
EXPLODE: a Lightweight, General System for Finding Serious Storage
System Errors

Junfeng Yang, Can Sar, and Dawson Engler
Computer Systems Laboratory

Stanford University

Abstract
Storage systems such as file systems, databases, and RAID sys-
tems have a simple, basic contract: you give them data, they do
not lose or corrupt it. Often they store the only copy, making
its irrevocable loss almost arbitrarily bad. Unfortunately, their
code is exceptionally hard to get right, since it must correctly
recover from any crash at any program point, no matter how
their state was smeared across volatile and persistent memory.

This paper describes EXPLODE, a system that makes it
easy to systematically check real storage systems for errors.
It takes user-written, potentially system-specific checkers and
uses them to drive a storage system into tricky corner cases,
including crash recovery errors. EXPLODE uses a novel adap-
tation of ideas from model checking, a comprehensive, heavy-
weight formal verification technique, that makes its checking
more systematic (and hopefully more effective) than a pure test-
ing approach while being just as lightweight.

EXPLODE is effective. It found serious bugs in a broad range
of real storage systems (without requiring source code): three
version control systems, Berkeley DB, an NFS implementation,
ten file systems, a RAID system, and the popular VMware GSX
virtual machine. We found bugs in every system we checked,
36 bugs in total, typically with little effort.

1 Introduction
Storage system errors are some of the most destructive
errors possible. They can destroy persistent data, with
almost arbitrarily bad consequences if the system had
the only copy. Unfortunately, storage code is simultane-
ously both difficult to reason about and difficult to test. It
must always correctly recover to a valid state if the sys-
tem crashes at any program point, no matter what data
is being mutated, flushed (or not flushed) to disk, and
what invariants have been violated. Further, despite the
severity of storage system bugs, deployed testing meth-
ods remain primitive, typically a combination of manual
inspection (with the usual downsides), fixes in reaction
to bug reports (from angry users) and, at advanced sites,
the alleged use of manual extraction of power cords from
sockets (a harsh test indeed, but not comprehensive).

This paper presents EXPLODE, a system that makes
it easy to thoroughly check real systems for such crash
recovery bugs. It gives clients a clean framework to build
and plug together powerful, potentially system-specific

dynamic storage checkers. EXPLODE makes it easy for
checkers to find bugs in crash recovery code: as they run
on a live system they tell EXPLODE when to generate the
disk images that could occur if the system crashed at the
current execution point, which they then check for errors.

We explicitly designed EXPLODE so that clients can
check complex storage stacks built from many different
subsystems. For example, Figure 1 shows a version con-
trol system on top of NFS on top of the JFS file sys-
tem on top of RAID. EXPLODE makes it quick to assem-
ble checkers for such deep stacks by providing interfaces
that let users write small checker components and then
plug them together to build many different checkers.

Checking entire storage stacks has several benefits.
First, clients can often quickly check a new layer (some-
times in minutes) by reusing consistency checks for one
layer to check all the layers below it. For example, given
an existing file system checker, if we can slip a RAID
layer below the file system we can immediately use the
file system checker to detect if the RAID causes errors.
(Section 9 uses this approach to check NFS, RAID, and
a virtual machine.) Second, it enables strong end-to-end
checks, impossible if we could only check isolated sub-
systems: correctness in isolation cannot guarantee cor-
rectness in composition [22]. Finally, users can localize
errors by cross-checking different implementations of a
layer. If NFS works incorrectly on seven out of eight file
systems, it probably has a bug, but if it only breaks on
one, that single file system probably does (§9.2).

We believe EXPLODE as described so far is a worth-
while engineering contribution. A second conceptual
contribution is its adaptation of ideas from model check-
ing [6, 15, 17], a typically heavyweight formal verifica-
tion technique, to make its checking more systematic
(and thus hopefully more effective) than a pure testing
approach while remaining as lightweight as testing.

Traditional model checking takes a specification of a
system (a “model”) which it checks by starting from an
initial state and repeatedly performing all possible ac-
tions to this state and its successors. A variety of tech-
niques exist to make this exponential search less inef-
ficient. Model checking has shown promise in finding

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 131

subversion

subversion

checker

NFS client

NFS server

loopback interface

JFS

software

RAID1

checking

disk 1

checking

disk 2

checking

crash

crash

 disk 2

%mdadm –-assemble

--run

--force

--update=resync

%mdadm -a

 fsck.jfs

 snvadm.recover

crash recovery
ok?

crash

 disk 1

Figure 1: A snapshot of EXPLODE with a stack of storage systems
being checked on the left and the recovery tools being run on the right
after EXPLODE “crashes” the system to generate possible crash disks.
This example checks Subversion running on top of NFS exporting a
JFS file system running on RAID.

corner-case errors. However, requiring implementors to
rewrite their system in an artificial modeling language
makes it extremely expensive for typical storage systems
(read: almost always impractical).

Recent work on implementation-level model check-
ing [3, 13, 18] eliminates the need to write a model by
using code itself as its own (high-fidelity) model. We
used this approach in prior work to find serious errors
in Linux file systems [30]. However, while more prac-
tical than a traditional approach, it required running the
checked Linux system inside the model checker itself as
a user-space process, which demanded enormously inva-
sive modifications. The nature of the changes made it
hard to check anything besides file systems and, even in
the best case, checking a new file system took a week’s
work. Porting to a new Linux kernel, much less a differ-
ent operating system, could take months.

This paper shows how to get essentially all the model
checking benefits of our prior work with little effort by
turning the checking process inside out. Instead of shoe-
horning the checked system inside the model checker
(or worse, cutting parts of the checked system out, or
worse still, creating models of the checked code) it in-
terlaces the control needed for systematic state explo-
ration in situ, throughout the checked system, reducing
the modifications needed down to a single device driver,
which can run inside of a lightly-instrumented, stock ker-
nel running on real hardware. As a result, EXPLODE can
thoroughly check large amounts of storage system code
with little effort.

Running checks on a live, rather than emulated, sys-
tem has several nice fallouts. Because storage systems
already provide many management and configuration
utilities, EXPLODE checkers can simply use this pre-built

machinery rather than re-implementing or emulating it.
It also becomes trivial to check new storage systems: just
mount and run them. Finally, any check that can be run
on the base system can also be run with EXPLODE.

The final contribution of the paper is an experimental
evaluation of EXPLODE that shows the following:
1. EXPLODE checkers are effective (§7—§9). We found

bugs in every system we checked, 36 bugs in total,
typically with little effort, and often without source
code (§8.1, §9.3). Checking without source code is
valuable, since many robust systems rely on third-
party software that must be vetted in the context of
the integrated system.

2. EXPLODE checkers have enough power to do thor-
ough checks, demonstrated by using it to comprehen-
sively check ten Linux file systems (§7).

3. Even simple checkers find bugs (§8). Tiny check-
ers found bugs in three version control systems (§8.1)
and a widely-used database (§8.2).

4. EXPLODE makes it easy to check subsystems de-
signed to transparently slip into storage stacks (§9).
We reused file system checkers to quickly find er-
rors in RAID (§9.1), NFS (§9.2), and VMware (§9.3),
which should not (but do) break the behavior of stor-
age systems layered above or below them.

The paper is organized as follows. We first state our
principles (§2) and then show how to use EXPLODE to
check an example storage system stack (§3). We then
give an overview of EXPLODE (§4) and focus on how it:
(1) explores alternative actions in checked code (§5) and
(2) checks crashes (§6). After the experimental evalua-
tion (§7—§9), we discuss our experiences porting EX-
PLODE to FreeBSD (§ 10), contrast with related work
(§11), and then conclude (§12).

2 Principles
In a sense, this entire paper boils down to the repeated
application of a single principle:

Explore all choices: When a program point can
legally do one of N different actions, fork execution N
times and do each. For example, the kernel memory al-
locator can return NULL, but rarely does so in practice.
For each call to this allocator we want to fork and do both
actions. The next principle feeds off of this one:

Exhaust states: Do every possible action to a state
before exploring another state. In our context, a state is
defined as a snapshot of the system we check.

We distilled these two principles after several years of
using model checking to find bugs. Model checking has
a variety of tricks, some exceptionally complex. In retro-
spect, these capture the one feature of a model checking
approach that we would take over all others: systemat-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association132

ically do every legal action to a state, missing nothing,
then pick another state, and repeat. This approach reli-
ably finds interesting errors, even in well-tested code. We
are surprised when it does not work. The key feature of
this principle over traditional testing is that it makes low-
probability events (such as crashes) as probable as high-
probability events, thereby quickly driving the checked
system into tricky corner-cases. The final two principles
come in reaction to much of the pain we had with naive
application of model checking to large, real systems.

