
USENIX Association 17th USENIX Security Symposium 349

VoteBox: a tamper-evident, verifiable electronic voting system

Daniel Sandler Kyle Derr Dan S. Wallach
Rice University

{dsandler,derrley,dwallach}@cs.rice.edu

Abstract

Commercial electronic voting systems have experienced
many high-profile software, hardware, and usability fail-
ures in real elections. While it is tempting to abandon
electronic voting altogether, we show how a careful ap-
plication of distributed systems and cryptographic tech-
niques can yield voting systems that surpass current sys-
tems and their analog forebears in trustworthiness and us-
ability. We have developed the VoteBox, a complete elec-
tronic voting system that combines several recent e-voting
research results into a coherent whole that can provide
strong end-to-end security guarantees to voters. VoteBox
machines are locally networked and all critical election
events are broadcast and recorded by every machine on
the network. VoteBox network data, including encrypted
votes, can be safely relayed to the outside world in real
time, allowing independent observers with personal com-
puters to validate the system as it is running. We also
allow any voter to challenge a VoteBox, while the election
is ongoing, to produce proof that ballots are cast as in-
tended. The VoteBox design offers a number of pragmatic
benefits that can help reduce the frequency and impact of
poll worker or voter errors.

1 Introduction

Electronic voting is at a crossroads. Having been aggres-
sively deployed across the United States as a response
to flawed paper and punch-card voting in the 2000 U.S.
national election, digital-recording electronic (DRE) vot-
ing systems are themselves now seen as flawed and un-
reliable. They have been observed in practice to pro-
duce anomalies that may never be adequately explained—
undervotes, ambiguous audit logs, choices “flipping” be-
fore the voter’s eyes. Recent independent security reviews
commissioned by the states of California and Ohio have
revealed that every DRE voting system in widespread use
has severe deficiencies in design and implementation, ex-
posing them to a wide variety of vulnerabilities; these sys-
tems were never engineered to be secure. As a result,

many states are now decertifying or restricting the use of
DRE systems.

Consequently, DREs are steadily being replaced with
systems employing optical-scan paper ballots. Op-scan
systems still have a variety of problems, ranging from ac-
cessibility issues to security flaws in the tabulation sys-
tems, but at least the paper ballots remain as evidence
of the voter’s original intent. This allows voters some
confidence that their votes can be counted (or at least re-
counted) properly. However, as with DRE systems, if er-
rors or tampering occur anywhere in this process, there is
no way for voters to independently verify that their ballots
were properly tabulated.

Regardless, voters subjectively prefer DRE voting sys-
tems [15]. DREs give continuous feedback, support many
assistive devices, permit arbitrary ballot designs, and so
on. Furthermore, unlike vote-by-mail or Internet voting,
DREs, used in traditional voting precincts, provide privacy,
protecting voters from bribery or coercion. We would ide-
ally like to offer voters a DRE-style voting system with ad-
ditional security properties, including:

1. Minimized software stack
2. Resistance to data loss in case of failure or tampering
3. Tamper-evidence: a record of election day events

that can be believably audited
4. End-to-end verifiability: votes are cast as intended

and counted as cast

The subject of this paper is the VB, a complete
electronic voting system that offers these essential prop-
erties as well as a number of other advantages over exist-
ing designs. Its user interface is built from pre-rendered
graphics, reducing runtime code size as well as allow-
ing the voter’s exact voting experience to be examined
well before the election. VBes are networked in a
precinct and their secure logs are intertwined and repli-
cated, providing robustness and auditability in case of fail-
ure, misconfiguration, or tampering. While all of these
techniques have been introduced before, the novelty of
this work lies in our integration of these parts to achieve
our architectural security goals.

350 17th USENIX Security Symposium USENIX Association

Notably, we use a technique adapted from Benaloh’s
work on voter-initiated auditing [4] to gain end-to-end
verifiability. Our scheme, which we term immediate bal-
lot challenge, allows auditors to compel any active voting
machine to produce proof that it has correctly captured
the voter’s intent. With immediate challenges, every sin-
gle ballot may potentially serve as an election-day test of
a VB’s correctness. We believe that the VB ar-
chitecture is robust to the kinds of failures that commonly
occur in elections and is sufficiently auditable to be trusted
with the vote.

In the next section we will present background on the
electronic voting problem and the techniques brought to
bear on it in our work. We expand on our design goals
and describe our VB architecture in Section 3, and
share details of our implementation in Section 4. The pa-
per concludes with Section 5.

2 Background
2.1 Difficulties with electronic voting

While there have been numerous reports of irregularities
with DRE voting systems in the years since their introduc-
tion, the most prominent and indisputable problem con-
cerned the ES&S iVotronic DRE systems used by Sarasota
County, Florida, in the November 2006 general election.
In the race for an open seat in the U.S. Congress, the mar-
gin of victory was only 369 votes, yet over 18,000 votes
were officially recorded as “undervotes” (i.e., cast with no
selection in this particular race). In other words, 14.9%
of the votes cast on Sarasota’s DREs for Congress were
recorded as being blank, which contrasts with undervote
rates of 1–4% in other important national and statewide
races. While a variety of analyses were conducted of the
machines and their source code [18, 19, 51], the official
loser of the election continued to challenge the results
until a Congressional investigation failed to identify the
source of the problem [3]. Whether the ultimate cause
was mechanical failure of the voting systems or poor hu-
man factors of the ballot design, there is no question that
these machines failed to accurately capture the will of
Sarasota’s voters [2, 14, 20, 25, 34, 36, 37, 50].

While both security flaws and software bugs have re-
ceived significant attention, a related issue has also ap-
peared numerous times in real elections using DREs: op-
erational errors and mistakes. In a 2006 primary election
in Webb County, Texas—the county’s first use of ES&S
iVotronic DRE systems—a number of anomalies were dis-
covered when, as in Sarasota, a close election led to le-
gal challenges to the outcome [46]. Test votes were acci-
dentally counted in the final vote tallies, and some ma-
chines were found to have been “cleared” on election

day, possibly erasing votes. More recently, in the Jan-
uary, 2008 Republican presidential primary in South Car-
olina, several ES&S iVotronic systems were incorrectly
configured subsequent to pre-election testing, resulting in
those machines being inoperable during the actual elec-
tion. “Emergency” paper ballots ran out in many precincts
and some voters were told to come back later [11].

All of these real-world experiences, in conjunction with
recent highly critical academic studies, have prompted
a strong backlash against DRE voting systems or even
against the use of computers in any capacity in an elec-
tion. However, computers are clearly beneficial.

Clearly, computers cannot be trusted to be free of tam-
pering or bugs, nor can poll workers and election officials
be guaranteed to always operate special-purpose comput-
erized voting systems as they were intended to be used.
Our challenge, then, is to reap the benefits that computers
can offer to the voting process without being a prisoner to
their costs.

2.2 Toward software independence

Recently, the notion of software independence has been
put forth by Rivest and other researchers seeking a way
out of this morass:

A voting system is software-independent if an
undetected change or error in its software can-
not cause an undetectable change or error in an
election outcome. [41]

Such a system produces results that are verifiably cor-
rect or incorrect irrespective of the system’s implementa-
tion details; any software error, whether malicious or be-
nign, cannot yield an erroneous output masquerading as a
legitimate cast ballot.

Conventionally, the only way to achieve true software
independence is to allow the voter to directly inspect, and
therefore confirm to be correct, the actual cast vote record.
Since we cannot give voters the ability to read bits off
a flash memory card, nor can we expect them to men-
tally perform cryptographic computations, we are limited
in practice to paper-based vote records, which can be di-
rectly inspected.

Optical-scan voting systems, in which the voter marks
a piece of paper that is both read immediately by an elec-
tronic reader/tabulator and reserved in case of a manual
audit, achieve this goal at the cost of sacrificing some
of the accessibility and feedback afforded by DREs. The
voter-verifiable paper audit trail (VVPAT) allows a DRE to
create a paper record for the voter’s inspection and for
use in an audit, but it has its own problems. Adding print-
ers to every voting station dramatically increases the me-
chanical complexity, maintenance burden, and failure rate

USENIX Association 17th USENIX Security Symposium 351

of those machines. A report on election problems in the
2006 primary in Cuyahoga County, Ohio found that 9.6%
of VVPAT records were destroyed, blank, or “compromised
in some way” [23, p. 93].

Even if the voter’s intent survives the printing process,
the rolls of thermal paper used by many current VVPAT
printers are difficult to audit by hand quickly and accu-
rately [22]. It is also unclear whether voters, having al-
ready interacted with the DRE and confirmed their choices
there, will diligently validate an additional paper record.
(In the same Cuyahoga primary election, a different re-
port found that voters in fact did not know they were sup-
posed to open a panel and examine the printed tape under-
neath [1, p. 50].)

2.2.1 Reducing the trusted computing base

While the goal of complete software independence is
daunting, the state of the art in voting research approaches
it by drawing a line around the set of functions that are
essential to the correctness of the vote and aggressively
evicting implementation from that set. If assurance can
come from reviewing and auditing voting software, then it
should be easier to review and ultimately gain confidence
in a smaller software stack.

