magnitude more ac-
curate for high-resolution timestamps, when compared
to previous random sampling techniques. The improved
accuracy not only allows previous attacks to be executed
faster and with less network traffic but also opens the
door to previously infeasible attacks on low-resolution
clocks, including measuring skew of a HTTP server over
the anonymous channel.

1 Introduction

The Tor [1] hidden service facility allows pseudonymous
service provision, protecting the owners’ identity and
also resisting selective denial of service attacks. High-
profile examples where this feature would have been
valuable include blogs whose authors are at risk of legal
attack [2]. Other Tor hidden websites host suppressed

documents, permit the submission of leaked material,
and distribute software written under a pseudonym.

As Tor is an overlay network, servers hosting hidden
services are accessible both directly and over the anony-
mous channel. Traffic patterns through one channel have
observable effects on the other, thus allowing a service’s
pseudonymous identity and IP address to be linked. Mur-
doch [3] described an attack to reveal hidden services
based on remote clock skew measurement.

Here, the attacker induces a load pattern on the vic-
tim by frequently accessing the hidden service via the
anonymisation network or staying silent. The load
changes will cause temperature changes of the victim,
which in turn induces deviation of the victim’s clock
from the true time – clock skew. At the same time, the
attacker measures the clock skew of a set of candidate
hosts. Viewing induced clock skew as a covert channel
the attacker can send a pseudorandom bit sequence to
the hidden service and see if it can be recovered from the
clock skew measurement of all candidates.

The attacker can measure the target’s clock skew by
obtaining timestamps from the target’s clock and com-
paring these timestamps against the local clock. In pre-
vious research, the clock skew was remotely measured
by random sampling of timestamps from the clock. This
measurement suffers from two sources of noise: varia-
tions in packet delay (jitter) and timestamp quantisation.
Network jitter is often small and skewed towards zero,
even on long-distance paths, if there is no congestion.
Quantisation noise depends on the frequency of the tar-
get’s clock. Depending on the source of available times-
tamps, the quantisation noise can be significantly larger
than the noise introduced by typical network jitter in the
Internet.

To minimise the quantisation error, Murdoch proposed
to use synchronised sampling instead of random sam-
pling. Here, the attacker synchronises the timestamp re-
quests with the target’s clock ticks, attempting to obtain
timestamps immediately after the clock tick, where the
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quantisation error is smallest. This approach has the po-
tential to reduce the quantisation noise to a small margin,
independent of the clock frequency.

Synchronised sampling improves the accuracy of
clock-skew estimation, especially for low-resolution
timestamps, such as the 1 Hz timestamp of the HTTP
protocol. It not only improves the attack proposed by
Murdoch, but also opens the door for new clock-skew
based attacks which were previously infeasible. Further-
more, our technique could be used to improve the iden-
tification of hosts based on their clock skew as proposed
by Kohno et al. [4] if active measurement is possible.

In this paper we propose an algorithm for synchro-
nised sampling and evaluate it in different scenarios. We
show that synchronisation can be achieved, and main-
tained despite network jitter, for different timestamp
sources. Our evaluation results demonstrate that syn-
chronised sampling significantly reduces the quantisa-
tion error by up to two orders of magnitude. The greatest
improvement is achieved for low-frequency timestamps
over low network jitter paths.

The paper is organised as follows. Section 2 intro-
duces the concept of hidden services and describes the
threat model and current attacks. Section 3 provides nec-
essary background about remote clock skew estimation.
Section 4 describes new attacks possible using synchro-
nised sampling and explains how HTTP timestamps are
used for clock skew estimation. Section 5 describes our
proposed synchronised sampling technique. In Section
6 we show the improvements of synchronised sampling
over random sampling in a number of different scenarios.
Section 7 concludes and outlines future work.

2 Revealing Hidden Services

In this paper we focus on the Tor network [1], the lat-
est generation from the Onion Router Project [5]. Tor
is a popular, deployed system, suitable for experimenta-
tion. As of January 2008 there are about 2500 active Tor
servers. Our results should also be applicable to other
low-latency hidden service designs.

2.1 Threat Model
We will assume that the attacker’s goal is to link the
hidden service pseudonym to the identity of its opera-
tor (which in practice can be derived from the server IP
address). The attacks we present here do not require con-
trol of any Tor node. However, we do assume that our
attacker can access hidden services, which means she is
running a client connected to a Tor network.

We also assume that our attacker has a reasonably lim-
ited number of candidate hosts for the hidden service
(say, a few hundred). To mask traffic associated with hid-
den services, many of their hosts are also publicly adver-

tised Tor nodes, so this scenario is plausible. All of our
attack scenarios, with one notable exception, require that
the attacker can access the candidate hosts directly (via
their IP address). To obtain timestamps, we assume the
attacker is able to directly access either the hidden ser-
vice, or another application running on the target. Again,
since many hidden servers are also Tor nodes, it is plau-
sible that at least the Tor application is accessible.

Our attacker cannot observe, inject, delete or modify
any network traffic, other than that to or from her own
computer.

2.2 Existing Attacks
Øverlier and Syverson [6] showed that a hidden service
could be rapidly located because of the fact that a Tor
hidden server selects nodes at random to build connec-
tions. The attacker repeatedly connects to the hidden
service, and eventually a node she controls will be the
one closest to the hidden server. By correlating input and
output traffic, the attacker can discover the server IP ad-
dress.

