

USENIX Association 17th USENIX Security Symposium 337

338 17th USENIX Security Symposium USENIX Association

M
�

.

.

.

.

.

.

.

.

.

M

c1

c2

cN

d1

d2

dN

d
�

N

d
�

2

d
�

1

Figure 1: The “Shadow-Mix” Shuffle Proof. The mix server
creates a secondary mix. If challenged with bit 0, it reveals this
secondary mix. If challenged with bit 1, it reveals the “differ-
ence” between the two mixes.

Shamir heuristic [9]: the challenge bits are computed as
the hash of all shadow mixes. Note how this approach is
only workable if we have enough shadow mixes to pro-
vide an overwhelming probability of integrity: if there
is a non-negligible probability of cheating, a cheating
prover can produce many shadow mixes until it finds a
set whose hash provides just the right challenge bits to
cheat.

Proof of Decryption. Once an El Gamal cipher-
text is decrypted, this decryption can be proven using
the Chaum-Pedersen protocol [8] for proving discrete-
logarithm equality. Specifically, given a ciphertext c =
(α, β) and claimed plaintext m, the prover shows that
logg(y) = logα(β/m):

• The prover selects w ∈ Zq and sends A = gw, B =
αw to the verifier.

• The verifier challenges with c ∈ Zq.

• The prover responds with t = w + xc.

• The verifier checks that gt = Ayc and αt =
B(β/m)c.

It is clear that, given c and t, A and B can be easily com-
puted, thus providing for simulated transcripts of such
proofs indicating Honest-Verifer Zero-Knowledge. It is
also clear that, if one could rewind the protocol and ob-
tains prover responses for two challenge values against

the same A and B, the value of x would be easily solv-
able, thus indicating that this is a proof of knowledge of
the discrete log and that logg(y) = logα(β/m).

As this protocol is HVZK with overwhelming proba-
bility of catching a cheating prover, it can be transformed
safely into non-interactive form using the Fiat-Shamir
heuristic. We do exactly this in Helios to provide for
non-interactive proofs of decryption that can be posted
publicly and re-distributed by observers.

2.4 The Whole Process
The entire Helios protocol thus unfolds as follows:

1. Alice prepares and audits as many ballots as she
wishes, ensuring that all of the audited ballots are
consistent. When she is satisfied, Alice casts an en-
crypted ballot, which requires her to authenticate.

2. The Helios bulletin board posts Alice’s name and
encrypted ballot. Anyone, including Alice, can
check the bulletin board and find her encrypted vote
posted.

3. When the election closes, Helios shuffles all en-
crypted ballots and produces a non-interactive proof
of correct shuffling, correct with overwhelming
probability.

4. After a reasonable complaint period to let auditors
check the shuffling, Helios decrypts all shuffled
ballots, provides a decryption proof for each, and
performs a tally.

5. An auditor can download the entire election data
and verify the shuffle, decryptions, and tally.

If an election is made up of more than one race, then
each race is treated as a separate election: each with its
own bulletin board, its own independent shuffle and shuf-
fle proof, and its own decryptions. This serves to limit
the possibility of re-identifying voters given long ballots
where any given set of answers may be unique in the set
of cast ballots.

3 Web Components

We have clearly stated that Helios values integrity first,
and voter privacy second. That said, Helios still takes
great care to ensure voter privacy, using a combination
of modern Web programming techniques. Once the bal-
lot is loaded into the browser, all candidate selections are
recorded within the browser’s memory, without any fur-
ther network calls until the ballot is encrypted and the
plaintext is discarded. In this section, we cover the Web
components we use to accomplish this goal.

USENIX Association 17th USENIX Security Symposium 339

3.1 Single-Page Web Application

A number of Web applications today are called “single-
page applications” in that the page context and its URL
never change. Gmail [10] is a prime example: clicks
cause background actions rather than full-page loads.
The technique behind this type of Web application is the
use of JavaScript to handle user clicks:

Do Stuff

When a user clicks the “Do Stuff” link, no new page
is loaded. Instead, the JavaScript function do stuff()
is invoked. This function may make network requests
and update the page’s HTML, but, importantly, the page
context, including its JavaScript scope, is preserved.