Pre-rendered user interface (PRUI) is an approach to re-
ducing the amount of voting software that must be re-
viewed and trusted [53]. Exemplified by Pvote [52], a
PRUI system consists of a ballot definition and a software
system to present that ballot. The ballot definition com-
prises a state machine and a set of static bitmap images
corresponding to those states; it represents what the voter
will see and interact with. The software used in the vot-
ing machine acts as a virtual machine for this ballot “pro-
gram.” It transitions between states and sends bitmaps to
the display device based on the voter’s input (e.g., touch-
screen or keypad). The voting VM is no longer responsi-
ble for text rendering or layout of user interface elements;
these tasks are accomplished long in advance of election
day when the ballot is defined by election officials.

A ballot definition of this sort can be audited for cor-
rectness independently of the voting machine software
or the ballot preparation software. Even auditors with-
out knowledge of a programming language can follow the
state transitions and proofread the ballot text (already ren-
dered into pixels). The voting machine VM should still be
examined by software experts, but this code—critical to
capturing the user’s intent—is reduced in size and there-
fore easier to audit. Pvote comprises just 460 lines of
Python code, which (even including the Python interpreter
and graphics libraries) compares favorably against current
DREs: the AccuVote TS involves over 31,000 lines of C++
running atop Windows CE [52]. The system we describe

in Section 3 applies the PRUI technique to reduce its own
code footprint.

Sastry et al. [47] describe a system in which program
modules that must be trusted are forced to be small and
clearly compartmentalized by dedicating a separate com-
puter to each. The modules operate on isolated CPUs and
memory, and are connected with wires that may be ob-
served directly; each module may therefore be analyzed
and audited independently without concern that they may
collude using side channels. Additionally, the modules
may be powered off and on between voters to eliminate
the possibility of state leaking from voter to voter. (Sec-
tion 4.1 shows how we approximate this idea in software.)

2.2.2 The importance of audit logs

Even trustworthy software can be misused, and this prob-
lem occurs with unfortunate regularity in the context of
electronic voting. We expect administrators to correctly
deploy, operate, and maintain large installations of unfa-
miliar computer systems. DRE vendors offer training and
assistance, but on election day there is typically very little
time to wait for technical support while voters queue up.

In fact, the operational and procedural errors that can
(and do) occur during elections is quite large. Machines
unexpectedly lose power, paper records are misplaced,
hardware clocks are set wrong, and test votes (see §2.2.3
below) are mingled with real ballots. Sufficient trauma to
a DRE may result in the loss of its stored votes.

In the event of an audit or recount, comprehensive
records of the events of election day are essential to estab-
lishing (or eroding) confidence in the results despite these
kinds of election-day mishaps. Many DREs keep elec-
tronic audit logs, tracking election day events such as “the
polls were opened” and “a ballot was cast,” that would
ideally provide this sort of evidence to post facto auditing
efforts. Unfortunately, current DREs entrust each machine
with its own audit logs, making them no safer from failure
or accidental erasure than the votes themselves. Similarly,
the audit logs kept by current DREs offer no integrity safe-
guards and are entirely vulnerable to attack; any malicious
party with access to the voting machine can trivially alter
the log data to cover up any misdeeds.

The A [46] system confronts this problem by
using techniques from distributed systems and secure log-
ging to make audit logs into believable records. All vot-
ing machines in a polling place are connected in a private
broadcast network; every election event that would con-
ventionally be written to a private log is also “announced”
to every voting machine on the network, each of which
also logs the event. Each event is bound to its origina-
tor by a digital signature, and to earlier events from other
machines via a hash chain. The aggressive replication

352 17th USENIX Security Symposium USENIX Association

protects against data loss and localized tampering; when
combined with hash chains, the result is a hash mesh [48]
encompassing every event in the polling place. An at-
tacker (or an accident) must now successfully compro-
mise every voting machine in the polling place in order to
escape detection. (In Section 3 we describe how VB
uses and extends the A voting protocol.)

2.2.3 Logic and accuracy testing; parallel testing

Regrettably, the conventional means by which voting ma-
chines are deemed trustworthy is through testing. Long
before election day, the certification process typically in-
volves some amount of source code analysis and test-
ing by “independent testing authorities,” but these pro-
cesses have been demonstrably ineffective and insuffi-
cient. Logic and accuracy (L&A) testing is a common
black-box testing technique practiced by elections offi-
cials, typically in advance of each election. L&A testing
typically takes the form of a mock election: a number of
votes are cast for different candidates, and the results are
tabulated and compared against expected values. The goal
is to increase confidence in the predictable, correct func-
tioning of the voting systems on election day.

Complementary to L&A is parallel testing, performed
on election day with a small subset of voting machines se-
lected at random from the pool of “live” voting systems.
The units under test are sequestered from the others; as
with L&A testing, realistic votes are cast and tallied. By
performing these tests on election day with machines that
would otherwise have gone into service, parallel testing is
assumed to provide a more accurate picture of the behav-
ior of other voting machines at the same time.

The fundamental problem with these tests is that they
are artificial: the conditions under which the test is per-
formed are not identical to those of a real voter in a real
election. It is reasonable to assume that a malicious piece
of voting software may look for clues indicating a test-
ing situation (wrong day; too few voters; evenly-spread
voter choices) and behave correctly only in such cases. A
software bug may of course have similar behavior, since
faulty DREs may behave arbitrarily. We must also take
care that a malicious poll worker cannot signal the testing
condition to the voting machine using a covert channel
such as a “secret knock” of user interface choices.

Given this capacity to “lay low” under test, the problem
of fooling a voting machine into believing it is operat-
ing in a live vote-capture environment is paramount [26].
Because L&A testing commonly makes explicit use of a
special code path, parallel testing is the most promising
scenario. It presents its own unique hazard: if the test
successfully simulates an election-day environment, any
votes captured under test will be indistinguishable from

legitimate ballots cast by real voters, so special care must
be taken to keep these votes from being included in the
final election tally.

2.3 Cryptography and e-voting

Many current DREs attempt to use encryption to protect
the secrecy and integrity of critical election data; they uni-
versally fail to do so [6, 8, 24, 32]. Security researchers
have proposed two broad classes of cryptographic tech-
niques that go beyond simple encryption of votes (sym-
metric or public-key) to provide end-to-end guarantees to
the voter. One line of research has focused on encrypt-
ing whole ballots and then running them through a series
of mix-nets [9] that will re-encrypt and randomize ballots
before they are eventually decrypted (see, e.g., [43, 35]).
If at least one of the mixes is performed correctly, then
the anonymity of votes is preserved. This approach has
the benefit of tolerating ballots of arbitrary content, al-
lowing its use with unconventional voting methods (e.g.,
preferential or Condorcet voting). However, it requires a
complex mixing procedure; each stage of the mix must
be performed by a different party (without mutual shared
interest) for the scheme to be effective.

As we will show in Section 3, VB employs ho-
momorphic encryption [5] in order to keep track of each
vote. A machine will encrypt a one for each candidate (or
issue) the voter votes for and a zero elsewhere. The ho-
momorphic property allow the encrypted votes for each
candidate to be summed into a single total without being
decrypted. This approach, also used by the Adder [30]
and Civitas [12] Internet e-voting systems, typically com-
bines the following elements:

Homomorphic Tallying The encryption system allows
encrypted votes to be added together by a third
party without knowledge of individual vote plain-
texts. Many ciphers, including El Gamal public key
encryption, can be designed to have this property.
Anyone can verify that the final plaintext totals are
consistent with the sum of the encrypted votes.

Non-Interactive Zero Knowledge (NIZK) proofs In any
voting system, we must ensure that votes are well
formed. For example, we may want to ensure that
a voter has made only one selection in a race, or
that the voter has not voted multiple times for the
same candidate. With a plain-text ballot containing
single-bit counters (i.e., 0 or 1 for each choice) this
is trivial to confirm, but homomorphic counters ob-
scure the actual counter’s value with encryption. By
employing NIZKs [7], a machine can include with its
encrypted votes a proof that each vote is well-formed
with respect to the ballot design (e.g., at most one

USENIX Association 17th USENIX Security Symposium 353

candidate in each race received one vote, while all
other candidates received zero votes). Moreover, the
attached proof is zero-knowledge in the sense that the
proof reveals no information that might help decrypt
the encrypted vote. Note that although NIZKs like this
can prevent a voting machine from grossly stuffing
ballots, they cannot prevent a voting machine from
flipping votes from one candidate to another.

The Bulletin Board A common feature of most crypto-
graphic voting systems is that all votes are posted for
all the world to see. Individual voters can then verify
that their votes appear on the board (e.g., locating a
hash value or serial number “receipt” from their vot-
ing session within a posted list of every encrypted
vote). Any individual can then recompute the homo-
morphic tally and verify its decryption by the elec-
tion authority. Any individual could likewise verify
the NIZKs.