Murdoch and Danezis [7] presented an attack where
the target visits an attacker controlled website, which in-
duces traffic patterns on the circuit protecting the client.
Simultaneously, the attacker probes the latency of all the
publicly listed Tor nodes and looks for correlations be-
tween the induced pattern and observed latencies. When
there is a match, the attacker knows that the node is on
the target circuit, and so she can reconstruct the path, al-
though not discover the end node.

Murdoch [3] proposed the most recent attack. The at-
tacker induces an on/off load pattern on the target by fre-
quently accessing the hidden service via the anonymisa-
tion network during on-periods, and staying silent during
off-periods. At the same time the attacker measures the
clock skew changes of the set of candidate hosts. The
induced load changes will cause temperature changes
on the target, which in turn cause clock skew changes.
Viewing the load inducement as covert channel, the at-
tacker can send a pseudorandom bit sequence and com-
pare it with the bit sequences recovered from all candi-
dates through the clock skew measurements. Increasing
the duration of the attack increases the accuracy to arbi-
trary levels.

3 Clock-Skew Estimation

All networked devices, such as end hosts, routers, and
proxies, have clocks constructed from hardware and soft-
ware components. A clock consists of a crystal oscilla-
tor that ticks at a nominal frequency and a counter that
counts the number of ticks. The actual frequency of a
device’s clock depends on the environment, such as the
temperature and humidity, as well as the type of crystal.
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It is not possible to directly measure a remote target’s
true clock skew. However, an attacker can measure the
offset between the target’s clock and a local clock, and
then estimate the relative clock skew. For a packet i in-
cluding a timestamp of the target’s clock received by the
measurer, the offset õi is [3]:

õi = t̃i− tri = sctri +

tri

0

s(t)dt− ci/h−di (1)

where t̃i is the estimated target timestamp (including
quantisation error), tri is the (local) time the packet was
received, sc is the constant clock-skew component, the
integral over s(t) is the variable clock skew component,
ci/h is the quantisation noise (for random sampling) and
di is the network delay.

The constant clock skew is estimated by fitting a line
above all points õi while minimising the distance be-
tween each point and the line above it using the linear
programming algorithm described in [8]. This leaves the
variable part of the clock skew and the noise. To estimate
the variable clock skew per time interval, we can use the
same linear programming algorithm for each time win-
dow w.

Figure 1 shows an example of a clock skew measure-
ment across the Internet. The target was 22 hops away
with an average Round Trip Time (RTT) of 325 ms. The
target was a PC with Intel Celeron 2.6 GHz CPU running
FreeBSD 4.10, and measurements were taken from the
TCP timestamp clock, which has a frequency of 1 kHz.
No additional CPU load was generated on the target dur-
ing the measurement.

The constant clock skew sc has already been removed.
The grey dots (·) are the offsets between the two clocks,
the green line (−) on top is the piece-wise estimation
of the variable skew and the blue triangles () are the
negated values of the derivative of the variable clock
skew (the negated clock skew change).

The noise apparent in the figure has two components:
the network jitter (on the path from the target to the at-
tacker) and the quantisation error. Note that the network
jitter also contains noise inherent in measuring when
packets are received by the attacker, and noise caused by
variable delay at the target between generating the times-
tamps and sending packets. In Figure 1, we can clearly
see the 1 ms quantisation noise band below the estimated
slope, caused by the target’s 1 kHz clock. Offsets below
this band were also affected by network jitter.

The samples close to the slope on top are the samples
obtained immediately after a clock tick (with negligible
network jitter). The samples at the bottom of the quanti-
sation noise band are samples obtained immediately be-
fore the clock tick. With the linear programming algo-
rithm, only the samples close to the slope on top con-
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Figure 1: Estimating the variable clock skew

tribute to the accuracy of the measurement. Assuming
an uncongested network, the network jitter is skewed to-
wards zero and small even on long-distance links (see
Figure 10). The quantisation noise is inversely propor-
tional to frequency of the target’s clock. Depending on
the source of timestamps used and the target’s operating
system, the clock frequency is typically between 1 Hz
and 1 kHz (resulting in a noise band between 1 s and
1 ms). If the target does not expose a high-frequency
clock, the quantisation noise can be significantly larger
than the noise caused by network jitter.

To increase the accuracy of the measurement in the
presence of high quantisation noise, w must be set to
larger values, as the probability of getting samples close
to the slope on top increases with the number of sam-
ples. However, large w only allow very coarse measure-
ments. Oversampling provides more fine-grained results
while keeping w large to minimise the error. Without
oversampling the time windows do not overlap and the
start times of windows are S = {0,w,2w, . . . ,nw}. With
oversampling, the windows overlap and hence the win-
dows start at times S = {0,w/o,2w/o, . . . ,nw/o}, where o
is the oversample factor.

However, even with large values of w, over-sampling
has a number of drawbacks. The first estimate is obtained
after w/2 (regardless of o), meaning that for large w it is
impossible to get estimates close to the start and end of
measurements. Furthermore, large w make it impossi-
ble to accurately measure steep clock-skew changes. For
example, such changes happen when a CPU load induce-
ment is started and the temperature increases quickly [3].
Another disadvantage of oversampling is the increased
computational complexity of O(o · n · w) compared to
O(n ·w) without over-sampling to obtain the same num-
ber of clock skew estimates per time interval.
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3.1 Timestamp Sources
Previous research used different timestamps sources
for clock-skew estimation: ICMP timestamp responses,
TCP timestamp header extensions or TCP sequence
numbers [3, 4].

TCP sequence numbers on Linux are the sum of a
cryptographic result and a 1 MHz clock. They provide
good clock-skew estimates over short periods because of
the high frequency, but re-keying of the cryptographic
function every five minutes makes longer measurements
non-trivial [3].