For our purposes, the key point is that, if all necessary
data is pre-loaded, the do stuff() function may not
need to make any network calls. It can update some of
its scope, read some of its pre-loaded data, and update
the rendered HTML user interface accordingly. This is
precisely the approach we use for our ballot preparation
system: the browser loads all election parameters, then
leads the voter through the ballot without making any
additional network requests.

The jQuery JavaScript Library. Because we ex-
pect auditors to take a close look at our browser-based
JavaScript code, it is of crucial importance to make this
code as concise and legible as possible. For this purpose,
we use the jQuery JavaScript library, which provides
flexible constructs for accessing and updating portions
of the HTML Document Object Model (DOM) tree, ma-
nipulating JavaScript data structures, and making asyn-
chronous network requests (i.e. AJAX). An auditor is
then free to compare the hash of the jQuery library we
distribute with that of the official distribution from the
jQuery web site.

JavaScript-based Templating. Also important to the
clarity of our browser-based code is the level of inter-
mixing of logic and presentation: when all logic is im-
plemented in JavaScript, it is tempting to intermix small
bits of HTML, which makes for code that is particularly
difficult to follow. Instead, we use the jQuery JavaScript
Templating library. Then, we can bind a template to a
portion of the page as follows:

$("#main").setTemplateURL(
"/templates/election.html"

);

which connects to an HTML template with variable
placeholders:

<p>
The election hash is {$T.election.hash}.

</p>

The code can, at a later point, render this template with a
parameter and without any additional network access:

$("#main").processTemplate(
{’election’: election_object}

);

3.2 Cryptography in the Browser with
LiveConnect

JavaScript is a complete programming language in which
it is possible to build a multi-precision integer library.
Unfortunately, JavaScript performance for such compu-
tationally intensive operations is poor. Thankfully, it
is possible in modern browsers to access the browser’s
Java Virtual Machine from JavaScript using a technology
called LiveConnect. This is particularly straightforward
in Firefox, where one can write the following JavaScript
code:

var a = new java.math.BigInteger(42);
document.write(a.toString());

and then, from JavaScript still, invoke all of Java’s
BigInteger methods directly on the object. Modu-
lar exponentiation is a single call, modPow(), and El-
Gamal encryption runs fast enough that it is close to im-
perceptible to the average user. LiveConnect is slightly
more complicated to implement in Internet Explorer and
Safari, though it can be done [18].

3.3 Additional Tricks
Data URIs. At times in the Helios protocol, we need
to produce a printable receipt when the plaintext vote has
not yet been cleared from memory. In order to open a
new window ready for printing without network access,
we use data URIs [14], URIs that contain information
without requiring a network fetch:

<a target="_new"
href="data:text/plain,Your%20Receipt...">

receipt

340 17th USENIX Security Symposium USENIX Association

Dynamic Windows. When data URIs are not available
(e.g. Internet Explorer), we can open a new window us-
ing JavaScript, set its MIME type to text/plain, and
dynamically write its content from the calling frame.

var receipt = window.open();
receipt.document.open("text/plain");
receipt.document.write(content);
receipt.document.close();

In Safari and Firefox, this approach yields a new window
in a slightly broken state: the contents cannot be saved to
disk. However, in Internet Explorer, the only browser
that does not support Data URIs, the dynamic window
creation works as expected. Thus, in Firefox and Safari,
Helios uses Data URIs, and in Internet Explorer it uses
dynamic windows.

JSON. As we expect that auditors will want to down-
load election, voter, and bulletin board data for pro-
cessing and verifying, we need a data format that is
easy to parse in most programming languages, includ-
ing JavaScript. XML is one possibility, but we found
that JavaScript Object Notation (JSON) is easier to han-
dle with far less parsing code. JSON allows for data rep-
resentation using JavaScript lists and associative arrays.
For example, a list of voters and their encrypted votes
can be represented as:

[
{’name’ : ’Alice’, ’vote’ : ’23423....’},
{’name’ : ’Bob’, ’vote’ : ’823848....’},
...

]

Libraries exist in all major programming languages for
parsing and generating this data format. In particular, the
format maps directly to arrays and objects in JavaScript,
lists and dictionaries in Python, lists and hashes in Ruby.