2.4 Non-cryptographic techniques

In response to the difficult in explaining cryptography
to non-experts and as an intellectual exercise, cryptog-
raphers have designed a number of non-cryptographic
paper-based voting systems that have end-to-end secu-
rity properties, including ThreeBallot [39, 40], Punch-
Scan [17], Scantegrity1, and Prêt à Voter [10, 42]. These
systems allow voters to express their vote on paper and
take home a verifiable receipt. Ballots are complicated
with multiple layers, scratch-off parts, or other additions
to the traditional paper voting experience. A full analysis
of these systems is beyond the scope of this paper.

3 Design
We now revisit our design goals from Section 1 and dis-
cuss their implementation in VB, our complete pro-
totype voting system.

3.1 User interface

Goals achieved: DRE-like user experience; minimized
software stack

A recent study [15] bolsters much anecdotal evidence sug-
gesting that voters strongly prefer the DRE-style electronic
voting experience to more traditional methods. Cleaving
to the DRE model (itself based on the archetypical comput-
erized kiosk exemplified by bank machines, airline check-
in kiosks, and the like), VB presents the voter with
a ballot consisting of a sequence of pages: full screens
containing text and graphics. The only interactive ele-
ments of the interface are buttons: rectangular regions of
the screen attached to either navigational behavior (e.g.,

“go to next page”) or selection behavior (“choose candi-
date X”). (VB supports button activation via touch
screen and computer mouse, as well as keyboards and as-
sistive technologies). An example VoteBox ballot screen
is shown in Figure 1.

This simple interaction model lends itself naturally to
the pre-rendered user interface, an idea popularized in the
e-voting context by Yee’s Pvote system [52, 53]. A pre-
rendered ballot encapsulates both the logical content of
a ballot (candidates, contests, and so forth) and the en-
tire visual appearance down to the pixel (including all
text and graphics). Generating the ballot ahead of time
allows the voting machine software to perform radically
fewer functions, as it is no longer required to include any
code to support text rendering (including character sets,
Unicode glyphs, anti-aliasing), user interface element lay-
out (alignment, grids, sizing of elements), or any graphics
rendering beyond bitmap placement.

More importantly, the entire voting machine has no
need for any of these functions. The only UI-related ser-
vices required by VB are user input capture (in the
form of (x, y) pairs for taps/clicks, or keycodes for other
input devies) and the ability to draw a pixmap at a given
position in the framebuffer. We therefore eliminate the
need for a general-purpose GUI window system, dramati-
cally reducing the amount of code on the voting machine.

In our pre-rendered design, the ballot consists of a set
of image files, a configuration file which groups these im-
age files into pages (and specifies the layout of each page),
and a configuration file which describes the abstract con-
tent of the ballot (such as candidates, races, and proposi-
tions). This effectively reduces the voting machine’s user
interface runtime to a state machine which behaves as fol-
lows. Initially, the runtime displays a designated initial
page (which should contain instructional information and
navigational components). The voter interacts with this
page by selecting one of a subset of elements on the page
which have been designated in the configuration as be-
ing selectable. Such actions trigger responses in VoteBox,
including transitions between pages and commitment of
ballot choices, as specified by the ballot’s configuration
files. The generality of this approach accommodates ac-
cessibility options beyond touch-screens and visual feed-
back; inputs such as physical buttons and sip-and-puff
devices can be used to generate selection and navigation
events (including “advance to next choice”) for VB.
Audio feedback could also be added to VB state
transitions, again following the Pvote example [52].

We also built a ballot preparation tool to allow election
administrators to create pre-rendered ballots for VB.
This tool, a graphical Java program, contains the layout

354 17th USENIX Security Symposium USENIX Association

BACKGROUND
LABEL ID=L1

LABEL ID=L10

LABEL ID=L2

LABEL ID=L50

GROUP TOGGLE BUTTON ID=B100

GROUP TOGGLE BUTTON ID=B101

GROUP TOGGLE BUTTON ID=B102

LABEL ID=L51

PREV PG ID=L1000 ID=L1001 NEXT PG

LABEL ID=L1002 LABEL ID=L1003

LABEL ID=L13

LABEL ID=L14

LABEL ID=L16

LABEL ID=L52

L2

L1

L50

L51

L52

B100_selected

B100_deselected

(i) (ii) (iii)

Figure 1: Sample VOTEBOX page. The voter sees (i); a schematic for the page is shown in (ii); a subset of the pixmaps used to produce
(i) are shown, along with their corresponding IDs, in (iii).

and rendering logic that is omitted from VB. In ad-
dition to clear benefits that come from reducing the com-
plexity of the voting machine, this also pushes many of
the things that might change from election to election or
from state to state out of the voting machine. For exam-
ple, Texas requires a straight-ticket voting option while
California forbids it. With VB, the state-specific be-
havior is generated by the ballot preparation tool. This
greatly simplifies the software certification process, as
testing labs would only need to consider a single version
of VB rather than separate versions customized for
each state’s needs. Local groups interested in the election
could then examine the local ballot definitions for correct-
ness, without needing to trust the ballot preparation tool.

3.2 Auditorium

Goals achieved: Defense against data loss; tamper-
evident audit logs

The failures described in Section 2 indicate that voting
machines cannot be trusted to store their own data—or,
at least, must not be solely trusted with their own data.
We observe that modern PC equipment is sufficiently in-
expensive to be used as a platform for e-voting (and note
that most DREs are in fact special-purpose enclosures and
extensions on exactly this sort of general-purpose hard-
ware). VB shares with recent peer-to-peer systems
research the insight that modern PCs are noticeably over-
provisioned for the tasks demanded of them; this is partic-
ularly true for e-voting given the extremely minimal sys-
tem requirements of the user interface described in Sec-
tion 3.1. Such overpowered equipment has CPU, disk,
memory, and network bandwidth to spare, and VB
puts these to good use addressing the problem of data loss
due to election-day failure.

Our design calls for all VBes in a polling place
to be joined together in a broadcast network2 as set forth

in our earlier work on A [46]. An illustration
of this technique can be found in Figure 2. The polling
place network is not to be routable from the Internet; in-
deed, an air gap should exist preventing Internet packets
from reaching any VBes. We will see in Section 3.3
how data leaving the polling place is essential to our com-
plete design; such a one-way linkage can be built while
retaining an air gap [27].

Each voting machine on the network broadcasts every
event it would otherwise record in its log. As a result, the
loss of a single VB cannot result in the loss of its
votes, or even its record of other election events. As long
as a single voting machine survives, there will be some
record of the votes cast that day.

Supervisor console. We can treat broadcast log mes-
sages as communication packets, with the useful side ef-
fect that these communications will be logged by all par-
ticipating hosts. VB utilizes this feature of A-
 to separate machine behavior into two categories: (1)
features an election official would need to use, and (2) fea-
tures a voter would need to use. This dichotomy directly
motivates our division of VB into two software ar-
tifacts: (1) the VB “booth” (that is, the voting ma-
chine component that the voter interacts with, as described
in Section 3.1), and (2) the “supervisor” console.

The supervisor is responsible for the coordination of
all election-day events. This includes opening the polls,
closing the polls, and authorizing a vote to be captured at
a booth location. For more practical reasons (because the
supervisor console should run on a machine in the polling
place that only election officials have physical access to,
and, likewise, because election officials should never need
to touch any other machine in the polling place once the
election is running), this console also reports the status of
every other machine in the polling place (including not

USENIX Association 17th USENIX Security Symposium 355

LAN (no internet connectivity)

(voter)

booths
• Listen for vote authorizations
• Capture voter selections
• Broadcast encrypted votes
• Are stateless & swappable at any time
• Record all broadcast messages

supervisor
• Monitors, displays booth status
• Broadcasts vote authorization
• Records all broadcast messages

supervisor
(backup)

• Ready to assume supervisor’s
responsibilities at any time

• Records all broadcast messages

Figure 2: Voting in the Auditorium. VBes are connected in a broadcast network. All election events (including cast ballots) are
replicated to every voting machine and entangled with hash chaining. A supervisor console allows poll workers to use the A
channel to distribute instructions to voting machines (such as “you are authorized to cast a ballot”) such that those commands also enter
the permanent, tamper-evident record.

only connectivity status, but also various “vital sign” in-
formation, such as its battery power). During the course
of an election day, poll workers are able to conduct the
election entirely from the supervisor console.

In addition, as an intended design decision, the separa-
tion of election control (on the supervisor console) from
voting (at the VB booth) fundamentally requires that
every important election event be a network communica-
tion. Because we only allow this communication to hap-
pen in the form of A broadcast messages, these
communications are always logged by every participating
VB host (supervisors and booths included).