ICMP timestamps have a fixed frequency of 1 kHz.
Their disadvantage is that they are affected by clock ad-
justments done by the Network Time Protocol (NTP) [9],
which makes estimation of variable clock skew more dif-
ficult. Furthermore, ICMP messages are now blocked by
many firewalls.

TCP timestamps have a frequency between 1 Hz and
1 kHz, depending on the operating system. Their ad-
vantage is that they are generated before NTP adjust-
ments are made [4]. TCP timestamps are currently the
best option for clock-skew measurement because they
are widely available and unaffected by NTP (at least for
Linux, FreeBSD and Windows [4]). However, even TCP
timestamps are not available in all situations. They may
not be enabled on certain operating systems and they can-
not be used if there is no end-to-end TCP connection to
the target. For example, they cannot be used through the
Tor anonymisation network.

HTTP timestamps have a frequency of 1 Hz and are
available from every web server. However, these have
not been previously used for clock-skew measurement
due to the low frequency. We describe how to exploit
them in the following section.

4 New Attacks

A major disadvantage of the attack in [3] is that the at-
tacker needs to exchange large amounts of traffic with
the hidden service across the Tor network in order to
accurately measure clock skew changes. It may not be
possible to actually send sufficient traffic because Tor
does not provide enough bandwidth, or because the ser-
vice operator actively limits the request rate to avoid
overload, prevent Denial of Service (DoS) attacks etc.
Furthermore, the attack also relies on an exposed high-
frequency timestamp source (experiments used the 1 kHz
TCP timestamp) on the target for adequate clock-skew
estimation.

The synchronised sampling technique proposed in this
paper improves the existing attack reducing the dura-
tion and amount of network traffic required. Measur-
ing clock-skew requires only a small amount of traf-

fic compared to the amount of traffic needed for load
inducement. For example, the exchange of one re-
quest/response every 1.5 s is sufficient for clock-skew es-
timation.

Our improvements also make the existing attack ap-
plicable in situations where high-resolution timestamps
are not available. For example ICMP or TCP times-
tamps (see Section 3.1) are not available across Tor, since
it only supports TCP and streams are re-assembled on
the client, removing any headers. Because our proposed
technique allows accurate clock-skew estimation from
low-resolution timestamps, HTTP timestamps obtained
from a hidden web server across the Tor network could
be used. The fact that low-resolution timestamps are us-
able opens the door to new variants of the attack.

In the first new attack variant, the attacker measures
the variable clock skew of the hidden service via Tor, and
of all the candidate hosts via accessing the IP addresses
directly. Then the attacker compares the variable clock-
skew pattern of the hidden service with the patterns of
all the candidates. The variable clock skew patterns of
different hosts differ sufficiently over time, and the du-
ration of the attack could be increased arbitrarily. While
this attack has the benefit of not requiring large amounts
of traffic to be exchanged, it could still take a long time.
The attacker must ensure that both timestamp sources are
derived from the same physical source

A quicker version of this attack could only compare
the fixed clock-skew of the target measured via Tor with
the fixed clock-skew measured directly for all candidates.
Kohno et al. showed that clock skew of a particular host
changes very little over time, but the difference between
different hosts is significant [4].

Another new attack variant is based on the idea of us-
ing clock-skew estimates for geo-location [3]. The at-
tacker identifies the location of the candidates based on
their IP addresses and a geo-location database. For ex-
ample, GeoLite is a freely available database that maps
IP addresses to locations with a claimed accuracy of over
98% [10]. The attacker measures the variable clock skew
of the hidden service via Tor. The attacker then estimates
the location based on the variable clock-skew pattern us-
ing the technique described in [3].

This attack works even in cases where the attacker
cannot access the candidate hosts directly. On the other
hand this attack does not allow an unambiguous identi-
fication of the hidden service if candidate locations are
geographically close together.

4.1 Attacking HTTP Timestamps
The key common factor among the new attacks discussed
above is that clock skew must be estimated from re-
sponses sent over the hidden service channel. Previ-
ous work has not examined this option because typically
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Figure 2: HTTP request/response and the timestamps
needed for clock skew estimation

only a low frequency clock is available and quantisation
noise dominates the small effect of temperature on clock
skew. However, in this paper we will show how it is
still possible to exploit this clock. Here, the attacker acts
as HTTP client sending minimal HTTP requests to the
target. Standard web servers include a 1 Hz timestamp
in the Date header of HTTP responses because it was
recommended for HTTP 1.0 [11] and is mandatory for
HTTP 1.1 (excluding 5xx server errors and some 1xx re-
sponses) [12].

Before the HTTP exchange a TCP connection needs
to be established between client and server. Including
TCP connection establishment, it may take at least two
full round trip times from when the client wants to send
a request until the response is received. To minimise the
TCP overhead, the client should open a TCP connection
beforehand. Ideally, it should only open the connection
once and then keep it alive for the duration of the mea-
surement. However, it is not possible for a client to force
a server to keep a connection open. Therefore, when the
client notices that the server has closed the connection,
it should immediately re-open it. Then, the next HTTP
request can be sent at the appropriate time determined by
the synchronised sampling algorithm.

The HTTP timestamp is usually generated after the
server has received the client’s request. We verified that
Apache 2.2.x generates the timestamp after the request
has been successfully parsed [13]. The corresponding
client timestamp is the time the packet containing the
Date header is received, which is usually the first packet
sent by the server after the TCP connection has been fully
established (see Figure 2).