Touch nothing. Almost invariably, changing the be-
havior of a large checked system has been a direct path
to experiences that we never want to repeat. The inter-
nal interfaces of such systems are often poorly defined.
Attempting to emulate or modify them produces corner-
case mistakes that model checking is highly optimized to
detect. Instead we try to do everything possible to run
the checked system as-is and parasitically gather the in-
formation we need for checking as it runs.

Report only true errors, deterministically. The er-
rors our system flags should be real errors, reduced to
deterministic, replayable traces. All checking systems
share this motherhood proclamation, but, in our context
it has more teeth than usual: diagnosing even determinis-
tic, replayable storage errors can take us over a day. The
cost of a false one is enormous, as is the time needed to
fight with any non-determinism.

3 How to Check a Storage System
This section shows how clients use EXPLODE interfaces
to check a storage system, using a running example of
a simple file system checker. Clients use EXPLODE to
do two main things to a storage system. First, system-
atically exhaust all possibilities when the checked sys-
tem can do one of several actions. Second, check that it
correctly recovers from a crash. Clients can also check
non-crash properties by simply inserting code to do so
in either their checker or checked code itself without re-
quiring EXPLODE support (for an example see §7.2).

Below, we explain how clients expose decision points
in the checked code (§ 3.1). We then explain the three
system-specific components that clients provide (written
in C++). One, a checker that performs storage system
operations and checks that they worked correctly (§3.2).
Two, a storage component that sets up the checked sys-
tem (§3.3). Finally, a checking stack that combines the
first two into a checking harness (§3.4).

3.1 How checked code exposes choice: choose

Like prior model checkers [13, 30], EXPLODE provides
a function, choose, that clients use to select among
possible choices in checked code. Given a program

point that has N possible actions clients insert a call
“choose(N),” which will appear to fork execution N
times, returning the values 0, 1, ..., N − 1 in each child
execution respectively. They then write code that uses
this return value to pick one unique action out of the N
possibilities. EXPLODE can exhaust all possible actions
at this choose call by running all forked children. We
define a code location that can pick one of several differ-
ent legal actions to be a choice point and the act of doing
so a choice.

An example: in low memory situations the Linux
kmalloc function can return NULL when called with-
out the GFP NOFAIL flag. But it rarely does so in
practice, making it difficult to comprehensively check
that callers correctly handle this case. We can use
choose to systematically explore both success and fail-
ure cases of each kmalloc call as follows:

void * kmalloc(size t size, int flags) {
if((flags & GFP NOFAIL) == 0)

if(choose(2) == 0)
return NULL;

. . .

Typically clients add a small number of such calls.
On Linux, we used choose to fail six kernel func-
tions: kmalloc (as above), page alloc (page al-
locator), access ok (verify user-provided pointers),
bread (read a block), read cache page (read a
page), and end request (indicate that a disk request
completed). The inserted code mirrors that in kmalloc:
a call choose(2) and an if-statement to pick whether
to either (0) return an error or (1) run normally.

3.2 Driving checked code: The checker

The client provides a checker that EXPLODE uses to
drive and check a given storage system. The checker im-
plements five methods:
1. mutate: performs system-specific operations and

calls into EXPLODE to explore choices and to do
crash checking.

2. check: called after each EXPLODE-simulated crash
to check for storage system errors.

3. get sig: an optional method which returns a byte-
array signature representing the current state of the
checked system. It uses domain-specific knowledge
to discard irrelevant details so that EXPLODE knows
when two superficially different states are equivalent
and avoids repeatedly checking them. The default
get sig simply records all choices made to pro-
duce the current state.

4. init and finish: optional methods to set up and
clear the checker’s internal state, called when EX-
PLODE mounts and unmounts the checked system.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 133

1 : const char *dir = "/mnt/sbd0/test-dir";
2 : const char *file = "/mnt/sbd0/test-file";
3 : static void do fsync(const char *fn) {
4 : int fd = open(fn, O RDONLY);
5 : fsync(fd);
6 : close(fd);
7 : }
8 : void FsChecker::mutate(void) {
9 : switch(choose(4)) {
10: case 0: systemf("mkdir %s%d", dir, choose(5)); break;
11: case 1: systemf("rmdir %s%d", dir, choose(5)); break;
12: case 2: systemf("rm %s", file); break;
13: case 3: systemf("echo \"test\" > %s", file);
14: if(choose(2) == 0)
15: sync();
16: else {
17: do fsync(file);
18: // fsync parent to commit the new directory entry
19: do fsync("/mnt/sbd0");
20: }
21: check crash now(); // invokes check() for each crash
22: break;
23: }
24: }
25: void FsChecker::check(void) {
26: ifstream in(file);
27: if(!in)
28: error("fs", "file gone!");
29: char buf[1024];
30: in.read(buf, sizeof buf);
31: in.close();
32: if(strncmp(buf, "test", 4) != 0)
33: error("fs", "wrong file contents!");
34: }

Figure 2: Example file system checker. We omit the class initialization
code and some sanity checks.

Checkers range from aggressively system-specific (or
even code-version specific) to the fairly generic. Their
size scales with the complexity of the invariants checked,
from a few tens to many thousands of lines.

Figure 2 shows a file system checker that checks a
simple correctness property: a file that has been syn-
chronously written to disk (using either the fsync or
sync system calls) should persist after a crash. Mail
servers, databases and other application storage systems
depend on this behavior to prevent crash-caused data
obliteration. While simple, the checker illustrates com-
mon features of many checkers, including the fact that it
catches some interesting bugs.

The mutate method calls choose(4) (line 9) to
fork and do each of four possible actions: (1) create a
directory, (2) delete it, (3) create a test file, or (4) delete
it. The first two actions then call choose(5) and cre-
ate or delete one of five directories (the directory name is
based on choose’s return value). The file creation ac-
tion calls choose(2) (line 14) and forces the test file to
disk using sync in one child and fsync in the other. As
Figure 3 shows, one mutate call creates thirteen chil-

mutate(S)

mkdir

../0 ../1 ../4../3../2

rmdir

../0 ../1 ../4../3../2

rm file creat file

sync fsync

Figure 3: Choices made by one invocation of the mutate method in
Figure 2’s checker. It creates thirteen children.

dren.
The checker calls EXPLODE to check crashes. While

other code in the system can also initiate such check-
ing, typically it is the mutate method’s responsibil-
ity: it issues operations that change the storage sys-
tem, so it knows the correct system state and when
this state changes. In our example, after mutate
forces the file to disk it calls the EXPLODE routine
check crash now(). EXPLODE then generates all
crash disks at the exact moment of the call and invokes
the check method on each after repairing and mounting
it using the underlying storage component (see § 3.3).
The check method checks if the test file exists (line 27)
and has the right contents (line 32). While simple, this
exact checker catches an interesting bug in JFS where
upon crash, an fsync’d file loses all its contents trig-
gered by the corner-case reuse of a directory inode as a
file inode (§7.3 discusses a more sophisticated version of
this checker).

So far we have described how a single mutate call
works. The next section shows how it fits in the check-
ing process. In addition, checking crashes at only a sin-
gle code point is crude; Section 6 describes the routines
EXPLODE provides for more comprehensive checking.

3.3 Setting up checked code: Storage components

Since EXPLODE checks live storage systems, these sys-
tems must be up and running. For each storage subsys-
tem involved in checking, clients provide a storage com-
ponent that implements five methods:
1. init: one-time initialization, such as formatting a

file system partition or creating a fresh database.
2. mount: set up the storage system so that operations

can be performed on it.
3. unmount: tear down the storage system; used by

EXPLODE to clear the storage system’s state so it can
explore a different one (§5.2).

4. recover: repair the storage system after an EX-
PLODE-simulated crash.

5. threads: return the thread IDs for the storage
system’s kernel threads. EXPLODE reduces non-
determinism by only running these threads when it
wants to (§5.2).