4 Helios System Description

We are now ready to discuss the details of the Helios sys-
tem. We begin with a description of the back-end server
architecture. We then consider the four use cases: creat-
ing an election, voting, tallying, and auditing.

4.1 Server Architecture
The Helios back-end is a Web application written in the
Python programming language [17], running inside the
CherryPy 3.0 application server, with a Lighttpd web
server. All data is stored in a PostgreSQL database.

All server-side logic is implemented in Python, with
HTML templates rendered using the Cheetah Templat-
ing engine. Many back-end API calls return JSON data
structures using the Simplejson library, and the voting
booth server-side template is, in fact, a single-page web
applications including JavaScript logic and jTemplate
HTML/JavaScript templates.

Application Software. We use the Python Cryptogra-
phy Toolkit for number theory utilities such as prime
number and random number generation. We imple-
mented our own version of El-Gamal in Python, given
our specific need for re-encryption, which is typically
not supported in cryptographic libraries. We note that
improved performance could likely be gained from opti-
mizing our first-pass implementation.

Server Hardware. We host an alpha version of the
Helios software at http://heliosvoting.org.
The server behind that URL is a virtual Ubuntu Linux
server operated by SliceHost. For the tests performed
in Section 5.3, we used a small virtual host with 256
megabytes of RAM and only a fraction of a Xeon proces-
sor, at a cost of $20/month. A larger virtual host would
surely provide better performance, but we wish to show
the practicality of Helios even with modest resources.

4.2 Creating an Election

Only registered Helios users can create elections. Reg-
istration is handled like most typical web sites:

• a user enters an email address, a name, and a desired
password.

• an email with an embedded confirmation link is sent
to the given email address.

• the user clicks on the confirmation link to activate
his account.

A registered user then creates an election with an elec-
tion name, a date and time when voting is expected to
begin, and a date and time when voting is expected to
end. Upon creation, Helios generates and stores a new
El-Gamal keypair for the election. Only the public key is
available to the registered user: Helios keeps the private
key secret. The user who created the election is consid-
ered the administrator.

Setting up the Ballot. The election is then in “build
mode,” where the ballot can be prepared, reviewed, and
tweaked by the administrative user, as shown in Figure
2. The user can log back in over multiple days to adjust
any aspect of the ballot.

USENIX Association 17th USENIX Security Symposium 341

Figure 2: The Helios Election Builder lets an administrative user create and edit ballot questions in a simple web-based interface.
The administrative user can log out and back in at any time to update the election.

Managing Voters. The administrative user can add,
update, and remove voters at will, as shown in Figure 3.
A voter is identified by a name and an email address, and
is specific to a given election. Helios generates a ran-
dom 10-character password automatically for each voter.
At any time, the administrator can email voters using the
Helios administrative interface. These emails will au-
tomatically contain the voter’s password, though the ad-
ministrator will not see this password at any time.

Freezing the Election. When ready, the administrative
user freezes the election, at which point the voter list, the
election start and end dates, and the ballot details become
immutable and available for download in JSON form.
The administrative user receives an email from Helios
with the SHA1 hash of this JSON object. The election is
ready for voters to cast ballots. The administrative user
will typically email voters using the Helios administra-
tive interface to let them know that the polls are open.

4.3 Voting
Alice, a voter in a Helios election, receives an email let-
ting her know that the polls are open. This email con-
tains her username (i.e. her email address), her election-
specific password, the SHA1 hash of the election param-
eters, and the URL that directs her to the Helios voting
booth, as illustrated in Figure 4. It is important to note
that this URL does not contain any identifying informa-
tion: it only identifies the election, as per the vote-casting
protocol in Section 2.1.

The Voting Booth. When Alice follows the voting
booth URL, Helios responds with a single-page web
application. This application, now running in Alice’s
browser, displays a “loading...” message while it down-
loads the election parameters and templates, including
the El-Gamal public key and questions. The page then
displays the election hash prominently, and indicates that
no further network connections will be made until Alice
submits her encrypted ballot. (Alice can set her browser
to “offline” mode to enforce this.) Every transition is
then handled by a local JavaScript function call and its
associated templates. Importantly, the JavaScript code
can decide precisely what state to maintain and what
state to discard: the “back” button is not relevant. This is
illustrated in Figure 5.