5 Implementation

Previous approaches to remote clock-skew estimation
have sampled timestamps at random times. However,

with the 1 Hz HTTP timestamp, the consequent high
quantisation noise would prevent the attack from accu-
rately measuring the target’s clock skew within a feasible
period. Instead, we must probe the target’s clock imme-
diately after a clock tick occurred, because here the quan-
tisation error is the smallest. To achieve this, the attacker
has to synchronise its probing phase and frequency such
that probes arrive shortly after the clock tick. We as-
sume the attacker selects a nominal sample frequency,
based on the desired accuracy and intrusiveness of the
measurement.

The attacker cannot measure the exact time difference
between the arrival of probe packets and the clock ticks.
To maintain synchronisation, the attacker has to alternate
between sampling before and after the clock tick. Sam-
ples before the clock tick can be corrected by adding one
tick, as their true value is actually closer to the next clock
tick. However, the linear programming algorithm still
cannot use these samples because for them the quantisa-
tion error and jitter are in opposite directions and cannot
be separated.

Figure 3 illustrates the benefit of synchronised sam-
pling over random sampling. The solid step line is the
target’s clock value over time and the dashed line shows
the true time. Random samples are distributed uniformly
between clock ticks whereas synchronised samples are
taken close to the clock ticks. Note that in the figure, the
time for samples before the tick has been corrected as
described above. The quantisation errors are the differ-
ences between samples’ y-values and the true time. The
absolute quantisation errors are shown as bars at the bot-
tom. Synchronised sampling leads to smaller errors in
comparison with random sampling.

Our algorithm is similar to existing Phase Lock Loop
(PLL) techniques used for aligning the frequency and
phase of a signal with a reference [14]. However,
whereas PLL techniques measured the phase difference
of two signals, we can only estimate the phase difference
by detecting whether a sample was taken before or after
the clock tick.

5.1 Algorithm
Initially, the attacker starts probing with the nominal
sample frequency and measures how many clock ticks
occur in one sample interval (target_ticks_per_interval).
The measurement is repeated to obtain the correct num-
ber of ticks.

The attacker cannot measure the exact time difference
between the arrival of a probe packet and the target’s
clock tick. However, the attacker can measure the po-
sition of the probe arrival relative to the target’s clock
tick based on the number of clock ticks that occurred
between the current and the last timestamp of the tar-
get (ticks_diff ). If the number of clock ticks is less
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Figure 3: Advantage of synchronised sampling over ran-
dom sampling

than target_ticks_per_interval, the sample was taken be-
fore the tick and vice versa. If ticks_diff equals tar-
get_ticks_per_interval the position is left unchanged. At
the start of the measurement the position is not known
and the attacker needs to continuously increase or de-
crease the probe interval until a change occurs (initial
phase lock).

The probe interval (the reciprocal of the probe fre-
quency) is controlled using the following mechanism
(see Algorithm 1). The probe interval is adjusted based
on the position errors each time a position change oc-
curs and the previous position was known using a Pro-
portional Integral Derivative (PID) controller [15]. PID
controllers base the adjustment not only on the last er-
ror value, but also on the magnitude and the duration of
the error (integral part) as well as the slope of the error
over time (derivative part). Kp, Ki and Kd are pre-defined
constants of the PID controller.

Alternatively, the linear programming algorithm [8]
could be used to compute the relative clock skew be-
tween attacker and target based on a sliding window of
timestamps. The probe interval is then adjusted based on
the estimated relative clock skew. This technique works
well if the estimates are fairly accurate, which is the case
for high-frequency clocks and low network jitter.

Algorithm 1 Probe interval control

function probe_interval_adjustment(pos, last_pos)
if pos != last_pos and pos != UNKNOWN and

last_pos != UNKNOWN then
return Kp·(last_adj_before + last_adj_behind) +

Ki·(integ_adj_before + integ_adj_behind) +
Kd ·(deriv_adj_before + deriv_adj_behind)

else
return 0

In order to maintain the synchronisation, the attacker
has to enforce regular position changes. This is done
by modifying the time the next probe is sent. If the
current position is before the clock tick the send time
of the next probe is increased based on the last adjust-
ment last_adj_before. If the current position is behind
the clock tick the next probe send time is decreased based
on the last adjustment last_adj_behind. The adjustments
are modified based on how well the attacker is synchro-
nised to the target.

If a change of position occurs between two samples,
the difference between the arrival of the probe packet
and the target’s clock tick is smaller than the last ad-
justment and therefore the next adjustment is decreased.
If no position change occurs the error is assumed to be
larger than the last adjustment and the next adjustment
is increased. The initial probe send-time adjustment is a
pre-defined constant. Algorithm 2 shows the probe send
time adjustment algorithm. α and β are pre-defined con-
stants that determine how quickly the algorithm reacts
(0 < α < 1 and β > 1).

Algorithm 2 Next probe send time adjustment

function next_probe_time_adjustment(pos, last_pos)
if pos = BEFORE then
last_adj = last_adj_before

else
last_adj = last_adj_behind

if pos != last_pos then
return α·last_adj

else
return β·last_adj

The probe frequency and send time adjustments are
limited to a range between pre-defined minimum and
maximum values to avoid very small or very large
changes.

Loss of responses is detected using sequence num-
bers. A sequence number is embedded into each probe
packet such that the target will return the sequence num-
ber in the corresponding response. The actual field de-
pends on the protocol used for probing. For example, for
ICMP the sequence number is the ICMP Identification
field whereas for TCP the sequence number is the TCP
sequence number field.