Hash chaining and tamper evidence. A also
provides for hash chaining of log entries; when combined
with broadcast replication, the result is a lattice of hash
values that entangles the timelines of individual voting
machines. This technique, adapted from the field of se-
cure audit logging [33, 48], yields strong evidence of tam-
pering or otherwise omitted or modified records. No at-
tacker or failure can alter any individual log entry with-
out invalidating all subsequent hashes in the record. We
prevent attackers from performing this attack in advance
or arrears of the election by bookending the secure log:
before the polls open, a nonce (or “launch code”) is dis-
tributed, perhaps by telephone, to each polling place; this
nonce is inserted into the beginning of the log. Simi-
larly, when the polls are closed, election supervisors can
quickly publish the hash of the completed log to prevent
future tampering.

3.3 Cast ballots and immediate ballot challenge

Goals achieved: End-to-end verifiability

In VB, cast ballots are published in the global A-
 log, implicitly revealing the contents of the cast
ballot to any party privy to the log data. This, of course,
includes post-election auditors seeking to verify the va-
lidity and accuracy of the result, but it also could include
partisans seeking proof of a bribed voter’s choice (or some
other sort of malicious activity). In fact, the contents of
the cast ballot need to be encrypted (in order to preserve
anonymity), but they also need to fit into a larger software
independent design. That is, if the software (because of
bugs or malice) corrupts a ballot before encrypting it, this
corruption must be evident to the voter.

An end-to-end verifiable voting system is defined as
one that can prove to the voter that (1) her vote was cast
as intended and (2) her vote was counted as cast. Our de-
sign provides a challenge mechanism, which can verify
the first property, along with real-time public dissemina-
tion of encrypted votes, which can satisfy the second.

Counters. We begin by encoding a cast ballot as an n-
tuple of integers, each of which can be 1 or 0. Each ele-
ment of the n-tuple represents a single choice a voter can
make, n is the number of choices, and a value of 1 encodes
a vote for the choice while 0 encodes a vote against the
choice. (In the case of propositions, both “yes” and “no”
each appear as a single “choice,” and in the case of candi-
dates, each candidate is a single “choice.”) The cast ballot

356 17th USENIX Security Symposium USENIX Association

structure needs not be organized into races or contests;
it is simply an opaque list of choice values. We define
each element as an integer (rather than a bit) so that bal-
lots can be homomorphically combined. That is, ballots
A = (a0, a1, . . .) and B = (b0, b1, . . .) can be summed to-
gether to produce a third ballot S = (a0 + b0, a1 + b1, . . .),
whose elements are the total number of votes for each
choice.3

Homomorphic encryption of counters. VB uses
an El Gamal variant that is additively homomorphic to en-
crypt ballots before they are cast. Each element of the
tuple is independently encrypted. The encryption and de-
cryption functions are defined as follows:

E(c, r, ga) = gr, (ga)r f c

D(gr, gar f c, a) =
gar f c

(gr)a

D(gr, gar f c, r) =
gar f c

(ga)r

where f and g are group generators, c is the plaintext
counter, r is randomly generated at encryption time, a is
the decryption key, and ga is the public encryption key.
To decrypt, a party needs either a or r in order to con-
struct gar. (gr, which is given as the first element of the
cipher tuple, can be raised to a, or ga, which is the public
encryption key, can be raised to r.) After constructing gar,
the decrypting party should divide the second element of
the cipher tuple by this value, resulting in f c.

To recover the counter’s actual value c, we must invert
the discrete logarithm f c, which of course is difficult. As
is conventional in such a situation, we accelerate this task
by precomputing a reverse mapping of f x → x for 0 <
x ≤ M (for some large M) so that for expected integral
values of c the search takes constant time. (We fall back
to a linear search, starting at M+1, if c is not in the table.)

We now show that our encryption function is additively
homomorphic by showing that when two ciphers are mul-
tiplied, their corresponding counters are added:

E(c1, r1) E(c2, r2) = gr1 , gar1 f c1 gr2 , gar2 f c2
= gr1+r2 , ga(r1+r2) f c1+c2

Immediate ballot challenge. To allow the voter to ver-
ify that her ballot was cast as intended, we need some way
to prove to the voter that the encrypted cipher published
in the A log represents the choices she actually
made. This is, of course, a contentious issue wrought with
negative human factors implications.

We term our solution to the first requirement of end-to-
end verifiability “immediate ballot challenge,” borrowing

an idea from Benaloh [4]. A voter should be able (on
any arbitrary ballot) to challenge the machine to produce
a proof that the ballot was cast as intended. Of course,
because these challenges generally force the voting ma-
chine to reveal information that would compromise the
anonymity of the voter, challenged ballots must be dis-
carded and not counted in the election. A malicious vot-
ing system now has no knowledge of which ballots will
be challenged, so it must either cast them all correctly or
risk being caught if it misbehaves.

Our implementation of this idea is as follows. Before
a voter has committed to her vote, in most systems, she
is presented with a final confirmation page which offers
two options: (1) go back and change selections, or (2)
commit the vote. Our system, like Benaloh’s, adds one
more page at the end, giving the voter the opportunity to
challenge or cast a vote. At this point, Benaloh prints a
paper commitment to the vote. VBwill similarly en-
crypt and publish the cast ballot before displaying this fi-
nal “challenge or cast” screen. If the voter chooses to cast
her vote, VB simply logs this choice and behaves
as one would expect, but if the voter, instead, chooses to
challenge VB, it will publish the value for r that it
passed to the encryption function (defined in equation 1)
when it encrypted the ballot in question. Using equation
1 and this provided value of r, any party (including the
voter) can decrypt and verify the contents of the ballot
without knowing the decryption key. An illustration of
this sequence of events is in Figure 3.

In order to make this process immediate, we need a way
for voters (or voter advocates) to safely observe A-
 traffic and capture their own copy of the log. It is
only then that the voter will be able to check, in real time,
that VB recorded and encrypted her preferences cor-
rectly. To do this, we propose that the local network con-
structed at the polling place be connected to the public In-
ternet via a data diode [27], a physical device which will
guarantee that the information flow is one way. 4 This
connectivity will allow any interested party to watch the
polling location’s A traffic in real time. In fact,
any party could provide a web interface, suitable for ac-
cess via smart phones, that could be used to see the voting
challenges and perform the necessary cryptography. This
arrangement is summarized in Figure 4. Additionally, on
the output side of the data diode, we could provide a stan-
dard Ethernet hub, allowing challengers to locally plug in
their own auditing equipment without relying on the elec-
tion authority’s network infrastructure. Because all A-
 messages are digitally signed, there is no risk of
the challenger being able to forge these messages.

USENIX Association 17th USENIX Security Symposium 357

review
selections

make
selections

ballot
committed

ballot
confirmed

FINISHEDNEXT

BACK

CAST

thanks for
challenging

ballot
challenged

C
H

A
LLEN

G
E

thank
youcast?

Figure 3: Challenge flow chart. As the voter advances past the review screen to the final confirmation screen, VB commits to the
state of the ballot by encrypting and publishing it. A challenger, having received this commitment (the encrypted ballot) out-of-band (see
Figure 4), can now invoke the “challenge” function on the VB, compelling it to reveal the contents of the same encrypted ballot.
(A voter will instead simply choose “cast”.)

OK

challengerobservers

tap

commitments
& challenge
responses

challenge
verification

results

uploader

data
diode

internet
device

polling place challenge
center

internet

U

Figure 4: Voting with ballot challenges. The polling place from Figure 2 sends a copy of all log data over a one-way channel to
election headquarters (not shown) which aggregates this data from many different precincts and republishes it. This enables third-party
“challenge centers” to provide challenge verification services to the field.

Implications of the challenge scheme. Many states
have laws against connecting voting machines or tabula-
tion equipment to the Internet—a good idea, given the
known security flaws in present equipment. Our cryp-
tographic techniques, combined with the data diode to
preserve data within the precinct, offer some mitigation
against the risks of corruption in the tallying infrastruc-
ture. An observer could certainly measure the voting vol-
ume of every precinct in real-time. This is not generally
considered to be private information.

VB systems do not need a printer on every voting
machine; however, Benaloh’s printed ballot commitments
offer one possibly valuable benefit: they allow any voter
to take the printout home, punch the serial number into
a web site, and verify the specific ballot ciphertext that
belongs to them is part of the final tally, thus improving
voters’ confidence that their votes were counted as cast. A
VB lacking this printer cannot offer voters this op-

portunity to verify the presence of their own cast ballot
ciphertexts. Challengers, of course, can verify that the ci-
phertexts are correctly encrypted and present in the log in
real-time, thus increasing the confidence of normal vot-
ers that their votes are likewise present to be counted as
cast. Optionally, Benaloh’s printer mechanism could be
added to VB, allowing voters to take home a printed
receipt specifying the ciphertext of their ballot.

Similarly, VB systems do not need NIZKs. While
NIZKs impose limits on the extent to which a malicious
VB can corrupt the election tallies by corrupting in-
dividual votes, this sort of misbehavior can be detected
through our challenge mechanism. Regardless, NIZKs
would integrate easily with our system and would provide
an important “sanity checking” function that can apply to
every ballot, rather than only the challenged ballots.

358 17th USENIX Security Symposium USENIX Association

3.4 Procedures

To summarize the VB design, let us review the steps
involved in conducting an election with the system.