Filling in the Ballot. Alice can then fill in the bal-
lot, selecting the checkbox by each desired candidate
name, using the “next” and “previous” buttons to nav-
igate between questions. Each click is handled by
JavaScript code which records Alice’s choices in the lo-
cal JavaScript scope. If Alice tries to close her browser
or navigate to a different URL, she receives a warning
that her ballot will be cleared.

Sealing. After Alice has reviewed her options, she can
choose to “seal” her ballot, which triggers the JavaScript
code to encrypt her selection with computationally inten-
sive operations performed via LiveConnect. The SHA1
hash of the resulting ciphertext is then displayed, as
shown in Figure 6.

342 17th USENIX Security Symposium USENIX Association

Figure 3: The Helios voter management interface.

Figure 4: The administrative user can send emails to all voters. Each voter receives her password, which the administrative user
does not see.

USENIX Association 17th USENIX Security Symposium 343

Figure 5: The Helios Voting Booth.

Figure 6: Sealing a Helios ballot.

344 17th USENIX Security Symposium USENIX Association

Auditing. Alice can opt to audit her ballot with the
“Audit” button, in which case the JavaScript code reveals
the randomness used in encrypting Alice’s choices. Alice
can save this data to disk and run her own code to ensure
the encryption was correct, or she can use the Python
Ballot Encryption Verification (BEV) program provided
by Helios.

Once Alice chooses to audit her ballot and the audit-
ing information is rendered, the JavaScript code clears
its encrypted ballot data structures and returns Alice to
the confirmation screen, where she can either update her
choices or choose to seal her options again with different
randomness and thus a different ciphertext.

Casting. If Alice chooses instead to cast her ballot, the
JavaScript code clears the plaintext and randomness from
its scope, and presents Alice with a login prompt for
her email address and password. (If Alice had set her
browser to “offline” mode, she should bring it back on-
line now that all plaintext information is cleared.) When
Alice submits her login information, the JavaScript code
intercepts the form submission and submits the email,
password, and encrypted vote in a background call, so
that any errors, e.g. a mistyped password, can be re-
ported without clearing the JavaScript scope and thus the
encrypted ballot. When a success code is returned by
the Helios server, the JavaScript code can clear its entire
scope and display a success message. On the server side,
Helios emails Alice with a confirmation of her encrypted
vote, including its SHA1 hash.

Coerce Me! As explained in Section 2, Helios pro-
vides a “Coerce Me!” button to make it clear that online
voting is inherently coercible. This button appears af-
ter ballot sealing, next to the “audit” and “cast” options.
When clicked, Helios opens up a new window with a
mailto: URL that triggers Alice’s email client to open
a composition window containing the entire ballot infor-
mation, including plaintext and randomness that prove
how the ciphertext was formed. Unlike the “Audit” step,
which forces Alice to create a new ciphertext, “Coerce
Me!” allows Alice to continue and cast that very same
encrypted vote for which she obtained proof of encryp-
tion. The distinction between these two steps highlights
the difference between a coercion-free auditing process
that could potentially be used with in-person voting, and
the inherent coercibility of online-only voting which is
made more explicit with the “Coerce Me!” button.

4.4 Anonymization
Once the voting period ends, Helios enables the
anonymization, decryption, and proof features for the
administrative user. Selecting “shuffle” will begin the

re-encryption and permutation process. Then, select-
ing “shuffle proof” will trigger the mixnet proof with 80
shadow mixes. The administrative user can then opt for
“decrypt”, which will decrypt the shuffled ciphertexts,
and “decrypt proof”, which will generate proofs for each
such decryption. Finally, the administrative user can se-
lect “tally” to count up the decrypted votes.

All of these operations are performed on the server
side, in Python code. The results are stored in the
database and made available for download in JSON form.
Once all proofs are generated and the result is tallied,
the server deletes the permutation, randomness, and se-
cret key for that election. All that is left is the encrypted
votes, their shuffling, the resulting decryptions, and the
publicly verifiable proofs of integrity. The entire elec-
tion can still be verified, though no further proofs can be
generated.