For HTTP it is not possible to embed a sequence num-
ber directly into the protocol. Instead, sequence numbers
are realised by making requests cycling through a set of
URLs. A sequence number is associated with each URL
and HTTP responses are mapped to HTTP requests using
the content length assumed to be known for each object.
This technique assumes there are multiple objects with
different content lengths accessible on the web server.
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If packet loss is detected, the algorithm adjusts
ticks_diff by subtracting the number of lost packet mul-
tiplied by target_ticks_per_interval. Reordered packets
are considered lost.

Algorithm 3 shows the synchronisation procedure.
Our algorithm works with different timestamps and dif-
ferent clock frequencies. It has been tested with ICMP,
TCP and HTTP timestamps and TCP clock frequencies
of 100 Hz, 250 Hz and 1 kHz.

Algorithm 3 Synchronised sampling

foreach response_packet do
diff = target_timestamp - last_target_timestamp

if target_ticks_per_interval == -1 then
pos = UNKOWN
target_ticks_per_interval = ticks_diff

else if ticks_diff > target_ticks_per_interval then
pos = BEHIND

else if ticks_diff < target_ticks_per_interval then
pos = BEFORE

else
pos = last_pos

probe_interval = probe_interval +
probe_interval_adjustment(pos, last_pos)

probe_time = last_probe_time + probe_interval +
next_probe_time_adjustment(pos, last_pos)

last_pos = pos
last_target_timestamp = target_timestamp
last_probe_time = probe_time

5.2 Errors

Any constant delay does not affect the synchronisation
process. However, changes in delay on the path from
the attacker to the target will affect the arrival time of
the probe packets. This could be caused by jitter in the
sending process (jitter inside the attacker), network jitter
(queuing delays in routers) or jitter in the target’s packet
receiving process.

Often we can assume the network is uncongested and
therefore network jitter is skewed towards zero. This
is usually the case in a LAN (see Section 6). Even on
the Internet many links are not heavily utilised and path
changes (caused by routing changes) are usually infre-
quent. Load-balancing is usually performed on a per-
flow basis to eliminate any negative impacts on TCP and
UDP performance.

However, when measuring clock skew over a Tor cir-
cuit we expect much higher network jitter. A Tor cir-
cuit is composed of a number of network connections
between different nodes. The overall jitter does not only
include the jitter of each connection but also the jitter in-
troduced by the Tor nodes themselves.

The timing of sending probes is not very exact if the
sender is a userspace application. Even if the userspace
send() system call is called at the appropriate time, there
will be a delay before the packet is actually sent onto
the physical medium. The variable part of this delay can
cause probe packets to arrive too late or too early. This
error could be reduced by running the software entirely
in the kernel (e.g. as kernel module), using a real-time
operating system or by using special network cards sup-
porting very precise sending of packets. Any variable
delay in the packet receiving process of the target has
the same effect and is unfortunately out of control of the
attacker. The only way an attacker could reduce such er-
rors would be to adjust the sending of the probe packets
based on a prediction of the jitter inside the target, which
appears to be a challenging task.

Another error is introduced when the relative clock
skew between attacker and target changes and the algo-
rithms needs to adjust the probe frequency. The attacker
is able to control its time keeping and avoid any sudden
clock changes. But if the target is running NTP and the
timestamps are affected by NTP adjustments, changes in
relative clock skew are possible.

6 Evaluation

In the first part of this section we compare the accuracy of
synchronised and random sampling in a LAN testbed us-
ing TCP timestamps with typical target clock frequencies
of 100 Hz, 250 Hz and 1000 Hz, as well as 1 Hz HTTP
timestamps. Since in the LAN network jitter is negligi-
ble the results show the maximum improvement of using
synchronised sampling and demonstrate that our imple-
mentation is working correctly.

In the second part we compare the accuracy of syn-
chronised and random sampling based on TCP times-
tamps across a 22-hop Internet path. The result shows
that even on a long path, synchronised sampling signif-
icantly increases clock-skew estimation accuracy, which
improves on the attack proposed by Murdoch [3].

In the third part we compare the accuracy of synchro-
nised and random sampling for probing a web server run-
ning as a Tor hidden service. We show that synchronised
sampling improves clock skew estimation significantly,
even over a path with high network jitter. We also show
that a hidden web sever can be identified among a can-
didate set by comparing the variable clock skew over
time using synchronised sampling. Furthermore, using
synchronised sampling shows daily temperature patterns
that could not be identified using random sampling.

Finally, we investigate how long our technique needs
for the initial synchronisation (the time until the attacker
has locked on to the phase and frequency of the target’s
clock ticks). We compare the times for HTTP probing
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in a LAN and probing a hidden web server over a Tor
network.

To evaluate the accuracy of synchronised and random
sampling we need to know the true values of the variable
clock skew. Since it is impossible to directly measure
this, we use the following approach. In our tests the tar-
get also runs a UDP server and the attacker runs a UDP
client. The UDP client sends requests to the server at reg-
ular time intervals. Upon receiving a request, the UDP
server returns a packet with a timestamp set to the send
time of the response. The UDP client records the time it
receives the response.

We compute the offset between the two timestamp-
series and estimate the variable clock skew as usual.
Since the UDP-based timestamp has a precision of 1 µs,
the quantisation error is negligible. Although these UDP
estimates are not the true values of the variable clock
skew we use them as baseline for synchronised and ran-
dom sampling, which have much higher quantisation er-
rors. In the following we refer to this as UDP probing or
UDP measurement.