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association134

void Ext3::init(void) {
// create an empty ext3 FS with user-specified block size
systemf("mkfs.ext3 -F -j -b %d %s",

get option(blk size), children[0]−>path());
}
void Ext3::recover() {

systemf("fsck.ext3 -y %s", children[0]−>path());
}
void Ext3::mount(void) {

int ret = systemf("sudo mount -t ext3 %s %s",
children[0]−>path(), path());

if(ret < 0) error("Corrupt FS: Can’t mount!");
}
void Ext3::umount(void) {

systemf("sudo umount %s", path());
}
void Ext3::threads(threads t &thids) {

int thid;
if((thid=get pid("kjournald")) != −1)

thids.push back(thid);
else

explode panic("can’t get kjournald pid!");
}
Figure 4: Example storage component for the ext3 file system. The
C++ class member children chains all storage components that a
component is based on; ext3 has only one child.

Clients write a component once for a given storage sys-
tem and then reuse it in different checkers. Storage sys-
tems tend to be easy to set up, otherwise they will not
get used. Thus, components tend to be simple and small
since they can merely wrap up already-present system
commands (e.g., shell script invocations).

Figure 4 shows a storage component for the ext3 file
system that illustrates these points. Its first four methods
call standard ext3 commands. The one possibly non-
obvious method is threads, which returns the thread
ID of ext3’s kernel thread (kjournald) using the ex-
pedient hack of calling the built-in EXPLODE routine
get pid which automatically extracts this ID from the
output of the ps command.

3.4 Putting it all together: The checking stack

The checking stack builds a checker by glueing storage
system components together and then attaching a single
checker on top of them. The lowest component of a
checking stack typically is a custom RAM disk (down-
loaded from [24] and slightly modified). While EX-
PLODE runs on real disks, using a RAM disk avoids non-
deterministic interrupts and gives EXPLODE precise, fast
control over the contents of a checked system’s “per-
sistent” storage. The simplest storage stack attaches a
checker to one EXPLODE RAM disk. Such a stack does
no useful crash checking, so clients typically glue one or
more storage subsystems between these two. Currently a
stack can only have one checker. However, there can be
a fan-out of storage components, such as setting up mul-

// Assemble FS + RAID storage stack step by step.
void assemble(Component *&top, TestDriver *&driver) {

// 1. load two RAM disks with size specified by user
ekm load rdd(2, get option(rdd, sectors));
Disk *d1 = new Disk("/dev/rdd0");
Disk *d2 = new Disk("/dev/rdd1");

// 2. plug a mirrored RAID array onto the two RAM disks.
Raid *raid = new Raid("/dev/md0", "raid1");
raid−>plug child(d1);
raid−>plug child(d2);

// 3. plug an ext3 system onto RAID
Ext3 *ext3 = new Ext3("/mnt/sbd0");
ext3−>plug child(raid);
top = ext3; // let eXplode know the top of storage stack

// 4. attach a file system test driver onto ext3 layer
driver = new FsChecker(ext3);

}
Figure 5: Checking stack: file system checker (Figure 2) on an ext3 file
system (Figure 4) on a mirrored RAID array on two EXPLODE RAM
disks. We elide the trivial class definitions Raid and Disk.

tiple RAM disks to make a RAID array. Given a stack,
EXPLODE initializes the checked storage stack by call-
ing each init bottom up, and then mount bottom up.
After a crash, it calls the recover methods bottom up
as well. To unmount, EXPLODE applies unmount top
down. Figure 5 shows a three-layer storage stack.

4 Implementation Overview

This section gives an overview of EXPLODE. The next
two sections discuss the implementation of its most im-
portant features: choice and crash checking.

The reader should keep in mind that conceptually what
EXPLODE does is very simple. If we assume infinite re-
sources and ignore some details, the following would ap-
proximate its implementation:
1. Create a clean initial state (§3.3) and invoke the

client’s mutate on it.
2. At every choose(N) call, fork N children.
3. On client request, generate all crash disks and run the

client check method on them.
4. When mutate returns, re-invoke it.

This is it. The bulk of EXPLODE is code for approx-
imating this loop with finite resources, mainly the ma-
chinery to save and restore the checked system so it
can run one child at a time rather than an exponen-
tially increasing number all-at-once. As a result, EX-
PLODE unsurprisingly looks like a primitive operating
system: it has a queue of saved processes, a scheduler
that picks which of these jobs to run, and time slices (that
start when mutate is invoked and end when it returns).
EXPLODE’s scheduling algorithm: exhaust all possible
combinations of choices within a single mutate call be-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 135

storage.init()

S0 = checkpnt()

pick S from

state queue

restore(S)

...

choose(N)

fs
.m
u
ta
te
(S
)

k
b
lo
c
k
d

choose(N)

mkdir(…)

creat(…) {

<create file>

...

check_crashes
generate all

crash disks

unexplored

choices in S?

Yes

No

seen fs.get_sig()?

storage.repair()

fs.check()

valid?

Yes

No

Error!

No

discard

current state

Yes

S’=checkpnt()

Add S’ to

state queue

state queue

buffer cache curent RAM disk

(1)

(2)

(3)

(4)

(5)

(6)

(7)

S’
S

S0

Figure 6: Simplified view of EXPLODE’s state exploration loop for the
file system checker in Figure 2; some choose transitions and method
calls elided for space.

fore doing another (§ 2). (Note that turning EXPLODE

into a random testing framework is easy: never save and
restore states and make each choose(N) call return
a random integer [0, N) rather than forking, recording
each choice for error replay.) The above sketch glosses
over some important details; we give a more accurate de-
scription below, but the reader should keep this helpful,
simplistic one in mind.

From a formal method’s perspective, the core of EX-
PLODE is a simple, standard model checking loop based
on exhausting state choices. Figure 6 shows this view
of EXPLODE as applied to the file system checker of the
previous section; the numbered labels in the figure cor-
respond to the numbers in the list below:
1. EXPLODE initializes the checked system using

client-provided init methods. It seeds the check-
ing process by saving this state and putting it on the
state queue, which holds all states (jobs) to explore.
It separately saves the created disk image for use as a
pristine initial disk.

2. The EXPLODE “scheduler” selects a state S from its
state queue, restores it to produce a running stor-
age system, and invokes choose to run either the
mutate method or one of the checked systems’ ker-
nel threads. In the figure, mutate is selected.

3. mutate invokes choose to pick an action. In our
example it picks creat and calls it, transferring

EXPLODE Runtime

M
o
d
ifie
d
 L
in
u
x

K
e
rn
e
l

Model Checking Loop

C
h
e
c
k
in
g
 S
ta
c
k

FS Checker

Ext3 Component

Raid Component

Ext3

Raid

EKM

RAM Disk RAM Disk

void*

kmalloc (size_t s) {

 if(choose(2) == 0)

return NULL;

 ….

B
u
ffe
r

C
a
c
h
e?

?

Hardware

Figure 7: Snapshot: EXPLODE with Figure 5’s checking stack

control to the running Linux kernel. The creat sys-
tem call writes two dirty blocks to the buffer cache
and returns back to mutate.

4. mutate calls EXPLODE to check that the file system
correctly recovers from any crash at this point.

5. EXPLODE generates combinations of disks that could
be seen after a crash. It then runs the client code to:
mount the crash disk, recover it, and check it. If
these methods flag an error or they crash, EXPLODE

records enough information to recreate this error, and
stops exploring this state.

6. Otherwise EXPLODE returns back into mutate
which in turn returns. EXPLODE checks if it has al-
ready seen the current state using the abstracted rep-
resentation returned by get sig. If it has, it dis-
cards the state to avoid redundant work, otherwise it
checkpoints it and puts it on the state queue.

7. EXPLODE then continues exploring any remaining
choices in the original state S. If it has exhausted all
choice combinations on S it picks a previously saved
state off the state queue and repeats this process on it.
This loop terminates when the state queue is empty
or the user loses patience. (The number of possible
states means the former never happens.)

After crash checking, the checked system may have a
butchered internal state. Thus, before continuing, EX-
PLODE restores a clean copy of the current state without
doing crash checking (not pictured). In addition, since
checking all possible crash disks can take too long, users
can set a deterministic threshold: if the number of crash
disks is bigger than this threshold, EXPLODE checks a
configurable number of random combinations.