4.5 Auditing
Helios provides two verification programs, one for ver-
ifying a single encrypted vote produced by the ballot
preparation system with the “audit” option selected, and
another for verifying the shuffling, decryption, and tally-
ing of an entire election. Both programs are written in
Python using the Simplejson library for JSON process-
ing, but otherwise only raw Python operations.

Verifying a Single Vote. The Ballot Encryption Veri-
fication program takes as input the JSON data structure
returned by the voting booth audit process. This data
structure contains a plaintext ballot, its ciphertext, the
randomness used to encrypt it, and the election ID. The
program downloads the election parameters based on the
election ID and outputs:

• the hash of the election, which the voter can check
against that displayed by the voting booth,

• the hash of the ciphertext, which the voter can check
against the receipt she obtained before requesting an
audit,

• the verified plaintext of the ballot.

Verifying an Election. The Election Tallying Verifica-
tion program takes, as input, an election ID. It down-
loads the election parameters, the bulletin board of cast
votes, shuffled votes, shuffle proofs, decrypted votes, and
decryption proofs. The verification program checks all
proofs, then re-performs the tally based on the decryp-
tions. It eventually outputs the list of voters and their re-
spective encrypted ballot hashes, plus the verified tally.
This information can be reposted by the auditor, so that

USENIX Association 17th USENIX Security Symposium 345

if enough auditors check and re-publish the cast ballot
hashes and tally, participants can be confident that their
vote was correctly captured, and that the tally was cor-
rectly performed.

5 Discussion

Helios is simpler than most cryptographic voting proto-
cols because it focuses on proving integrity. As a com-
promise, Helios makes weaker guarantees of privacy. In
this section, we review in greater detail the type of elec-
tion for which we expect this compromise to be appropri-
ate, as well as the security model, performance metrics,
and future extensions we can make to improve Helios on
both fronts.

5.1 The Need for Verifying Elections with
Low Coercion Risk

It is legitimate to question whether there truly exist elec-
tions that require the high levels of verifiability afforded
by cryptography, while eschewing coercion-resistance
altogether. In fact, we believe that, for a number of on-
line communities that rarely or never meet in the same
physical place:

1. coercion-resistance is futile from the start, given the
remote nature of the voting process, and

2. cryptographic end-to-end verifiability is the only vi-
able means of ensuring any level of integrity.

Specifically, with respect to the auditing argument,
how could a community member remotely verify any-
thing at all pertaining to the integrity of an election pro-
cess? Open-source software is insufficient: the voter
doesn’t know which software is actually running on the
election server, short of deploying hardware-rooted attes-
tation. Physical observation of a chain-of-custody pro-
cess is already ruled out by the online-only nature of the
community. Cryptographic verifiability, though it seems
stronger than absolutely necessary, is the only viable
option when only the public inputs and outputs—never
the “guts”—of the voting process can be truly observed.
Cryptographic auditing may be a big hammer, but it is
the only hammer.

For the same reason, we believe the pedagogical value
of a system like Helios is particularly strong. The con-
trast between classic and open-audit elections is partic-
ularly apparent in this online setting. With Helios, the
voter’s ability is transformed, from entirely powerless
and forced to trust a central system, to empowered with
the ability to ensure that one’s vote was correctly cap-
tured and tallied, without trusting anyone.

5.2 Security Model & Threats
We accept the risk that, if someone compromises the He-
lios server before the end of an election, the secrecy of
individual ballots may be compromised. On the other
hand, we claim that, assuming enough auditors, even a
fully corrupted Helios cannot cheat the election result
without a high chance of getting caught. We now explore
various attacks and how we expect them to be handled.

Incorrect Shuffling or Decryption. A corrupt Helios
server may attempt to shuffle votes incorrectly or de-
crypt shuffled votes incorrectly. Given the overwhelming
probability of catching these types of attacks via crypto-
graphic verification, it takes only one auditor to detect
this kind of tampering.