Before the election.

1. The ballot preparation software is used to create the
necessary ballot definitions.

2. Ballot definitions are independently reviewed for
correctness (so that the ballot preparation software
need not be trusted).

3. Ballot definitions and key material (for vote encryp-
tion) are distributed to polling places along with
VB equipment.

Election day: opening the polls.

4. The A network is established and con-
nected to the outside world through a data diode.

5. All supervisor consoles are powered on, connected to
the A network, and one of them is enabled
as the primary console (others are present for failover
purposes).

6. Booth machines are powered on and connected to the
A network.

7. A “launch code” is distributed to the polling place by
the election administrator.

8. Poll workers open the polls by entering the launch
code.

The last step results in a “polls-open” Ames-
sage, which includes the launch code. All subsequent
events that occur will, by virtue of hash chaining, prov-
ably have occurred after this “polls-open” message, which
in turn means they will have provably occurred on or after
election day.

Election day: casting votes.

9. The poll worker interacts with the supervisor con-
sole to enable a booth for the voter to use. This in-
cludes selecting a machine designated as not in use
and pressing an “authorize” button.

10. The supervisor console broadcasts an authorization
message directing the selected machine to interact
with a voter, capture his preference, and broadcast
back the result.

11. If the booth does not have a copy of the ballot defi-
nition mentioned in the authorization message, it re-
quests that the supervisor console publish the ballot
definition in a broadcast.

12. The booth graphically presents the ballot to the voter
and interacts with her, capturing her choices.

13. The booth shows a review screen, listing the voter’s
choices.

14. If the voter needs to make changes, she can do that
by navigating backward through the ballot screens.
Otherwise, she indicates she is satisfied with her se-
lections.

15. The booth publishes the encrypted ballot over the
network, thereby committing to its contents. The
voter may now choose one of two paths to complete
her voting session:

Cast her vote by pressing a physical button. The
VB signals to the voter that she may exit the
booth area; it also publishes a message declaring that
the encrypted ballot has been officially cast and can
no longer be challenged.

Challenge the machine by invoking a separate UI
function. The challenged VB must now reveal
proof that the ballot was cast correctly. It does so
by publishing the secret r used to encrypt the bal-
lot; the ballot is no longer secret. This proof, like all
A traffic, is relayed to the outside world,
where a challenge verifier can validate against the
earlier commitment and determine whether the ma-
chine was behaving correctly. The voter or poll
workers can contact the challenge verifier out-of-
band (e.g., with a smartphone’s web browser) to dis-
cover the result of this challenge. Finally, the ballot
committed to in step 15 is nullified by the existence
of the proof in the log. The VB resets its state.
The challenge is complete.

Election day: closing the polls.

16. A poll worker interacts with the supervisor console,
instructing it to close the polls.

17. The supervisor console broadcasts a “polls-closed”
message, which is the final message that needs to go
in the global log. The hash of this message is sum-
marized on the supervisor console.

18. Poll workers note this value and promptly distribute
it outside the polling place, fixing the end of the elec-
tion in time (just as the beginning was fixed by the
launch code).

19. Poll workers are now free to disconnect and power
off VBes.

3.5 Attacks on the challenge system

A key design issue we must solve is limiting communica-
tion to voters, while they are voting, that might be used
to coerce them into voting in a particular fashion. If a
voter could see her vote’s ciphertext before deciding to

USENIX Association 17th USENIX Security Symposium 359

challenge it, she could be required to cast or challenge
the ballot based on the ciphertext (e.g., challenge if even,
cast if odd). An external observer could then catch her if
she failed to vote as intended. Kelsey et al. [29] describe
a variety of attacks in this fashion. Benaloh solves this
problem by having the paper commitment hidden behind
an opaque shield. We address it by requiring a voter to
state that she intend to perform a challenge prior to ap-
proaching a voting system. At this point, a poll worker
can physically lock the “cast ballot” button and enable the
machine to accept a vote as normal. While the VB
has no idea it is being challenged, the voter (or, absolutely
anybody else) can freely use the machine, videotape the
screen, and observe its network behavior. The challenger
cannot, however, cast the ballot.

Consequently, in the common case when voters wish to
cast normal votes, they must not have access to the A-
 network stream while voting. This means cellu-
lar phones and other such equipment must be banned to
enforce the privacy of the voter. (Such a ban is already
necessary, in practice, to defeat the use of cellular tele-
phones to capture video evidence of a vote being cast on
traditional DRE systems.)

A related attack concerns the behavior of a VB
once a user has gone beyond the “review selections”
screen to the “cast?” screen (see Figure 3). If the voter
wants to vote for Alice and the machine wants to defraud
Alice, the machine could challenge votes for Alice while
displaying the UI for a regular cast ballot. To address these
phantom challenges, we take advantage of A.
Challenge messages are broadcast to the entire network
and initiate a suitable alarm on the supervisor console. For
a genuine challenge, the supervisor will be expecting the
alarm. Otherwise, the unexpected alarm would cue a su-
pervisor to offer the voter a chance to vote again.5 As a re-
sult, a malicious VBwill be unable to surreptitiously
challenge legitimate votes. Rather, if it misbehaved a suf-
ficient number of times, it would be taken out of service,
limiting the amount of damage it could cause.

4 Discussion
4.1 Implementation notes and experience

Development of VB has been underway since May
of 2006; in that time the software has gone through a num-
ber of metamorphoses that we briefly describe here.

Secure software design. When we began the VB
implementation project, our initial goal was to develop a
research platform to explore both security and human fac-
tors aspects of the electronic voting problem. Our early
security approaches were: (1) reduced trusted code base
through use of PRUI due to Yee [53]; (2) software simula-

tion of hardware-enforced separation of components after
the example of Sastry et al. [47]; and (3) hardware sup-
port for strict runtime software configuration control (i.e.,
trusted computing hardware).

Our original strategy for achieving trustworthy hard-
ware was to target the Xbox 360 video game platform,6

initially developing VB as a Managed C# applica-
tion. The Xbox has sophisticated hardware devoted to
ensuring that the system runs only certified software pro-
grams, which is an obviously useful feature for a DRE.
Additionally, video game systems are designed to be inex-
pensive and to withstand some abuse, making them good
candidates for use in polling places. Finally, a lack of a
sophisticated operating system is no problem for a pre-
rendered user interface; we were fairly confident that an
Xbox could handle displaying static pixmaps. We quickly
found, however, that development for a more widely-
available software platform was both easier for us and
more likely to result in a usable research product.

By the end of the 2006 summer we had ported VB
to Java. We had no intention of relying on Java’s AWT
graphical interface (and its dependency, in turn, on a win-
dow system such as X or Windows). Instead, we intended
to develop VB atop SDL, the Simple DirectMedia
Layer,7 a dramatically simpler graphics stack. (The Pvote
system also uses SDL as a side-effect of its dependency on
the Pygame library [52].) Regrettably, the available Java
bindings for SDL suffered from stability problems, forcing
us to run our PRUI atop a limited subset of AWT (including
only blitting and user input events).

Our intended approach to hardware-inspired software
module separation was twofold: force all modules to
interact with one another through observable software
“wires,” and re-start the Java VM between voters to pre-
vent any objects lingering from one voting session to the
next. Both of these ideas are due to Sastry’s example. In
the end, only the latter survived in our design; VB
essentially “reboots” between voters, but complexity and
time constraints made our early software wire prototypes
unworkable.

Insecure software design. As mentioned above, we in-
tended from the beginning that VB would serve as
a foundation for e-voting research of different stripes, in-
cluding human factors studies. This would prove to be
its earliest test; VB found use in various studies car-
ried out by Byrne, Everett, and Greene between 2006 and
2008 [15, 16]. Working in close coordination with these
researchers, we developed ballot designs and tuned the
VB user experience to meet their research needs.
(The specific graphic design of the ballot shown in Fig-
ure 1 is owed to this collaboration.)

360 17th USENIX Security Symposium USENIX Association

We also modified VB to emit fine-grained data
tracking the user’s every move: the order of visited
screens, the time taken to make choices, and so forth. This
sort of functionality would be considered a breach of voter
privacy in a real voting system, so we took great pains to
make very clear the portions of the code that were inserted
for human factors studies. Essential portions of this code
were sequestered in a separate module that could be left
out of compilation to ensure that no data collection can
happen on a “real” VB; later we made this distinc-
tion even more stark by dividing the VB codebase
into two branches in our source control system.

It is noteworthy that some of the most interesting hu-
man factors results [16, studies 2 and 3] require a mali-
cious VB. One study measured how likely voters are
to notice if contests are omitted from the review screen;
another, if votes on the review screen are flipped from the
voter’s actual selection. If data collection functionality
accidentally left in a “real” VB is bad, this code is
far worse. We added the word “evil” to the names of the
relevant classes and methods so that there would be no
confusion in a code auditing scenario.