Figure 7 gives a snapshot of EXPLODE; Table 1 breaks
down the lines of code for each of the components.
It consists of two user-level pieces: a client-provided
checking stack and the EXPLODE runtime, which imple-
ments most of the model checking loop described above.
EXPLODE also has three kernel-level pieces: (1) one or
more RAM disks, (2) a custom kernel module, EKM,
and (3) a modified Linux kernel (either version 2.6.11 or
2.6.15). EXPLODE uses EKM to monitor and determinis-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association136

Name Line Count

Linux

EKM 1,261
RAM disk Driver 326

Kernel Patch 328
EKM-generated 2,194

BSD
EKM 729

RAM disk Driver 357
Kernel Patch 116

User-mode EXPLODE 5,802
RPC Library 521

Table 1: EXPLODE lines of code (ignoring comments and blank lines),
broken down by modules. The EKM driver contains 2,194 lines of au-
tomatically generated code (EKM-generated). The EXPLODE runtime
and the RPC library run at user-level, the rest is in the kernel. The
RPC library is used to check virtual machines (§ 9.3). BSD counts are
smaller because this port does not yet provide all EXPLODE features.

tically control checking-relevant actions done by kernel
code and record system events needed for crashes. The
modified kernel calls EKM to log system events and when
it reaches a choice point. These modifications add 328
lines of mostly read-only instrumentation code, typically
at function entry or exit. We expect them to generally be
done by EXPLODE users. Unlike EXPLODE’s user-space
code, its RAM disk driver and EKM are kernel-specific,
but are fairly small and easily ported to a new OS. We re-
cently ported EXPLODE’s core to FreeBSD, which Sec-
tion 10 describes in more detail.

Given all of these pieces, checking works as follows.
First, the user compiles and links their code against the
EXPLODE runtime, and runs the resultant executable.
Second, the EXPLODE runtime dynamically loads its
kernel-level components and then initializes the storage
system. Finally, EXPLODE explores the checked sys-
tem’s states using its model checking loop.

While checking a live kernel simplifies many things,
the downside is that many bugs we find with EXPLODE

cause kernel crashes. Thus, we run the checked system
inside a virtual machine monitor (VMware Workstation),
where it can blow itself up without hurting anyone. This
approach also makes checking a non-super-user opera-
tion, with the usual benefits.

5 Exploring Choices

EXPLODE exhausts a choice point by checkpointing the
current state S, exploring one choice, restoring S, and
then exploring the other choices. Below we discuss how
EXPLODE implements checkpoint and restore by replay-
ing choices (§ 5.1) deterministically (§ 5.2).

5.1 Checkpointing and restoring states.

A standard checkpoint implementation would copy the
current system state to a temporary buffer, which restore
would then copy back. Our previous storage checking

system, FiSC, did just this [30]. Unfortunately, one can-
not simply save and restore a kernel running on raw hard-
ware, so we had to instead run a heavily-hacked Linux
kernel inside FiSC at user level, turning FiSC into a prim-
itive virtual machine. Doing so was the single largest
source of FiSC complexity, overhead to check new sys-
tems, and limitation on what we could check.

EXPLODE uses computation rather than copying to
recreate states. It checkpoints a state S by recording
the set of choices the checked code took to reach S. It
restores S by starting from a clean initial state and re-
playing these choices. Thus, assuming deterministic ac-
tions, this method regenerates S. Mechanically, check-
point records the sequence of n choices that produced S
in an array; during replay the ith choose call simply
returns the ith entry in this array.

This one change led to orders of magnitude reduction
in complexity and effort in using EXPLODE as opposed
to FiSC, to the degree that EXPLODE completely sub-
sumes our prior work in almost every aspect by a large
amount. It also has the secondary benefit that states have
a tiny representation: a sequence of integers, one for
each choice point, where the integer specifies which of
N choices were made. Note that some model checkers
(and systems in other contexts [10]) already use replay-
recreation of states, but for error reporting and state size
reduction, rather than for reducing invasiveness. One
problem with the approach is that the restored state’s
timestamps will not match the original, making it harder
to check some time properties.

Naively, it might seem that to reset the checked sys-
tems’ state we have to reboot the machine, re-initialize
the storage system, mount it, and only then replay
choices. This expensive approach works, but fortunately,
storage systems have the observed, nice property that
simply unmounting them clears their in-memory state,
removing their buffer cache entries, freeing up their ker-
nel data structures, etc. Thus, EXPLODE uses a faster
method: call the client-supplied unmount to clear the
current state, then load a pristine initial state (saved after
initialization) using the client-supplied mount.

It gets more costly to restore states as the length of
their choice sequence grows. Users can configure EX-
PLODE to periodically chop off the prefix of choice se-
quences. It does so by (1) calling unmount to force the
checked system state to disk and (2) using the resultant
disk image as a new initial state that duplicates the effect
of the choices before the unmount call. The downside
is that it can no longer reorder buffer cache entries from
before this point during crash checking.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 137

5.2 Re-executing code deterministically

EXPLODE’s restore method only works if it can deter-
ministically replay checked code. We discuss how EX-
PLODE does so below, including the restrictions imposed
on the checked system.

Doing the same choices. Kernel code containing a
choose call can be invoked by non-checking code, such
as interrupt handlers or system calls run by other pro-
cesses. Including such calls makes it impossible to re-
play traces. EXPLODE filters them by discarding any
calls from an interrupt context or calls from any process
whose ID is not associated with the checked system.

Controlling threads. EXPLODE uses priorities to
control when storage system threads run (§ 4, bullet 2).
It quiesces storage system threads by giving them the
lowest priority possible using an EKM ioctl. It runs
a thread by giving it a high priority (others still have the
lowest) and calling the kernel scheduler, letting it sched-
ule the right thread. It might seem more sensible for EX-
PLODE to orchestrate thread schedules via semaphores.
However, doing so requires intrusive changes and, in
our experience [30], backfires with unexpected deadlock
since semaphores prevent a given thread from running
even if it absolutely must. Unfortunately, using priorities
is not perfect either, and still allows non-deterministic
thread interleaving. We detect pathological cases where
a chosen thread does not run, or other “disabled” threads
do run using the “last-run” timestamps in the Linux pro-
cess data structure. These sanity checks let us catch when
we generate an error trace that would not be replayable or
when replaying it takes a different path. Neither happens
much in practice.

Requirements on the checked system. The checked
system must issue the same choose calls across re-
play runs. However, many environmental features can
change across runs, providing many sources of poten-
tial non-deterministic input: thread stacks in different lo-
cations, memory allocations that return different blocks,
data structures that have different sizes, etc. None of
these perturbations should cause the checked code to be-
have differently. Fortunately, the systems we checked
satisfy this requirement “out of the box” — in part be-
cause they are isolated during checking, and nothing be-
sides the checker and their kernel threads call into them
to modify their RAM disk(s). Non-deterministic systems
require modification before EXPLODE can reliably check
them. However, we expect such cases to rarely occur. If
nothing else, usability forces systems to ensure that re-
executing the same user commands produces the same
system state. As a side-effect, they largely run the same
code paths (and thus would hit the same choose calls).

While checked code must do the same choose calls
for deterministic error replay, it does not have to allocate
the same physical blocks. EXPLODE replays choices, but
then regenerates all different crash combinations after the
last choice point until it (re)finds one that fails checking.
Thus, the checked code can put logical contents in differ-
ent physical blocks (e.g., an inode resides in disk block
10 on one run and in block 20 on another) as long as the
logical blocks needed to cause the error are still marked
as dirty in the buffer cache.

6 Checking Crashes
This section discusses crash checking issues: EX-
PLODE’s checking interface (§ 6.1), how it generates
crash disks (§ 6.2), how it checks crashes during recov-
ery (§ 6.3), how it checks for errors caused by application
crashes (§ 6.4), and some refinements (§ 6.5).

6.1 The full crash check interface

The check crashes now() routine is the simplest
way to check crashes. EXPLODE also provides a more
powerful (but complex) interface clients can use to di-
rectly inspect the log EXPLODE extracts from EKM.
They can also add custom log records. Clients use the
log to determine what state the checked system should
recover to. They can initiate crash checking at any time
while examining the log. For space reasons we do not
discuss this interface further, though many of our check-
ers use it. Instead we focus on two simpler routines
check crashes start and check crashes end
that give most of the power of the logging approach.