A drawback of our current implementation is that the
UDP server is a userspace program. The server’s re-
sponse timestamp is taken in userspace before the re-
sponse packet is sent via the sendto() system call. To
reduce these timing errors one could implement a kernel-
based version of the UDP server.

We compare the variable skew estimates for synchro-
nised and random sampling with the reference values,
from the UDP measurement, using the root mean square
error (RMSE) of the data values x against the reference
values x̂:

RMS E =


1
N


i

(x̂i− xi)2. (2)

We also compute histograms of the noise band for syn-
chronised and random sampling. The noise is defined
as difference between the variable clock offset and the
UDP timestamp estimated variable skew. For random
sampling the quantisation noise band is always uniform
with width 1/ f , where f is the clock frequency. For syn-
chronised sampling the quantisation noise depends on
how well the synchronised sampling algorithm is able to
track the target’s clock tick. For synchronised sampling
the noise is given by the samples taken after the clock
tick because only these samples are used to estimate the
clock skew.

In all experiments we set α = 0.5 and β = 1.5. For
TCP timestamps the linear programming algorithm was
used to adjust the probe interval with a sliding window of
size 120 (LAN) and 300 (Internet). For HTTP timestamp
measurements the probe interval was adjusted using the

PID controller with Kp = 0.09, Ki = 0.0026 and Kd =

0.02.

6.1 Synchronised vs. Random Sampling in
LAN Environments

The attacker was a PC with Intel Xeon 3.6 GHz Quad-
Core CPU running Linux 2.6. The target was a PC with
Intel Xeon 3.6 GHz Quad-Core CPU running Linux 2.6
with a TCP timestamp frequency of 1 kHz. Attacker and
target were connected to the same Ethernet switch. The
attacker simultaneously performed synchronised, ran-
dom and UDP probing. Synchronised and random prob-
ing had an average sampling period of 1.5 s, the same rate
as in [3]. The UDP probing was performed with a faster
sample rate of 1 s in order to achieve a higher accuracy
for the reference measurement. A second UDP measure-
ment with an average sample rate of 1 s was run in order
to investigate the error between UDP measurements. The
duration of the test was approximately 24 hours.

As the test was run inside a LAN the average RTT was
only 130 µs and the RTT / 2 jitter was small with a max-
imum of 60 µs and a median of 30 µs. Figure 4 shows
histograms of the noise bands of synchronised and ran-
dom sampling with respect to the reference given by the
UDP measurement. For synchronised sampling most of
the offsets are within 100 µs whereas for random sam-
pling we see the expected 1 ms noise band.

In Figure 5 we compare the RMSE of synchronised
sampling, random sampling and the second UDP mea-
surement for different window sizes against the UDP ref-
erence with maximum window size (1800 s). We also
compare the UDP reference against itself at smaller win-
dow sizes. The oversampling factor was chosen such that
the time between two clock-skew estimates is the same
regardless of the window size (30 s). This has the advan-
tage of providing approximately the same number of es-
timates for all window sizes. (For smaller window sizes
there are still more samples, because there are samples
closer to the start and end of the measurement period.)

Figure 5 shows that synchronised sampling performs
significantly better than random sampling. There is a dif-
ference between the second UDP measurement and the
UDP reference, but it is smaller than the difference be-
tween synchronised sampling and the UDP reference for
all window sizes. Hence we conclude the error of UDP
measurements is sufficiently small for using it as base-
line. In the later experiments we performed only one
UDP measurement.

The target clock frequency was 1 kHz, which is the
maximum TCP timestamp frequency of current operat-
ing systems. However, it is likely that in reality many
hosts actually have lower TCP clock frequencies. For ex-
ample, 100 Hz is the clock frequency used by older Linux
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Figure 4: Noise distributions in LAN: synchronised sampling (left) vs. random sampling (right)
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Figure 5: RMSE of synchronised, random sampling and
UDP reference in LAN with a target clock frequency of
1 kHz (log y-axis)
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Figure 6: RMSE of synchronised and random sampling
for different clock frequencies of 100 Hz, 250 Hz and
1 kHz against the same target. Different clock frequen-
cies were obtained by rounding the target timestamps im-
mediately after reception (log y-axis)

and FreeBSD kernels and 250 Hz is the clock frequency
of modern Linux 2.6 kernels.

To evaluate the RMSE for lower clock frequencies we
used the same setup. This time we ran three synchronised
and three random probing processes simultaneously for
24 hours, rounding the target timestamps so that we ef-
fectively measured 100 Hz, 250 Hz and 1 kHz clocks.
Figure 6 shows the RMSE for synchronised and random
sampling for the different target clock frequencies. The
UDP measurement has been omitted for better readabil-
ity. The graph shows that the accuracy of synchronised
sampling does not depend on the clock frequency and
the RMSE for random sampling increases significantly
for lower clock frequencies.

In another LAN experiment we ran a web server
(Apache 2.2.4) on the target and the attacker used HTTP

probing. The average sampling interval was 2 s, because
this is the minimum probe frequency for 1 Hz HTTP
timestamps. The web server was completely idle (except
for the requests generated by the attacker). The duration
of the experiment was approximately 24 hours.