S-expressions. When it came time to develop the A-
 network protocol, we chose to use a subset of
the S-expression syntax defined by Rivest [38]. Previous
experiences with peer-to-peer systems that used the con-
venient Java ObjectOutputStream for data serialization re-
sulted in protocols that were awkwardly bound to partic-
ular implementation details of the code, were difficult to
debug by observation of data on the wire, and were inex-
orably bound to Java.

S-expressions, in particular the canonical representa-
tion used in A, are a general-purpose, portable
data representation designed for maximum readability
while at the same time being completely unambiguous.
They are therefore convenient for debugging while still
being suitable for data that must be hashed or signed. By
contrast, XML requires a myriad of canonicalization algo-
rithms when used with digital signatures; we were happy
to leave this large suite of functionality out of VB.

We quickly found S-exps to be convenient for other por-
tions of VB. They form the disk format for our se-
cure logs (as carbon-copies of network traffic, this is un-
surprising). Pattern matching and match capture, which
we added to our S-exp library initially to facilitate parsing
of A messages, subsequently found heavy use
at the core of Q [44], our secure log constraints
checker, allowing its rule syntax to be naturally expressed
as S-exps. Even the human factors branch of VB
dumps user behavior data in S-expressions.

module semicolons stripped LOC
sexpression 1170 2331
auditorium 1618 3440
supervisor 959 1525
votebox 3629 7339

7376 14635

Table 1: Size of the VB trusted codebase. Semicolons
refers to the number of lines containing at least one ‘;’ char-
acter and is an approximation of the number of statements
in the code. Stripped LOC refers to the number of non-
whitespace, non-comment lines of code. The difference is a
crude indicator of the additional syntactic overhead of Java.
Note that the ballot preparation tool is not considered part
of the TCB, since it generates ballots that should be audited
directly; it is 4029 semicolons (6657 stripped lines) of Java
code using AWT/Swing graphics.

Code size. Table 1 lists several code size metrics for
the modules in VB, including all unit tests. We as-
pired to the compactness of Pvote’s 460 Python source
lines [52], but the expanded functionality of our system,
combined with the verbosity of Java (especially when
written in clear, modern object-oriented style) resulted in
a much larger code base. The votebox module (anal-
ogous to Pvote’s functionality) contains nearly twenty
times as many lines of code. The complete VB code-
base, however, compares quite favorably with current DRE
systems, making thorough inspection of the source code a
tractable proposition.

4.2 Performance evaluation and estimates

By building a prototype implementation of our design, we
are able to validate that it operates within reasonable time
and space bounds. Some aspects of VB require “real
time” operation while others can safely take minutes or
hours to complete.

Log publication. Recall that VBes, by virtue of
the fact that they communicate with one another using
the A protocol, produce s-expression log data
which serves as a representation of the events that hap-
pened during the election. An important design goal is
the allowance of outside parties to see this log data in real
time; our immediate ballot challenge protocol relies on it.

We’ve assumed, as a worst case, that the polling place
is connected to election central with a traditional modem.
This practical bandwidth limitation forces us to explore
the size of the relevant log messages and examine their
impact on the time it takes to perform an immediate ballot
challenge. This problem is only relevant if the verifica-
tion machine is not placed on the polling place network
(on the public side of the data diode). With the verifica-
tion machine on the LAN, standard network technology

USENIX Association 17th USENIX Security Symposium 361

will be able to transmit the log data much faster than any
reasonable polling place could generate it.

A single voter’s interaction with the polling place re-
sults in in the following messages: (1) an authorization
message from the supervisor to the booth shortly after the
voter enters the polling place, (2) a commitment message
broadcast by the booth after the voter is done voting, (3)
either a cast ballot message or a challenge response mes-
sage (the former if the voter decides to cast and the latter
if the voter decides to challenge), (4) and an acknowledg-
ment from the supervisor that the cast ballot or challenge
has been received, which effectively allows the machine
to release its state and wait for the next authorization.

Assuming all the crypto keys are 1024-bits long, an
authorization-to-cast message is 1 KB. Assuming 30 se-
lectable elements are on the ballot, both commit and cast
messages are 13 KB while challenge response messages
are 7 KB. An acknowledgment is 1 KB.

We expect a good modem’s throughput to be
5 KB/second. The challenger must ask the machine to
commit to a vote, wait for the verification host to receive
the commitment, then ask the machine to challenge the
vote. (The voter must wait for proof of the booth’s com-
mitment in order for the protocol to work.) In the best
case, when only one voter is in the polling place (and
the uploader’s buffer is empty), a commitment can be im-
mediately transmitted. This takes under 3 seconds. The
challenge response can be transmitted in under 2 seconds.
In the worst case, when as many as 19 other voters have
asked their respective booths to commit and cast their bal-
lots, the challenger must wait for approximately 494 KB
of data to be uploaded (on behalf of the other voters).
This would take approximately 100 seconds. Assuming
19 additional voters, in this short time, were given access
to booths and all completed their ballots, the challenger
might be forced to wait another 100 seconds before the
challenge response (the list of r-values used to encrypt
the first commitment) could make it through the queue.

Therefore, in the absolute worst case situation (30 ele-
ments on the ballot and 20 machines in the polling place),
the challenger is delayed by a maximum of 200 seconds
due to bandwidth limitations.

Encryption. Because a commitment is an encrypted
version of the cast ballot, a cast ballot must be encrypted
before a commitment to it is published. Furthermore, the
verifier must do a decryption in order to verify the result
of a challenge. Encryption and decryption are always a
potential source of delay, therefore we examine our im-
plementation’s encryption performance here.

Recall that a cast ballot is an n-tuple of integers, and an
encrypted cast ballot has each of these integers encrypted

using our additively homomorphic El Gamal encryption
function. We benchmarked the encryption of a reference
30 candidate ballot; on a Pentium M 1.8 GHz laptop it
took 10.29 CPU seconds, and on an Opteron 2.6 GHz
server it took 2.34 CPU seconds. We also benchmarked
the decryption, using the r-values generated by the en-
cryption function (simulating the work of a verification
machine in the immediate ballot challenge protocol). On
the laptop, this decryption took 5.18 CPU seconds, and on
the server it took 1.27 CPU seconds.

The runtime of this encryption and decryption will be
roughly the same. However, there is one caveat. To make
our encryption function additively homomorphic, we ex-
ponentiate a group member (called f in equation 1) by the
plaintext counter (called c in equation 1). (The result is
that when this value is multiplied, the original counter gets
added “in the exponent.”) Because discrete log is a hard
problem, this exponentiation cannot be reversed. Instead,
our implementation stores a precomputed table of encryp-
tions of low counter values. We assumes that, in real elec-
tions, these counters will never be above some reasonable
threshold (we chose 20,000). Supporting counters larger
than our precomputed table would require a very expen-
sive search for the proper value.

This is never an issue in practice, since individual bal-
lots only ever encrypt the values 0 and 1, and there will
never be more than a few thousand votes per day in a
given precinct. While there may be a substantially larger
number of votes across a large city, the election official
only needs to perform the homomorphic addition and de-
cryption on a precinct-by-precinct basis.8 This also allows
election officials to derive per-precinct subtotals, which
are customarily reported today and are not considered to
violate voter privacy. Final election-night tallies are com-
puted by adding the plaintext sums from each precinct.

Log analysis. There are many properties of the pub-
lished logs that we might wish to validate, such as ensur-
ing that all votes were cast while the polls were open, that
no vote is cast without a prior authorization sharing the
same nonce, and so on. These properties can be validated
by hand, but are also amenable to automatic analysis. We
built a tool called Q [44, 45] that performs this
function based on logical predicates expressed over the
logs. None of these queries need to be validated in real
time, so performance is less critical, so long as answers
are available within hours or even days after the election.

4.3 Security discussion

Beyond the security goals introduced in Section 1 and
elaborated in Section 3, we offer a few further explo-
rations of the security properties of our design.

362 17th USENIX Security Symposium USENIX Association

Ballot decryption key material. We have thus far
avoided the topic of which parties are entitled to decrypt
the finished tally, assuming that there exists a single entity
(perhaps the director of elections) holding an El Gamal
private key. We can instead break the decryption key
up into shares [49, 13] and distribute them to several
mutually-untrusting individuals, such as representatives
of each major political party, forcing them to cooperate
to view the final totals.

This may be insufficient to accommodate varying le-
gal requirements. Some jurisdictions require that each
county, or even each polling place, be able to generate
its own tallies on the spot once the polls close. In this
case we must create separate key material for each tal-
lying party, complicating the matter of who should hold
the decryption key. Our design frees us to place the de-
cryption key on, e.g., the supervisor console, or a USB key
held by a local election administrator. We can also use
threshold decryption to distribute key shares among mul-
tiple VBes in the polling place or among mutually-
untrusting individuals present in the polling place.

Randomness. Our El Gamal-based cryptosystem, like
many others, relies on the generation of random numbers
as part of the encryption process. Since the ciphertext
includes gr, a malicious voting machine could perform
O(2k) computations to encode k bits in gr, perhaps leak-
ing information about voters’ selections. Karlof et al. [28]
suggest several possible solutions, including the use of
trusted hardware. Verifiable randomness may also be pos-
sible as a network service or a multi-party computation
within the VB network [21].