Clients call check crashes start before invok-
ing the storage system operations they want to check and
check crashes end after. For example, assume we
want to check if we can atomically rename a file A to B
by calling rename and then sync(). We could write
the following code in mutate:

// Assume: A, B on disk

check_crashes_start(...);

 rename(“A”, “B”);

 sync();

check_crashes_end(...);

Legal state(s) after crash

(A and B), or B

(A and B)

B

EXPLODE generates all crash disks that can occur (inclu-
sively) between these calls, invoking the client’s check
method on each. Note how the state the system should
recover to changes. At the check crashes start
call, the recovered file system should contain both A
and B. During the process of renaming, the recovered
file system can contain either (1) the original A and B
or (2) B with A’s original contents. After sync com-
pletes, only B with A’s original contents should exist.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association138

This pattern of having an initial state, a set of legal in-
termediate states, and a final state is a common one for
checking. Thus, EXPLODE makes it easy for check to
distinguish between these epochs by passing a flag that
tells check if the crash disk could occur at the first call
(EXP BEGIN), the last call (EXP END), or in between
(EXP INBETWEEN). We could write a check method to
use these flags as follows:

check(int epoch, . . .) {
if(epoch == EXP BEGIN)

// check (A and B)
else if(epoch == EXP INBETWEEN)

// check (A and B) or B
else // EXP END

// check B
}

EXPLODE uses C++ tricks so that clients can pass an
arbitrary number of arguments to these two routines (up
to a user-specified limit) that in turn get passed to their
check method.

6.2 Generating crash disks

EXPLODE generates crash disks by first constructing the
current write set: the set of disk blocks that currently
could be written to disk. Linux has over ten functions
that affect whether a block can be written or not. The
following two representative examples cause EXPLODE

to add blocks to the write set:
1. mark buffer dirty(b) sets the dirty flag of a

block b in the buffer cache, making it eligible for
asynchronous write back.

2. generic make request(req) submits a list of
sectors to the disk queue. EXPLODE adds these sec-
tors to the write set, even if they are clean, which can
happen for storage systems maintaining their own
private buffer caches (as in the Linux port of XFS).

The following three representative examples cause EX-
PLODE to remove blocks from the write set:
1. clear buffer dirty(b) clears b’s dirty flag.

The buffer cache does not write clean buffers to disk.
2. end request(), called when a disk request com-

pletes. EXPLODE removes all versions of the re-
quest’s sectors from the write set since they are guar-
anteed to be on disk.

3. lock buffer(b), locks b in memory, prevent-
ing it from being written to disk. A subsequent
clear buffer locked(b) will add b to the
write set if b is dirty.

Writing any subset of the current write set onto the
current disk contents generates a disk that could be seen
if the system crashed at this moment. Figure 8 shows
how EXPLODE generates crash disks; its numbered la-
bels correspond to those below:

mark_dirty(B1)
make_request(B1)

make_request(B2)

end_request(B1,B2)

(1) log ops (2) rewrite to

micro-ops

add B11

add B12 // B11 != B12

add B21

remove B1, B2

(3) build potential

write sets

{ B11 }

{ B11, B12 }

{ B11, B12, B21 }
{}

B10

B20

Initial disk

{ B11, B12, B21 }

B10

B20

B11

B20

B12

B20

B10

B21

B11

B21

B12

B21

(4)

generate

crashes

Figure 8: Generating all potential crash disks.

1. As the storage system executes, EKM logs operations
that affect which blocks could be written to disk.

2. EXPLODE extracts this log using an EKM ioctl and
reduces the logged operations to micro-operations
that add or remove blocks from the write set.

3. It then applies these add and remove operations, in
order, to the initial write set.

4. Whenever the write set shrinks, it generates all pos-
sible crash disks by applying all subsets of the write
set to the current disk. (Doing so when the write set
shrinks rather than grows makes it trivial to avoid du-
plicate work.)

Note that the write set tracks a block’s contents in addi-
tion to the block itself. Naively it may appear that when
EXPLODE adds a block b to the write set it should replace
any previous copy of b with this more recent one. (Our
previous work [30] did exactly this.) However, doing so
misses errors. For example, in the figure, doing so misses
one crash disk (B11, B21) since the second insertion of
block B1 replaces the previous version B11 with B12.

6.3 Checking crashes during recovery

Clients can also use EXPLODE to check that storage sys-
tems correctly handle crashes during recovery. Since en-
vironmental failures are correlated, once one crash hap-
pens, another is not uncommon: power may flicker re-
peatedly in a storm or a machine may keep rebooting
because of a bad memory board. EXPLODE generates
the disks that could occur if recovery crashes, by track-
ing the write set produced while running recover, and
then applying all its subsets to the initial crash disk. It
checks these “crash-crash” disks as it would a crash disk.
Note this assumes recovery is idempotent in that if a cor-
rect recovery with no crash produces state Svalid then so
should a prematurely crashed repair followed by a suc-
cessful one. We do not (but could) check for further
crashes during recovery since implementors seem unin-
terested in such errors [30].

6.4 Checking “soft” application crashes

In addition to “hard” machine crashes that wipe volatile
state, EXPLODE can also check that applications cor-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 139

rectly recover from “soft” crashes where they crashed,
but the operating system did not. Such soft crashes
are usually more frequent than hard crashes with causes
ranging from application bugs to impatient users press-
ing “ctrl-C.” Even applications that ignore hard crashes
should not corrupt user data because of a soft crash.

EXPLODE checks soft crashes in two steps. First, it
runs the checker’smutate method and logs all mutating
file system operations it performs. Second, for each log
prefix EXPLODE mounts the initial disk and replays the
operations in the prefix in the order they are issued. If
the log has n operations EXPLODE generates n storage
states, and passes each to the check method.

6.5 Refinements

In some cases we remove blocks from the write set too
eagerly. For example, we always remove the sectors as-
sociated with end request, but doing so can miss per-
mutations since subsequent writes may not in fact have
waited for (depended on) the write to complete. Con-
sider the events: (1) a file system writes sector S1, (2)
the write completes, (3) it then writes sector S2. If the
file system wrote S2 without explicitly waiting for the S1
write to complete then these writes could have been re-
ordered (i.e., there is no happens-before dependency be-
tween them). However, we do not want to grovel around
inside storage systems rooting out these false dependen-
cies, and conservatively treat all writes that complete as
waited for. A real storage system implementor could ob-
viously do a better job.

To prevent the kernel from removing buffers from the
write set, we completely disable the dirty buffer flushing
threads pdflush, and only schedule the kernel thread
kblockd that periodically flushes the disk queue be-
tween calls to the client mutate method.

If a checked system uses a private buffer cache, EX-
PLODE cannot see all dirty blocks. We partially counter
this problem by doing an unmount before generating
crash disks, which will flush all private dirty buffers to
disk (when EXPLODE can add them to its write set). Un-
fortunately, this approach is not a complete solution since
these unmount-driven flushes can introduce spurious de-
pendencies (as we discussed above).

7 In-Depth Checking: File Systems
This section demonstrates that EXPLODE’s lightweight
approach does not compromise its power by replicat-
ing (and sometimes superseding) the results we obtained
with our previous, more strenuous approach [30]. It also
shows EXPLODE’s breadth by using it to check ten Linux
file systems with little incremental effort.

We applied EXPLODE to all but one of the disk based

file systems on Linux 2.6.11: ext2, ext3, JFS, ReiserFS,
Reiser4, XFS, MSDOS, VFAT, HFS, and HFS+. We
skipped NTFS because repairing a crashed NTFS disk
requires mounting it in Windows. For most file sys-
tems, we used the most up-to-date utilities in the Debian
“etch” Linux distribution. For HFS and HFS+, we had
to download the source of their utilities from OpenDar-
win [14] and compile it ourselves. The storage compo-
nents for these file systems mirror ext3’s component
(§ 3.3). Four file systems use kernel threads: JFS, Reis-
erFS, Reiser4 and XFS. We extracted these thread IDs
using the same trick as with ext3.

While these file systems vary widely in terms of im-
plementation, they are identical in one way: none give
clean, precise guarantees of the state they recover to af-
ter a crash. As a result, we wrote three checkers that
focused on different special cases where what they did
was somewhat well-defined. We built these checkers by
extending a common core, which we describe below. We
then describe the checkers and the bugs they found.

7.1 The generic checker core

The basic checker starts from an empty file system
and systematically generates file system topologies up
to a user-specified number of files and directories. Its
mutate exhaustively applies each of the following eight
system calls to each node (file, link, directory) in the cur-
rent topology before exploring the next: ftruncate,
pwrite (which writes to a given offset within a file),
creat, mkdir, unlink, rmdir, link and rename.
For example, if there are two leaf directories, the checker
will delete both, create files in both, etc. Thus, the num-
ber of possible choices for a given tree grows (determin-
istically) with its size. For file systems that support holes,
the checker writes at large offsets to exercise indirect
blocks. Other operations can easily be added.