Although the experiment was carried out between the
same two hosts as before, the RTT / 2 jitter was higher
with a maximum of 120 µs and a median of 60 µs. The
web server running in userspace introduced the addi-
tional jitter. Figure 7 shows the noise for synchronised
sampling and random sampling. For synchronised sam-
pling the noise band is only slightly larger than in Figure
4. Because of the higher jitter, the synchronisation is less
accurate. For random sampling the noise band is 1 s be-
cause of the 1 Hz HTTP clock frequency.
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Figure 7: Noise distributions for HTTP probing in LAN: synchronised sampling (left) vs. random sampling (right)
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Figure 8: RMSE of synchronised sampling, random sam-
pling and the UDP measurement for HTTP probing in
LAN

Figure 8 shows the RMSE of synchronised sampling,
random sampling and the UDP measurement against the
reference at maximum window size. The RMSEs of syn-
chronised sampling and UDP reference are very similar
to the results in Figure 5. Because of the large noise
band, the RMSE for random sampling is more than two
orders of magnitude above the RMSE for synchronised
sampling. This demonstrates that our new algorithm is
able to effectively measure clock skew changes for low
frequency clocks, an infeasible task for random sam-
pling.

6.2 Synchronised vs. Random Sampling
Across Internet Paths

The attacker was the same machine as in Section 6.1
located in Cambridge, UK. The target was 22 hops
away located in Canberra, Australia. The target was a
FreeBSD 4.10 PC with a kernel tick rate set to 1000 and

therefore the TCP timestamp frequency was 1 kHz. The
average RTT between measurer and target was 325 ms.
The duration of the measurement was approximately 21
hours. We performed synchronised, random and UDP
probing.

Despite the high RTT, the jitter is small and skewed
towards zero as shown in Figure 10. Figure 9 shows
histograms of the noise bands of synchronised and ran-
dom sampling in relation to the reference given by the
UDP measurement. For synchronised sampling most of
the offsets are within 250 µs of the reference whereas for
random sampling there is the expected 1 ms noise band.

Figure 11 shows the RMSE of synchronised sampling,
random sampling and the UDP reference against the
UDP reference at maximum window size using the same
parameters as in Section 6.1. The gain of synchronised
sampling is smaller compared to Section 6.1 because of
the higher network jitter but still significant for smaller
window sizes.

6.3 Attacking Tor Hidden Services
For our measurements we used a private Tor network.
Our Tor nodes are distributed across the Internet running
on Planetlab [16] nodes. The main reason for using a pri-
vate Tor network instead of the public Tor network is the
poor performance of hidden services in the public Tor
network. Besides huge network jitter that prevents any
accurate clock-skew measurements, hidden services al-
ways disappeared after few hours preventing longer mea-
surements. While currently it is difficult to carry out the
attack in the public Tor network, it should become easier
in the future, as the Tor team is now working on improv-
ing the performance of hidden services.

We selected 18 Planetlab widely geographically dis-
tributed nodes on which we ran Tor nodes (of which
3 were directory authorities). We selected nodes that
had low CPU utilisation at the time of selection. An
Intel Core2 2.4 GHz with 4 GB RAM running Linux
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Figure 9: Noise distributions for Internet path: synchronised sampling (left) vs. random sampling (right)
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Figure 10: RTT jitter / 2 on path across the Internet
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Figure 11: RMSE of synchronised sampling and random
sampling for different window sizes measured across In-
ternet path.

2.6.16 was used to run another Tor node and the hidden
web server. No load is induced on the server, so any
clock skew changes are based on the ambient tempera-
ture changes.

An Intel Celeron 2.4 GHz with 1.2 GB of RAM run-
ning Linux 2.6.16 was used to run a Tor client and our
probe tool. We used tsocks [17] with the latest Tor re-
lated patches to enable our tool to interact with the Tor
client via the SOCKS protocol and to properly handle
Tor hidden server pseudonyms.

First we performed an experiment similar to the ones
in Section 6.1 and Section 6.2. Synchronised and random
sampling was performed across the Tor network, while
UDP probing was performed directly between the client
machine and the hidden server. The measurement dura-
tion was approximately 18 hours.

The average RTT between client and hidden server
across Tor was 885 ms. Figure 14 shows the RTT / 2

jitter, which is considerably higher than in the previ-
ous measurements. Figure 12 shows histograms of the
noise bands of synchronised and random sampling. For
random sampling it shows the expected 1 s noise band.
For synchronised sampling the noise is greatly reduced.
Most of the offsets are ≤ 100 ms away from the slope
given by the UDP reference.

Figure 13 shows the change of clock skew for synchro-
nised sampling as blue squares () and random sampling
as red circles () and the UDP reference as black line
(−) for a window size of 1800 s and 2 hours. The noise
is much smaller for synchronised sampling compared to
random sampling especially for small window sizes. For
a window size of 2 hours one can clearly see a daily tem-
perature change of the reference curve with the temper-
ature (and hence the clock skew) dropping during night
hours and suddenly increasing in the morning. The syn-
chronised sampling curve shows the same pattern with



222 17th USENIX Security Symposium USENIX Association

Median: 10.44 ms

Noise (ms)

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0 100 200 300 400 500 600

Median: 517.24 ms

Noise (ms)

D
en

si
ty

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0 200 400 600 800 1000 1200

Figure 12: Noise distributions Planetlab Tor testbed: synchronised sampling (left) vs. random sampling (right)
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Figure 13: Estimated clock skew changes for hidden service in Planetlab Tor network for a window size of 1800 s
(left) and 2 hours (right)

added noise. An attacker could use such daily tempera-
ture patterns to estimate the location of the target based
on geo-location. In contrast to random sampling, the pat-
tern is not clearly visible because of the much higher
noise.