Changing a Ballot or Impersonating a Voter. A cor-
rupt Helios may substitute a new ciphertext for a voter,
replacing his cast vote or injecting a vote when a voter
doesn’t cast one in the first place. Even if the ballot sub-
mission server is eventually hosted separately and dis-
tributed among trustees, a corrupt Helios server knows
the username and password for all users, and can thus
easily authenticate and cast a ballot on behalf of a user.
In this case, all of the shuffling and decryption verifica-
tions will succeed, because the corruption occurs before
the encryption step.

In the current implementation of Helios, we hope to
counter these attacks through extensive auditing. Previ-
ous analyses [7] have shown that it takes only a small
random sample of voters who verify their vote to defeat
this kind of attack. To encourage voters to audit their
votes, we created the Election Tallying Verification pro-
gram, available in well commented source form. The
Election Tallying Verification program outputs a copy of
all cast ballots, so that auditors can post this information
independently. We expect multiple auditors to follow this
route and re-publish the complete list of encrypted bal-
lots along with their re-computed election outcome. This
auditing may include re-contacting individual voters and
asking them to verify the hash of their cast encrypted bal-
lot. We also expect that a large majority of voters, maybe
all voters, in fact, will answer at least one auditor who
prompts them to verify their cast encrypted vote.

Corrupting the Ballot. A corrupt Helios may present
a corrupt ballot to Alice, making her believe that she’s se-
lecting one candidate when actually she is voting for an-
other. This kind of attack would defeat the hashed-vote
bulletin-board verification, even with multiple auditors,
since Alice receives an entirely incorrect receipt during
the ballot casting process. Helios mitigates this risk by
authenticating users only after the ballot has been filled

346 17th USENIX Security Symposium USENIX Association

out, so users cannot be individually targeted with corrupt
ballots as easily. However, a corrupt Helios may authen-
ticate voters first (voters may not notice), or use other
information (e.g. IP address) to identify voters and target
certain victims for ballot corruption.

To counter this attack, we provide the Ballot Encryp-
tion Verification program, again in source form for au-
ditors to verify. This program can be run by individual
voters when they choose to audit a handful of votes be-
fore they choose to truly cast one. Alternatively, auditors,
even auditors who are not eligible to vote in the election,
can prepare ballots and audit them at will.

Auditing is Crucial. It should be clear from these de-
scriptions that Helios counters attacks through the power
of auditing. In addition to the raw tally, Helios publishes
a list of voter names and corresponding encrypted votes.
Helios then provides supporting evidence for the tally,
given the cast encrypted votes, in the form of a mixnet-
and-decryption proof. Verification programs are avail-
able in source form for anyone to review the integrity of
the results.

However, only the individual voters can check the va-
lidity of the cast encrypted ballots. It is expected that
multiple auditors will check the proof and, when sat-
isfied, republish the tally and the list of cast encrypted
ballots, where voters can check that their ballot was cor-
rectly recorded. Helios ensures that, if a large majority
of voters verifies their vote, then the outcome is correct.
However, if voters do not verify their cast ballot, Helios
does not provide any verification beyond classic voting
systems.

These expectations are somewhat tautological: voter-
verified elections function only when at least some frac-
tion of the voters are willing to participate in the verifi-
cation process made available to them. Elections can be
made verifiable, but only voters can actually verify that
their secret ballot was correctly recorded.

5.3 Performance
For all performance measurements, we used the server
hardware described in the previous section, and, on the
client side, a 2.2Ghz Macintosh laptop running Firefox 2
over a home broadband connection. We note that perfor-
mance of Firefox 2 was greatly increased when running
on virtualized Linux on the same laptop, indicating that
our measurements are likely a worst-case scenario given
platform-specific performance peculiarities of Firefox.

Java Virtual Machine Startup. The Java Virtual Ma-
chine requires startup time. Our rough measurements in-
dicate anywhere between 500ms and 1.5s on our client
machine. During this time, the browser appears to freeze

and user input is suspended. To an uninformed user, this
is a usability impediment which will require further user
testing. That said, it is a behavior we can easily warn
users about before starting up the Ballot Preparation Sys-
tem, and because this happens only once per user session
– not once per ballot – it is not too onerous.