For each operation it invokes, mutate duplicates its
effect on a fake “abstract” file system it maintains pri-
vately. For example, if it performs three operations
mkdir(/a), mkdir(/a/b), and sync() then the
abstract file system will be the tree /a/b, which the real
file system must match exactly. The checker’s get sig
method returns a canonical version of this abstract file
system. This canonicalization mirrors that in [30], and
uses relabeling to make topologies differing only in nam-
ing equivalent and discards less interesting properties
such as timestamps, actual disk blocks used, etc.

7.2 Check: Failed system calls have no effect

This check does not involve crash-recovery. It checks
that if a file system operation (except pwrite) returns
an error, the operation has no user-visible effect. It uses

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association140

EXPLODE to systematically fail calls to the six kernel
functions discussed in Section 3.1. The actual check uses
the abstract file system described in the previous sub-
section. If a system call succeeds, the checker updates
the abstract file system, but otherwise does not. It then
checks that the real file system matches the abstract one.

Bugs found. We found 2 bugs in total. One of
them was an unfixed Linux VFS bug we already re-
ported in [30]. The other one was a minor bug in Reis-
erFS ftruncate which can fail with its job half-done
if memory allocation fails. We also found that Reiser4
calls panic on memory allocation failures, and Reis-
erFS calls panic on disk read failures. (We did not in-
clude these two undesired behaviors in our bug counts.)

7.3 Check: “sync” operations work

Applications such as databases and mail servers use op-
erating system-provided methods to force their data to
disk in order to prevent crashes from destroying or cor-
rupting it. Unfortunately, they are completely at these
routines’ mercy — there is no way to check they do what
they claim, yet their bugs can be almost arbitrarily bad.

Fortunately, EXPLODE makes it easy to check these
operations. We built a checker (similar to the one in Fig-
ure 2) to check four methods that force data to disk:
1. sync forces all dirty buffers to disk.
2. fsync(fd) forces fd’s dirty buffers to disk.
3. Synchronously mounted file system: a system call’s

modifications are on disk when the call returns.
4. Files opened with O SYNC: all modifications done by

a system call through the returned file descriptor are
on disk when the call returns.

After each operation completes and its modifications
have been forced to disk, the sync-checker tells EX-
PLODE to do crash checking and verifies that the mod-
ifications persist.

Note, neither fsync nor O SYNC guarantee that di-
rectory entries pointing to the sync’d file are on disk,
doing so requires calling fsync on any directory con-
taining the file (a legal operation in Linux). Thus, the
checker does an fsync on each directory along the path
to the sync’d file, ensuring there is a valid path to it in the
recovered file system.

Bugs found. Table 2 summarizes the 13 bugs found
with this checker. Three bugs show up in multiple ways
(but are only counted three times): a VFS limitation
caused all file systems to fail the O SYNC check, and both
HFS and HFS+ mangled file and directory permissions
after crashing, therefore failing all four sync checks. We
describe a few of the more interesting bugs below.

Besides HFS/HFS+, both MSDOS and VFAT mishan-
dled sync. Simple crashes after sync can introduce di-

FS sync mount sync fsync O SYNC
ext2 � � �
ext3 �
ReiserFS � �
Reiser4 �
JFS � � �
XFS � �
MSDOS � � �
VFAT � � �
HFS � � � �
HFS+ � � � �

Table 2: Sync checking results: � indicates the file system failed the
check. There were 13 bugs, three of which show up more than once,
causing more � marks than errors.

rectory loops. The maintainers confirmed they knew of
these bugs, though they had not been publicly disclosed.
These bugs have subsequently been fixed. Eight file sys-
tems had synchronous mount bugs. For example, ext2
gives no consistency guarantees by default, but mounting
it synchronously still allows data loss.

There were two interesting fsync errors, one in JFS
(§3.2) and one in ext2. The ext2 bug is a case where
an implementation error points out a deeper design prob-
lem. The bug occurs when we: (1) shrink a file “A”
with truncate and (2) subsequently creat, write,
and fsync a second file “B.” If file B reuses the indi-
rect blocks of A freed via truncate, then following a
crash e2fsck notices that A’s indirect blocks are cor-
rupt and clears them, destroying the contents of B. (For
good measure it then notices that A and B share blocks
and “repairs” B by duplicating blocks from A.) Because
ext2 makes no guarantees about what is written to disk,
fundamentally one cannot use fsync to safely force a
file to disk, since the file can still have implicit depen-
dencies on other file system state (in our case if it reuses
an indirect blocks for a file whose inode has been cleared
in memory but not on disk).

7.4 Check: a recovered FS is “reasonable”

Our final check is the most stringent: after a crash a file
system recovers to a “reasonable” state. No files, di-
rectories, or links flushed to disk are corrupted or dis-
appear (unless explicitly deleted). Nor do they sponta-
neously appear without being created. For example, if
we crash after performing two operations mkdir(/A)
and mkdir(/A/B) on an empty file system, then there
are exactly three correct recovered file systems: (1) / (no
data), (2) /A, or (3) /A/B. We should not see directories
or files we never created. Similarly, if /A was forced to
disk before the crash, it should still exist.

For space reasons we only give a cursory implemen-
tation overview. As mutate issues operations, it builds
two sets: (1) the stable set, which contains the opera-
tions it knows are on the disk, (2) the volatile set, which

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 141

contains the operations that may or may not be on disk.
The check method verifies that the recovered file sys-
tem can be constructed using some sequence of volatile
operations legally combined with all the stable ones. The
implementation makes heavy use of caching to prune the
search and “desugars” operations such as mkdir into
smaller atomic operations (in this case it creates an in-
ode and then forms a link to it) to ensure it can describe
their intermediate effects.

Bugs found. We applied this check to ext2, ext3,
JFS, ReiserFS and Reiser4. Unsurprisingly, since ext2
gives no crash guarantees, files can point to uninitial-
ized blocks, and sync’d files and directories can be re-
moved by its fsck. Since JFS journals metadata but
not data, its files can also point to garbage. These be-
haviors are design decisions so we did not include them
in our bug counts. We found two bugs (one in JFS,
one in Reiser4) where crashed disks cannot be recov-
ered by fsck. We could not check many topologies for
ReiserFS and Reiser4 because they appear to leak large
amounts of memory on every mount and unmount
(Our bug counts do not include these leaks.)

In addition, we used the crash-during-recovery check
(§6.3) on Reiser4. It found a bug where Reiser4 be-
comes so corrupted that mounting it causes a kernel
panic. (Since our prior work explored this check in detail
we did not apply it to more systems.)

Finally, we did a crude benchmark run by running
the checker (without crash-during-recovery checking) to
ext3 inside a virtual machine with 1G memory on a In-
tel P4 3.2GHZ with 2G memory. After about 20 hours,
EXPLODE checked 230,744 crashes for 327 different
FS topologies and 1582 different FS operations. The
run died because Linux leaks memory on each mount
and unmount and runs out of memory. Although we
fixed two leaks, more remain (we did not count these
obliquely-detected errors in our bug counts but were
tempted to). We intend to have EXPLODE periodically
checkpoint itself so we can reboot the machine and let
EXPLODE resume from the checkpoints.

8 Even Simple Checkers Find Bugs
This section shows that even simple checkers find inter-
esting bugs by applying it to three version control sys-
tems and the Berkeley DB database.

The next two sections demonstrate that EXPLODE

works on many different storage systems by applying it
to many different ones. The algorithm for this process:
write a quick checker, use it to find a few errors, declare
success, and then go after another storage system. In
all cases we could check many more invariants. Table 3
summarizes all results.

System Storage Checker Bugs
FS 744 5,477 18

CVS 27 68 1
Subversion - - 1
EXPENSIV 30 124 3

Berkeley DB 82 202 6
RAID 144 FS + 137 2
NFS 34 FS 4

VMware GSX/Linux 54 FS 1
Total 1,115 6,008 36

Table 3: Summary of all storage systems checked. All line counts
ignore comments and whitespace. Storage gives the line count for each
system’s storage component, which for FS includes the components for
all ten file systems. Checker gives the checker line counts, which for
EXPENSIV includes two checkers. We reused the FS checker to check
RAID, NFS and VMware. We wrote an additional checker for RAID.
We checked Subversion using an early version of EXPLODE; we have
not yet ported its component and checker.