In Figure 15 we compare the RMSE of synchro-
nised sampling, random sampling and the UDP reference
against the UDP reference at maximum window size.
The RMSE of synchronised sampling is almost one mag-
nitude lower than the RMSE for random sampling even
for window sizes as large as two hours.

In the second experiment we performed the actual at-
tack. We treated all 19 Tor nodes as candidates and mea-
sured their clock skew directly using TCP timestamps
(synchronised sampling). At the same time we measured
the clock skew of the hidden web service via Tor based
on HTTP timestamps using synchronised and random
sampling simultaneously. The experiment lasted about

ten hours. One of the nodes stopped responding in the
middle of the experiment.

Figure 16 shows the RMSE of the HTTP clock skew
estimates obtained from the hidden service via Tor us-
ing random sampling or synchronised sampling and TCP
clock skew estimates of all candidate nodes. We used a
window size of three hours and set the oversample factor
so one clock estimate is obtained every 30 s. (For smaller
windows random sampling was not able to consistently
select one candidate as the best and would alternate be-
tween a few including the correct one for the whole du-
ration of the measurement.)

The RMSE of the HTTP timestamp estimate and the
correct candidate is shown as thick grey (red on colour
display) line while RMSEs for all other candidates are
shown as thin black lines.

The RMSE between the synchronised sampling Tor
measurement and the direct measurement of the correct
candidate is very small, and with increasing duration be-
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Figure 15: RMSE of synchronised, random sampling and
UDP reference for hidden web service in Planetlab Tor
network (log y-axis)
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Figure 16: RMSE of HTTP clock skew estimates obtained from hidden service via Tor using random sampling (left)
or synchronised sampling (right) and TCP clock skew estimates of all candidate nodes

comes significantly smaller than the RMSE of the Tor
measurement and all the other candidates except one. For
random sampling all RMSEs are fairly high indicating
that there is no good match of the variable clock skew
of the Tor hidden service with any of the candidates. In
the second half of the experiment the RMSE of the cor-
rect candidate becomes smallest, but only by a very small
margin.

Synchronised sampling is able to identify the correct
candidate much faster than random sampling, needing
only 139 minutes compared to 287 minutes. These times
are from the start of the measurement until the RMSE of
the correct candidate becomes smallest. They include the
initial 1.5 hours it takes to get the first clock skew esti-
mate (because of the three hour windows), which is not
included in Figure 16.

While the variable clock skew of the TCP clock and
userspace clock (HTTP timestamps) are a good match
the fixed skew of the two clocks differs on our Linux
2.6.16 box running the hidden server. This makes it im-
possible to evaluate an identification of the hidden server
based on the fixed skew. However, since we know the
true fixed skew of the userspace clock, we can anal-
yse how long it takes to get an estimate using synchro-
nised and random sampling of the HTTP clock. We use
the data from the previous measurement and assume the
skew estimate is correct if within 0.5 parts per million
of the true value. Again synchronised sampling outper-
forms random sampling, needing only 23 minutes com-
pared to 102 minutes.
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Figure 17: Initial synchronisation for HTTP probing in LAN (left) and probing a hidden web server over the Tor
network (right)

6.4 Initial synchronisation time
We briefly analyse the initial synchronisation time of our
technique. The initial synchronisation is the time it takes
until the attacker has locked on to the phase and fre-
quency of the target’s clock ticks.

Figure 17 plots the values of adj_before, adj_behind
and probe_interval (see Section 5 for the meaning of the
variables) over the number of clock samples (taken from
the target’s clock every 2 s). The y-axis range is limited to
between −10 ms and 10 ms and the x-axis is limited to the
first 1000 clock samples. Note that before adjustments
are always positive, while behind adjustments are always
negative.

In the LAN experiment initial synchronisation is es-
tablished after only about 40 samples (roughly 1.5 min-
utes) and further adjustments and probe interval changes
are small (less than 500 µs and 100 µs respectively).
When probing over the Tor network synchronisation is
more difficult because of the much higher network jitter.
Consequently initial synchronisation takes longer (about
70 clock samples or roughly 2.5 minutes) and the algo-
rithm is forced to make larger adjustments and probe in-
terval changes (of up to several milliseconds).

7 Conclusions and Future Work

In this paper we have presented and evaluated an
improved technique for remote clock-skew estimation
based on the idea of synchronised sampling proposed by
Murdoch [3]. The evaluation shows that our new algo-
rithm provides more accurate clock skew estimates than
the previous random sampling based approach. Espe-
cially if the target clock frequency is low, accuracy im-
proves by up to two orders of magnitude. Since the ac-
curacy of our synchronised sampling technique is inde-

pendent of the target’s clock frequency, it is possible to
estimate variable clock-skew from low-resolution times-
tamps.

Our technique does not only improve the previously
proposed clock-skew related attack on Tor [3], it also
opens the door for new variants of the attack, which we
have described in the paper. Our technique could also be
used to improve the identification of hosts based on their
clock skew as proposed in [4] if active measurement is
possible.

Currently our Tor test network is fairly small and only
has one hidden server. While we showed that our new
proposed attacks work in principle, we did not provide a
comprehensive evaluation. In future work we plan to ex-
tend our test network and add more hidden servers. This
will allow us to perform a more detailed evaluation in-
cluding analysing the sensitivity and specificity of our
attack based on the different parameters.

The synchronised sampling implementation could be
further improved by fine-tuning the algorithm param-
eters. Our current implementation runs in userspace,
which naturally limits the ability to exactly time probe
packets. A kernel implementation, using network cards
capable of high-precision traffic generation, or use of a
real-time kernel, could achieve higher accuracy.
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