Mega attacks. We believe the A network of-
fers defense against mishaps and failures of the sort al-
ready known to have occurred in real elections. We fur-
ther expect the networked architecture to provide some
defense against more extreme failures and attacks that
are hypothetical in nature but nonetheless quite serious.
These “mega attacks,” such as post-facto switched results,
election-day shadow polling places, and armed booth cap-
ture (described more fully in previous work [46]), are
challenges for any electronic voting system (and even
most older voting technologies as well).

5 Conclusions and future work
In this paper we have shown how the VB system
design is a response to threats, real and hypothesized,
against the trustworthiness of electronic voting. Recog-
nizing that voters prefer a DRE-style system, we endeav-
ored to create a software platform for e-voting projects
and then assembled a complete system using techniques
and ideas from current research in the field. VB cre-

ates audit logs that are believable in the event of a post-
facto audit, and it does this using the A network-
ing layer, allowing for convenient administration of polls
as well as redundancy in case of failure. Its code complex-
ity is kept under control by moving inessential graphics
code outside the trusted system, with the side effect that
ballot descriptions can be created—and audited—long be-
fore election day. Finally, the immediate ballot capture
technique gives real power to random machine audits.
Any voter can ask to challenge any voting machine, and
the machine has no way to know it is under test before it
commits to the contents of the encrypted ballot.

VB is a complete system and yet still an ongoing
effort. It is still being actively used for human factors ex-
perimentation, work which spurs evolution and maturity
of the software. Many of VB’s features were de-
signed with human factors of both poll workers and vot-
ers in mind. Evaluating these with human subject testing
would make a fascinating study. For example, we could
evaluate the rate at which voters accidentally challenge
ballots, or we could ask voters to become challengers and
see if they can correctly catch a faulty machine.

We have a number of additional features and improve-
ments we intend to add or are in the process of adding to
the system as well. Because one of the chief benefits of
the DRE is its accessibility potential, we anticipate adding
support for unusual input devices; similarly, following the
example of Pvote, we expect that VB’s ballot state
machines will map naturally onto the problem of provid-
ing a complete audio feedback experience to match the
video display. As we continue to support human factors
testing, it is obviously of interest to continue to maintain
a clear separation and identification of “evil” code; tech-
niques to statically determine whether this code (or other
malicious code) is present in VB will increase our
assurance in the system. We are in the process of in-
tegrating NIZK proofs into our El Gamal encrypted vote
counters, further bolstering out assurance that VB
systems are behaving correctly. We intend to expand our
use of Q to automatically and conveniently an-
alyze A logs and confirm that they represent
valid election events. A tabulation system for VB
is another logical addition to the architecture, completing
the entire election life cycle from ballot design through
election-day voting (and testing) to post-election auditing
and vote tabulation. Finally, we note that as a success-
ful story of combining complementary e-voting research
advances, we are on the lookout for other suitable tech-
niques to include in the infrastructure to further enhance
the end-to-end verifiability, in hope of approaching true
software independence in a voter-acceptable way.

USENIX Association 17th USENIX Security Symposium 363

Acknowledgments
This work was funded in part by NSF grants CNS-
0524211 and CNS-0509297. Portions of this work took
place during Wallach’s sabbatical at Stanford and SRI and
during Derr’s internship at SRI; we thank those institu-
tions for their support. We also thank Ben Adida, Josh
Benaloh, Peter Neumann, Chris Piekert, and Brent Wa-
ters for many helpful discussions on the VoteBox architec-
ture. In addition to the authors of this paper, the following
Rice students have contributed to the VoteBox codebase:
Emily Fortuna, George Mastrogiannis, Kevin Montrose,
Corey Shaw, and Ted Torous. We also acknowledge Mike
Byrne, Sarah Everett, and Kristen Greene for designing
VoteBox’s ballots. Finally, we thank the anonymous ref-
erees for their helpful and detailed feedback.

Notes
1http://www.scantegrity.org
2The Hart InterCivic eSlate voting system also includes a polling

place network and is superficially similar to our design; unfortunately,
the eSlate system has a variety of security flaws [24] and lacks the fault
tolerance, auditability, and end-to-end guarantees provided by VB.

3While this simple counter-based ballot does not accommodate
write-in votes, homomorphic schemes exist that allow more flexible bal-
lot designs, including write-ins [31].

4An interesting risk with a data diode is ensuring that it is installed
properly. Polling place systems could attempt to ping known Inter-
net hosts or otherwise map the local network topology, complaining if
two-way connectivity can be established. We could also imagine color-
coding cables and plugs to clarify how they must be connected.

5Invariably, some percentage of regular voters will accidentally chal-
lenge their ballots. By networking the voting machines together and
raising an alarm for the supervisor, these accidental challenges will only
inconvenience these voters rather than disenfranchising them. Further-
more, accidental challenges helpfully increase the odds of machines
being challenged, making it more difficult for a malicious VB to
know when it might be able to cheat.

6The VB name derives in part from this early direction, known
at the time as the “ 360”.

7http://www.sdl.org
8Vote centers, used in some states for early voting and others for

election day, will have larger numbers of votes cast than traditional small
precincts. Voting machines could be grouped into subsets that would
have separate A networks and separate homomorphic tallies.
Similarly, over a multi-day early voting period, each day could be treated
distinctly.

References
[1] Final Report of the Cuyahoga Election Review Panel, July 2006.

http://cuyahogavoting.org/CERP_Final_Report_20060720.pdf.

[2] A. Ash and J. Lamperti. Florida 2006: Can statistics tell us who
won Congressional District-13? Chance, 21(2), Spring 2008.

[3] N. Barkakati. Results of GAO’s Testing of Voting Systems Used in
Sarasota County in Florida’s 13th Congressional District.
Government Accountability Office, Feb. 2008. Report number
GAO-08-425T.

[4] J. Benaloh. Ballot casting assurance via voter-initiated poll
station auditing. In Proceedings of the 2nd USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT’07), Boston, MA,
Aug. 2007.

[5] J. D. C. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis,
Yale University Department of Computer Science, 1987.

[6] M. Blaze, A. Cordero, S. Engle, C. Karlof, N. Sastry, M. Sherr,
T. Stegers, and K.-P. Yee. Source Code Review of the Sequoia
Voting System. California Secretary of State’s “Top to Bottom”
Review, July 2007. http://www.sos.ca.gov/elections/voting_systems/
ttbr/sequoia-source-public-jul26.pdf.

[7] M. Blum, P. Feldman, and S. Micali. Non-interactive
zero-knowledge and its applications. In STOC ’88: Proceedings
of the twentieth annual ACM symposium on Theory of computing,
pages 103–112, New York, NY, USA, 1988.

[8] J. A. Calandrino, A. J. Feldman, J. A. Halderman, D. Wagner,
H. Yu, and W. P. Zeller. Source Code Review of the Diebold
Voting System. California Secretary of State’s “Top to Bottom”
Review, July 2007. http://www.sos.ca.gov/elections/voting_systems/
ttbr/diebold-source-public-jul29.pdf.

[9] D. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2), Feb.
1981.

[10] D. Chaum, P. Y. A. Ryan, and S. A. Schneider. A practical,
voter-verifiable election scheme. In ESORICS ’05, pages
118–139, Milan, Italy, 2005.

[11] M. Cherney. Vote results further delayed. The Sun News, Jan.
2008.
http://www.myrtlebeachonline.com/news/local/story/321972.html.

[12] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: A secure
voting system. In IEEE Symposium on Security and Privacy,
Oakland, CA, May 2008.

[13] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In
CRYPTO ’89: Proceedings of the 9th Annual International
Cryptology Conference on Advances in Cryptology, pages
307–315, Santa Barbara, CA, July 1989.

[14] D. L. Dill and D. S. Wallach. Stones Unturned: Gaps in the
Investigation of Sarasota’s Disputed Congressional Election, Apr.
2007. http://www.cs.rice.edu/∼dwallach/pub/sarasota07.html.

[15] S. Everett, K. Greene, M. Byrne, D. Wallach, K. Derr, D. Sandler,
and T. Torous. Is newer always better? The usability of electronic
voting machines versus traditional methods. In Proceedings of
CHI 2008, Florence, Italy, Apr. 2008.

[16] S. P. Everett. The Usability of Electronic Voting Machines and
How Votes Can Be Changed Without Detection. PhD thesis, Rice
University, Houston, TX, 2007.

[17] K. Fisher, R. Carback, and T. Sherman. Punchscan: Introduction
and system definition of a high-integrity election system. In
Workshop On Trustworthy Elections (WOTE 2006), Cambridge,
U.K., June 2006.

[18] Florida Department of State, Division of Elections, Tallahassee,
Florida. Parallel Test Summary Report, Dec. 2006.
http://election.dos.state.fl.us/pdf/parallelTestSumReprt12-18-06.pdf.