8.1 Version control software

This section checks three version control systems: CVS,
Subversion [27], and an expensive commercial system
we did not have source code for, denoted as EXPENSIV

(its license precludes naming it directly). We check that
these systems meet their fundamental goal: do not lose
or corrupt a committed file. We found errors in all three.

The storage component for each wraps up the com-
mands needed to set up a new repository on top of one
of the file systems we check. The checker’s mutate
method checks out a copy of the repository, modifies it,
and commits the changes back to the main repository.
After this commit completes, these changes should per-
sist after any crash. To test this, mutate immediately
calls check crashes now() after the commit com-
pletes. The check method flags an error if: (1) the ver-
sion control systems’ crash recovery tool (if any) gives
an error or (2) committed files are missing.

Bugs found. All three systems made the same mis-
take. To update a repository file A without corrupting
it, they first update a temporary file B, which they then
atomically rename to A. However, they forget to force
B’s contents to disk before the rename, which means a
crash can destroy it.

In addition EXPENSIV purports to atomically merge
two repositories into one, where any interruption (such
as crash) will either leave the two original repositories
or one entirely (correctly) merged one. EXPLODE found
a bug where a crash during merge corrupts the repos-
itory, which EXPENSIV’s recovery tool (EXPENSIV
-r check -f) cannot fix. This error seems to be
caused by the same renaming mistake as above.

Finally, we found that even a soft crash during a merge
corrupts EXPENSIV’s repository. It appears EXPENSIV

renames multiple files at the end of the merge. Although

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association142

each individual rename is atomic against a soft crash,
their aggregation is not. The repository is corrupted if
not all files are renamed.

8.2 Berkeley DB

The database checker in this section checks that after a
crash no committed transaction records are corrupted or
disappear, and no uncommitted ones appear. It found six
bugs in Berkeley DB 4.3 [2].

Berkeley DB’s storage component only defines the
init method, which calls Berkeley DB utilities to cre-
ate a database. It does not require mount or unmount,
and has no threads. It performs recovery when the
database is opened with the DB RECOVER flag (in the
check method). We stack this component on top of a
file system one.

The checker’s mutate method is a simple loop that
starts a transaction, adds several records to it, and then
commits this transaction. It records committed trans-
actions. It calls check crashes start before each
commit and check crashes end (§ 6.1) after to ver-
ify that there is a one-to-one mapping between the trans-
actions it committed and those in the database.

Bugs found. We checked Berkeley DB on top of
ext2, ext3, and JFS. On ext2 creating a database inside a
transaction, while supposedly atomic, can lead to a cor-
rupted database if the system crashes before the database
is closed or sync is manually called. Furthermore, even
with an existing database, committed records can disap-
pear during a crash. On ext3 an unfortunate crash while
adding a record to an existing database can again leave
the database in an unrecoverable state. Finally, on all
three file systems, a record that was added but never com-
mitted can appear after a crash. We initially suspected
these errors came from Berkeley DB incorrectly assum-
ing that file system blocks were written atomically. How-
ever, setting Berkeley DB to use sector-aligned writes
did not fix the problem. While the errors we find differ
depending on the file system and configuration settings,
some are probably due to the same underlying problem.

9 Checking “Transparent” Subsystems
Many subsystems transparently slip into a storage stack.
Given a checker for the original system, we can easily
check the new stack: run the same checker on top of it
and make sure it gives the same results.

9.1 Software RAID

We ran two checkers on RAID. The first checks that a
RAID transparently extends a storage stack by running
the file system sync-checker (§ 7.3) on top of it. A file
system’s crash and non-crash behavior on top of RAID

should be the same as without it: any (new) errors the
checker flags are RAID bugs. The second checks that
losing any single sector in a RAID1 or RAID5 stripe does
not cause data loss [20]. I.e., the disk’s contents were
always correctly reconstructed from the non-failed disks.

We applied these checks to Linux’s software
RAID [26] levels 1 and 5. Linux RAID groups a set
of disks and presents them as a single block device to
the rest of the system. When a block write request is
received by the software RAID block device driver, it re-
computes the parity block and passes the requests to the
underlying disks in the RAID array. Linux RAID repairs
a disk using a very simple approach: overwrite all of the
disk’s contents, rather than just those sectors that need to
be fixed. This approach is extremely slow, but also hard
to mess up. Still, we found two bugs.

The RAID storage component methods map directly
to different options for its administration utility mdadm.
The init method uses mdadm --create to as-
semble either two or four RAM disks into a RAID1
or RAID5 array respectively. The mount method
calls mdadm --assemble on these disks and the
unmount method tears down the RAID array by invok-
ing mdadm --stop. The recover method reassem-
bles and recovers the RAID array. We used the mdadm
--add command to replace failed disks after a disk fail-
ure. The checking stack is similar to that in Figure 5.

Bugs found. The checker found that Linux RAID
does not reconstruct the contents of an unreadable sec-
tor (as it easily could) but instead marks the entire disk
that contains the bad sector as faulty and removes it from
the RAID array. Such a fault-handling policy is not so
good: (1) it makes a trivial error enough to prevent the
RAID from recovering from any additional failure, and
(2) as disk capacity increases, the probability that another
sector goes bad goes to one.

Given this fault-handling policy, it is unsurprising our
checker found that after two sector read errors happen
on different disks, requiring manual maintenance, almost
all maintenance operations (such as mdadm --stop or
mdadm --add) fail with a “Device or resource busy”
error. Disk write requests also fail in this case, rendering
the RAID array unusable until the machine is rebooted.
One of the main developers confirmed that these behav-
iors were bad and should be fixed with high priority [4].

9.2 NFS

NFS synchronously forces modifications to disk before
requests return [23]. Thus, with only a single client mod-
ifying an NFS file system, after a crash NFS must recover
to the same file system tree as a local file system mounted
synchronously. We check this property by running the

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 143

sync-checker (§7.3) on NFS and having it treat NFS as
a synchronously mounted file system. This check found
four bugs when run on the Linux kernel’s NFS (NFSv3)
implementation [19].

The NFS storage component is a trivial 15-lines of
code (plus a hand-edit of “/etc/exports” to define
an NFS mount point). It provides two methods: (1)
mount, which sets up an NFS partition by exporting
a local FS over the NFS loop-back interface and (2)
unmount, which tears down an NFS partition by un-
mounting it. It does not provide a recover method
since the recover of the underlying local file system
must be sufficient to repair crashed NFS partitions. We
did not model network failures, neither did we control
the scheduling of NFS threads, which could make error
replay non-deterministic (but did not for ours).

Bugs found. The checker found a bug where a client
that writes to a file and then reads the same file through
a hard link in a different directory will not see the values
of the first write. We elide the detailed cause of this error
for space, other than noting that diagnosing this bug as
NFS’s fault was easy, because it shows up regardless of
the underlying file system (we tried ext2, ext3, and JFS).

We found additional bugs specific to individual file
systems exported by NFS. When JFS is exported over
NFS, the link and unlink operations are not commit-
ted synchronously. When an ext2 file system is exported
over NFS, our checker found that many operations were
not committed synchronously. If the NFS server crashes
these bugs can lose data and cause data values to go back-
wards for remote clients.

9.3 VMware GSX server

In theory, a virtual machine slipped beneath a guest OS
should not change the crash behavior of a correctly-
written guest storage system. Roughly speaking, cor-
rectness devolves to not lying about when a disk block
actually hits a physical disk. In practice, speed concerns
make lying tempting. We check that a file system on top
of a virtual machine provided “disk” has the same syn-
chronous behavior as running without it (again) using the
sync-checker (§7.3). We applied this check to VMware
GSX 3.2.0 [29] running on Linux. GSX is an interesting
case for EXPLODE: a large, complex commercial system
(for which we lack source code) that, from the point of
view of a storage system checker, implements a block
device interface in a strange way.

The VMware GSX scripting API makes the storage
component easy to build. The init method copies a
precreated empty virtual disk image onto the file sys-
tem on top of EXPLODE RAM disk. The mount
method starts the virtual machine using the command

Guest Linux

GSX

E
X
P
L
O
D
E
 R
u
n
tim
e

Checking Stack

FS Test Driver

Ext3 Component

Ext3

Hardware

VM-ext3 Component

GSX Component

VM Disk

Ext3

RPC Server

Host Linux with EKM

“sync”

RAM Disk

“mount”

Figure 9: The VMware checking stack.

vmware-cmd start and unmount stops it using
vmware-cmd stop hard. The recover method
calls vmware-cmd start, which repairs a crashed
virtual machine, and then removes a dangling lock (cre-
ated by the “crashed” virtual machine to prevent races on
the virtual disk file).