Timing Measurements. We experimented with a 2-
question election and 500 voters. All timings were per-
formed a sufficient number of times to obtain a stable
average mostly free of testing noise. Note that time mea-
surements that pertain to a set of ballots are expected to
scale linearly with the number ballots and the number of
questions in the election. Our results are presented in
Figure 7.

Operation Time
Ballot Encryption, in browser 300ms|p| = 1024 bits
Shuffling, on server 133 s
Shuffle Proof, on server 3 hours
Decryption, on server 71 s
Decryption Proof, on server 210 s
Complete Audit, on client 4 hours

Figure 7: Timing Measurements

The Big Picture. It takes only a few minutes of com-
putation to obtain results for a 500-voter election. The
shuffle proof and verification steps require a few hours,
and are thus, by far, the most computation-intensive por-
tions of the process. We note that both of these steps
are highly parallelizable and thus could be significantly
accelerated with additional hardware.

5.4 Extensions
There are many future directions for Helios.

Support for Other Types of Election. Helios cur-
rently supports only simple elections where Alice selects
1 or more out of the proposed candidates. Adding write-
ins and rank-based voting, as well as the associated tal-
lying mechanisms, could prove useful. Helios may also
eventually offer homomorphic-based tabulation, as they
are often easier to explain and verify, though they would
made greater demands of browser-based cryptography.

Browser-Based Verification. The current verification
process for the ballot encryption step is a bit tedious, re-
quiring the use of a browser and a Python program. We
could write a JavaScript-only verification program that

USENIX Association 17th USENIX Security Symposium 347

could be provided directly by auditors while running en-
tirely in the voter’s browser to check that Helios is deliv-
ering authentic ballots. There are some issues to deal
with, notably cross-domain requests, but it does seem
possible and desirable to accomplish browser-only bal-
lot encryption verification.

Similarly, it is certainly possible to audit an entire elec-
tion using JavaScript and LiveConnect for computation-
ally intensive operations. Letting auditors deliver the
source code for these verification programs would allow
any voter to audit the entire process straight from their
browser.

Distributing the Shuffling and Decryption. For im-
proved privacy guarantees, Helios can be extended to
support shuffling and decryption by multiple trustees.
The Helios server would then only focus on provid-
ing the bulletin board and voting booth functionality.
Trustees would be provided with standalone Python pro-
grams that perform threshold key generation, partial
shuffling and threshold decryption. They could individ-
ually audit the program’s source code. With these exten-
sions, Helios would resemble classic cryptographic vot-
ing protocols more closely, and would provide stronger
privacy guarantees.

Improving Authentication. Currently, our protocol
requires that most voters audit their cast ballot, otherwise
the Helios server could impersonate voters and change
the election outcome. Future version of Helios should
consider offloading authentication to a separate authenti-
cation service. If feasible with browser-based cryptogra-
phy, Helios should use digital signatures to authenticate
each ballot in a publicly verifiable manner.

6 Related Work

There is a plethora of theoretical cryptographic voting
work reviewed and cited in [11, 4]. We do not attempt to
re-document this significant body of work here.

Open-audit voting implementations. There are only
a small handful of notable open-audit voting implemen-
tations. VoteHere’s advanced protocols for mixnets and
coercion-free ballot casting [3] have been implemented
and deployed in test environments. The Punchscan vot-
ing system [2] has also been implemented and used in a
handful of real student government elections, with video
evidence available for all to see.

Browser-based cryptography. Cryptographic con-
structs have been implemented in browser-side code in

many different settings. In the late 1990s, Hushmail be-
gan providing web-based encrypted email using a Java
applet. A couple of years later, George Danezis showed
how to use LiveConnect for fast JavaScript-based cryp-
tography, and the EVOX voting project [12] used similar
technology to encrypt votes in a blind-signature-based
scheme. The Stanford SRP project [18] also uses Live-
Connect for browser-based cryptography and indicates
how one can get LiveConnect to work in browsers other
than Firefox. The recent Clipperz Crypto Library [1]
provides web-based cryptography in pure JavaScript, in-
cluding a multi-precision integer library.