[19] Florida Department of State, Division of Elections, Tallahassee,
Florida. Audit Report of the Election Systems and Software, Inc’s,
iVotronic Voting System in the 2006 General Election for Sarasota
County, Florida, Feb. 2007.
http://election.dos.state.fl.us/pdf/auditReportSarasota.pdf.

[20] L. Frisina, M. C. Herron, J. Honaker, and J. B. Lewis. Ballot
Formats, Touchscreens, and Undervotes: A Study of the 2006
Midterm Elections in Florida. Dartmouth College and The
University of California at Los Angeles, May 2007. Originally
released Nov. 2006, current draft available at
http://www.dartmouth.edu/∼herron/cd13.pdf.

[21] R. Gardner, S. Garera, and A. D. Rubin. Protecting against
privacy compromise and ballot stuffing by eliminating
non-determinism from end-to-end voting schemes. Technical
Report 245631, Johns Hopkins University, Apr. 2008. http://www.
cs.jhu.edu/∼ryan/voting_randomness/ggr_voting_randomness.pdf.

[22] S. N. Goggin and M. D. Byrne. An examination of the
auditability of voter verified paper audit trail (VVPAT) ballots. In
Proceedings of the 2nd USENIX/ACCURATE Electronic Voting
Technology Workshop (EVT’07), Berkeley, CA, USA, Aug. 2007.

364 17th USENIX Security Symposium USENIX Association

[23] S. Hertzberg. DRE Analysis for May 2006 Primary, Cuyahoga
County, Ohio. Election Science Institute, San Francisco, CA,
Aug. 2006.
http://bocc.cuyahogacounty.us/GSC/pdf/esi_cuyahoga_final.pdf.

[24] S. Inguva, E. Rescorla, H. Shacham, and D. S. Wallach. Source
Code Review of the Hart InterCivic Voting System. California
Secretary of State’s “Top to Bottom” Review, July 2007.
http://www.sos.ca.gov/elections/voting_systems/ttbr/
Hart-source-public.pdf.

[25] D. Jefferson. What happened in Sarasota County? The Bridge
(National Academy of Engineering), 37(2), Summer 2007. Also
available online at http://www.nae.edu/nae/bridgecom.nsf/weblinks/
MKEZ-744KWK?OpenDocument.

[26] D. W. Jones. Parallel testing during an election, 2004.
http://www.cs.uiowa.edu/∼jones/voting/testing.shtml#parallel.

[27] D. W. Jones and T. C. Bowersox. Secure data export and auditing
using data diodes. In Proceedings of the USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT’07), Vancouver,
B.C., Canada, Aug. 2006.

[28] C. Karlof, N. Sastry, and D. Wagner. Cryptographic voting
protocols: A systems perspective. In USENIX Security
Symposium, Aug. 2005.

[29] J. Kelsey, A. Regenscheid, T. Moran, and D. Chaum. Hacking
paper: Some random attacks on paper-based E2E systems.
Presentation in Seminar 07311: Frontiers of Electronic Voting,
29.07.07–03.08.07, organized in The International Conference
and Research Center for Computer Science (IBFI, Schloss
Dagstuhl, Germany), Aug. 2007. http://kathrin.dagstuhl.de/files/
Materials/07/07311/07311.KelseyJohn.Slides.pdf.

[30] A. Kiayias, M. Korman, and D. Walluck. An Internet voting
system supporting user privacy. In ACSAC ’06: Proceedings of
the 22nd Annual Computer Security Applications Conference,
pages 165–174, Washington, DC, USA, 2006.

[31] A. Kiayias and M. Yung. The vector-ballot e-voting approach. In
FC’04: Financial Cryptography 2004, Key West, FL, Feb. 2004.

[32] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach.
Analysis of an electronic voting system. In Proc. of IEEE
Symposium on Security & Privacy, Oakland, CA, 2004.

[33] P. Maniatis and M. Baker. Secure history preservation through
timeline entanglement. In Proceedings of the 11th USENIX
Security Symposium, San Francisco, CA, Aug. 2002.

[34] W. R. Mebane and D. L. Dill. Factors Associated with the
Excessive CD-13 Undervote in the 2006 General Election in
Sarasota County, Florida. Cornell University and Stanford
University, Jan. 2007.
http://macht.arts.cornell.edu/wrm1/smachines1.pdf.

[35] C. A. Neff. A verifiable secret shuffle and its application to
e-voting. In CCS ’01: Proceedings of the 8th ACM Conference on
Computer and Communications Security, pages 116–125,
Philadelphia, PA, 2001.

[36] S. Pynchon and K. Garber. Sarasota’s Vanished Votes: An
Investigation into the Cause of Uncounted Votes in the 2006
Congressional District 13 Race in Sarasota County, Florida.
Florida Fair Elections Center, DeLand, Florida, Jan. 2008.
http://www.floridafairelections.org/reports/Vanishing_Votes.pdf.

[37] D. Rather. The trouble with touch screens. Broadcast on HDNet,
also available at http://www.hd.net/drr227.html, Aug. 2007.

[38] R. L. Rivest. S-expressions. IETF Internet Draft, May 1997.
http://people.csail.mit.edu/rivest/sexp.txt.

[39] R. L. Rivest. The ThreeBallot voting system. http://theory.csail.
mit.edu/∼rivest/Rivest-TheThreeBallotVotingSystem.pdf, Oct. 2006.

[40] R. L. Rivest and W. D. Smith. Three voting protocols:
ThreeBallot, VAV, and Twin. In Proceedings of the 2nd
USENIX/ACCURATE Electronic Voting Technology Workshop
(EVT’07), Boston, MA, Aug. 2007.

[41] R. L. Rivest and J. P. Wack. On the notion of “software
independence” in voting systems, 2006.
http://vote.nist.gov/SI-in-voting.pdf.

[42] P. Y. A. Ryan and T. Peacock. A threat analysis of Prêt à Voter. In
Workshop On Trustworthy Elections (WOTE 2006), Cambridge,
U.K., June 2006.

[43] K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a
pracitcal solution to the implementation of a voting booth. In
Advances in Cryptology: EUROCRYPT ’95, volume 921 of
Lecture Notes in Computer Science, pages 393–403.
Springer-Verlag, 1995.

[44] D. Sandler, K. Derr, S. Crosby, and D. S. Wallach. Finding the
evidence in tamper-evident logs. Technical Report TR08-01,
Department of Computer Science, Rice University, Houston, TX,
Jan. 2008. http://cohesion.rice.edu/engineering/computerscience/
TR/TR_Download.cfm?SDID=238.

[45] D. Sandler, K. Derr, S. Crosby, and D. S. Wallach. Finding the
evidence in tamper-evident logs. In Proceedings of the 3rd
International Workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE’08), Oakland, CA, May 2008.

[46] D. Sandler and D. S. Wallach. Casting votes in the Auditorium.
In Proceedings of the 2nd USENIX/ACCURATE Electronic Voting
Technology Workshop (EVT’07), Boston, MA, Aug. 2007.

[47] N. Sastry, T. Kohno, and D. Wagner. Designing voting machines
for verification. In Proceedings of the 15th USENIX Security
Symposium, Vancouver, B.C., Canada, Aug. 2006.

[48] B. Schneier and J. Kelsey. Secure audit logs to support computer
forensics. ACM Transactions on Information and System
Security, 1(3), 1999.

[49] A. Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[50] C. Stewart, III. Plaintiff Jennings Ex. 8. (for Dec. 19, 2006
evidentiary hr’g), Jennings v. Elections Canvassing Comm’n of
the State of Florida et al., No. 2006 CA 2973 (Circuit Ct. of the
2d Judicial Circuit, Leon County, Fla., filed Nov. 20, 2006),
reproduced in 2 Appendix to Emergency Petition for a Writ of
Certiorari A-579-80, Jennings v. Elections Canvassing Comm’n
of the State of Florida et al., No. 1D07-11 (Fla. 1st Dist. Ct. of
Appeal, filed Jan. 3, 2007), Dec. 2006.

[51] A. Yasinsac, D. Wagner, M. Bishop, T. Baker, B. de Medeiros,
G. Tyson, M. Shamos, and M. Burmester. Software Review and
Security Analysis of the ES&S iVotronic 8.0.1.2 Voting Machine
Firmware. Security and Assurance in Information Technology
Laboratory, Florida State University, Tallahassee, Florida, Feb.
2007. http://election.dos.state.fl.us/pdf/FinalAudRepSAIT.pdf.

[52] K.-P. Yee. Extending prerendered-interface voting software to
support accessibility and other ballot features. In Proceedings of
the 2nd USENIX/ACCURATE Electronic Voting Technology
Workshop (EVT’07), Boston, MA, Aug. 2007.

[53] K.-P. Yee, D. Wagner, M. Hearst, and S. M. Bellovin. Prerendered
user interfaces for higher-assurance electronic voting. In
USENIX/ACCURATE Electronic Voting Technology Workshop,
Vancouver, B.C., Canada, 2006.