7 Conclusion

Helios is the first publicly available implementation of
a web-based open-audit voting system. It fills an inter-
esting niche: elections for small clubs, online communi-
ties, and student governments need trustworthy elections
without the significant overhead of coercion-freeness.
We hope that Helios can be a useful educational resource
for open-audit voting by providing a valuable service –
outsourced, verifiable online elections – that could not be
achieved without the paradigm-shifting contributions of
cryptographic verifiability.

8 Acknowledgements

The author would like to thank Ronald L. Rivest, Shai
Halevi, Chris Peikert, Susan Hohenberger, Alon Rosen,
Steve Weis, and Greg Morrisett for alpha testing the
Helios system, Adam Barth for pointing out the dy-
namic window creation technique for the Internet Ex-
plorer work-around, and the Usenix Security reviewers
for insightful suggestions in improving and crystalizing
the presentation of this work.

References

[1] Clipperz. http://clipperz.org, last viewed
on January 30th, 2008.

[2] PunchScan. http://punchscan.org, last
viewed on January 30th, 2008.

[3] VoteHere. http://votehere.com, last
viewed on January 30th, 2008.

[4] Ben Adida. Advances in Cryptographic Voting Sys-
tems. PhD thesis, August 2006. http://ben.
adida.net/research/phd-thesis.pdf.

[5] Josh Benaloh. Simple Verifiable Elections. In EVT
’06, Proceedings of the First Usenix/ACCURATE

348 17th USENIX Security Symposium USENIX Association

Electronic Voting Technology Workshop, August 1st
2006, Vancouver, BC,Canada., 2006. Available on-
line at http://www.usenix.org/events/
evt06/tech/.

[6] Josh Benaloh. Ballot Casting Assurance via Voter-
Initiated Poll Station Auditing. In EVT ’07, Pro-
ceedings of the Second Usenix/ACCURATE Elec-
tronic Voting Technology Workshop, August 6th
2007, Boston, MA, USA., 2007. Available on-
line at http://www.usenix.org/events/
evt07/tech/.

[7] C. Andrew Neff. Election Confidence.
http://www.votehere.com/papers/
ElectionConfidence.pdf, last viewed on
January 30th, 2008.

[8] David Chaum and Torben P. Pedersen. Wallet
databases with observers. In Ernest F. Brickell, edi-
tor, CRYPTO, volume 740 of Lecture Notes in Com-
puter Science, pages 89–105. Springer, 1992.

[9] Amos Fiat and Adi Shamir. How to prove your-
self: Practical solutions to identification and sig-
nature problems. In Andrew M. Odlyzko, editor,
CRYPTO, volume 263 of Lecture Notes in Com-
puter Science, pages 186–194. Springer, 1986.

[10] Google. Gmail. http://gmail.com.

[11] Dimitris Gritzalis, editor. Secure Electronic Voting.
Kluwer Academic Publishers, 2002.

[12] Mark Herschberg. Secure electronic voting over
the world wide web. Master’s thesis, May
1997. http://groups.csail.mit.edu/
cis/voting/herschberg-thesis/.

[13] Ari Juels, Dario Catalano, and Markus Jakobs-
son. Coercion-resistant electronic elections. In Vi-
jay Atluri, Sabrina De Capitani di Vimercati, and
Roger Dingledine, editors, WPES, pages 61–70.
ACM, 2005.

[14] L. Masinter. The Data URL Scheme. http:
//tools.ietf.org/html/rfc2397, last
viewed on January 30th, 2008.

[15] C. Andrew Neff. A verifiable secret shuffle and
its application to e-voting. In CCS 2001, Proceed-
ings of the 8th ACM Conference on Computer and
Communications Security. November 6-8, 2001,
Philadelphia, Pennsylvania, USA., pages 116–125.
ACM, 2001.

[16] Kazue Sako and Joe Kilian. Receipt-free mix-type
voting scheme - a practical solution to the imple-
mentation of a voting booth. In EUROCRYPT,
pages 393–403, 1995.

[17] Guido van Rossum. The Python Programming Lan-
guage. http://python.org, last viewed on
January 30th, 2008.

[18] Thomas D. Wu. The secure remote password pro-
tocol. In NDSS. The Internet Society, 1998. http:
//srp.stanford.edu/, last visited on Jan-
uary 30th, 2008.