As shown in Figure 9 the checking stack was the most
intricate of this paper. It has five layers, starting from bot-
tom to top: (1) a RAM disk, (2) the ext3 file system in the
host, storing the GSX virtual disk file, (3) GSX, (4) the
ext3 file system in the guest, (5) the sync-checker. The
main complication in building this stack was the need to
split EXPLODE into two pieces, one running in the host,
the other in the guest. Since the virtual machine will
frequently “crash” we decided to keep the part running
inside it simple and make it a stateless RPC server. The
entire storage stack and the sync-checker reside in the
host. When the sync-checker wants to run an operation
in the guest, or a storage method wants to run a utility,
they do RPC calls to the server in the guest, which then
performs the operation.

Bugs found. Calling sync in the guest OS does not
correctly flush dirty buffers to disk, but only to the host’s
buffer cache. According to VMware documents, setting
the “disable write caching” configuration flag forces all
writes to disk. However, we hit the same bug even with
this flag on. This bug makes it impossible to reliably run
a storage system on top of this VMM on Linux. We con-
firmed this problem with one of the main developers who
stated that it should not show up in the latest version [28].

10 Checking on a new system: FreeBSD
We ported EXPLODE to FreeBSD 6.0 to ensure porting
was easy and to shake out Linux-specific design assump-
tions. We spent most of our time writing a new RAM
disk and EKM module; we only needed to change a few
lines in the user-level runtime to run on FreeBSD.

The FreeBSD version of EXPLODE supports crash
checking, but currently does not provide a kernel-level
choose nor logging of system calls. Neither should

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association144

present a challenge here or in general. Even without
these features, we reproduced the errors in CVS and EX-
PENSIV we saw on Linux as well as finding new errors
in FreeBSD UFS2. Below, we discuss issues in writing
EKM and the RAM disk.

EKM. Crash checking requires adding calls to EKM in
functions that mark buffers as clean, dirty, or write them
to disk. While a FreeBSD developer could presumably
enumerate all such functions easily, our complete lack
of experience with FreeBSD meant it took us about a
week to find all corner-cases. For example, FreeBSD’s
UFS2 file system sometimes bypasses the buffer cache
and writes directly to the underlying disk.

There were also minor system-differences we had to
correct for. As an example, while Linux and FreeBSD
have similar structures for buffers, they differ in how
they store bookkeeping information (e.g., representing
offsets in sectors on Linux, and in bytes on FreeBSD).
We adjusted for such differences inside EKM so that EX-
PLODE’s user-level runtime sees a consistent interface.
We believe porting should generally be easy since EKM

only logs the offset, size, and data of buffer modifica-
tions, as well as the ID of the modifying thread. All of
these should be readily available in any OS.

RAM disk. We built our FreeBSD RAM disk by mod-
ifying the /dev/md memory-based disk device. We ex-
pect developers can generally use this approach: take
an existing storage device driver and add trivial ioctl
commands to read and write its disk state by copying be-
tween user- and kernel-space.

Bug-Finding Results. In addition to our quick tests
to replicate the EXPENSIV and CVS bugs, we also ran
our sync-checker (§7.3) on FreeBSD’s UFS2 with soft
updates disabled. It found errors where fsck with the
-p option could not recover from crashes. While fsck
without -p could repair the disk, the documentation for
fsck claims -p can recover from all errors unless un-
expected inconsistencies are introduced by hardware or
software failures. Developers confirmed that this is a
problem and should be further investigated.

11 Related Work

Below we compare EXPLODE to file system testing, soft-
ware model checking, and static bug finding.

File system testing tools. There are many file sys-
tem testing frameworks that use application interfaces to
stress a “live” file system with an adversarial environ-
ment. These testing frameworks are less comprehensive
than our approach, but they work “out of the box.” Thus,
there is no reason not to both test a file system and then
test with EXPLODE (or vice versa).

Recently, Prabhakaran et al [21] studied how file sys-
tems handle disk failures and corruption. They devel-
oped a testing framework that uses techniques from [25]
to infer disk block types and then inject “type-aware”
block failure and corruption into file systems. Their re-
sults provide motivation for using existing checksum-
based file systems (such as Sun’s ZFS [32]). While their
technique is more precise than random testing, it does
not find the crash errors that EXPLODE does, nor is it
as systematic. Extending EXPLODE to similarly return
garbage on disk reads is trivial.

Software Model Checking. Model checkers have
been previously used to find errors in both the design
and the implementation of software systems [1, 3, 7, 13,
15, 16, 18, 30]. Two notable examples are Verisoft [13],
which systematically explores the interleavings of a con-
current C program, and Java PathFinder [3] which used
a specialized virtual machine to check concurrent Java
programs by checkpointing states.

The model checking ideas EXPLODE uses — exhaust-
ing states, systematic exploration, and choice — are not
novel. This paper’s conceptual contribution is dramati-
cally reducing the large work factor that plagues tradi-
tional model checking. It does so by turning the check-
ing process inside out. It interlaces the control it needs
for systematic state exploration in situ, throughout the
checked system. As far as we know, EXPLODE is the
first example of in situ model checking. The paper’s en-
gineering contribution is building a system that exploits
this technique to effectively check large amounts of stor-
age system code with relatively little effort.

Static bug finding. There has been much recent work
on static bug finding (e.g., [1, 5, 8, 9, 11, 12]). Roughly
speaking, because dynamic checking runs code, it is lim-
ited to just executed paths, but can more effectively check
deeper properties implied by the code (e.g., sync() ac-
tually commits data to stable storage or crash recovery
works). The errors we found would be difficult to get
statically. However, we view static analysis as comple-
mentary: easy enough to apply that there is no reason not
to use it and then use EXPLODE.

12 Conclusion and Future Work
EXPLODE comprehensively checks storage systems by
adapting key ideas from model checking in a way that
retains their power but discards their intrusiveness. Its
interface lets implementors quickly write storage check-
ers, or simply compose them from existing components.
These checkers run on live systems, which means they
do not have to emulate either the environment or pieces
of the system. As a result, we often have been able to
check a new system in minutes. We used EXPLODE to

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 145

find serious bugs in a broad range of real, widely-used
storage systems, even when we did not have their source
code. Every system we checked had bugs. Our gut belief
has become that an unchecked system must have bugs —
if we do not find any we immediately look to see what is
wrong with our checker (a similar dynamic arose in our
prior static checking work).

The work in this paper can be extended in numerous
ways. First, we only checked systems we did not build.
While this shows EXPLODE gets good results without a
deep understanding of checked code, it also means we
barely scratched the surface of what could be checked.
In the future we hope to collaborate with system builders
to see just how deep EXPLODE can push a valued system.

Second, we only used EXPLODE for bug-finding, but
it is equally useful as an end-to-end validation tool (with
no bug fixing intended). A storage subsystem implemen-
tor can use it to double-check that the environment the
subsystem runs in meets its interface contracts and that
the implementor did not misunderstand these contracts.
Similarly, a user can use it to check that slipping a sub-
system into a system breaks nothing. Or use it to pick
a working mechanism from a set of alternatives (e.g., if
fsync does not work use sync instead).

Finally, we can do many things to improve EXPLODE.
Our biggest missed opportunity is that we do nothing
clever with states. A big benefit of model checking is
perspective: it makes state a first-class concept. Thus it
becomes natural to think about checking as a state space
search; to focus on hitting states that are most “differ-
ent” from those already seen; to infer what actions cause
“interesting” states to be hit; and to extract the essence
of states so that two superficially different ones can be
treated as equivalent. We have a long list of such things
to add to EXPLODE in the future.

Acknowledgements
We thank Xiaowei Yang, Philip Guo, Daniel Dunbar,
Silas Boyd-Wickize, Ben Pfaff, Peter Pawlowski, Mike
Houston, Phil Levis for proof-reading. We thank Jane-
Ellen Long and Jeff Mogul for help with time manage-
ment. We especially thank Ken Ashcraft and Cristian
Cadar for detailed comments, Jeremy Sugerman for his
help in reasoning about the GSX error, and Paul Twohey
and Ben Pfaff for help in the initial stages of this project
(described in [31]). We thank Martin Abadi (our shep-
herd) and the anonymous reviewers for their struggles
with our opaque submission. This research was sup-
ported by National Science Foundation (NSF) CAREER
award CNS-0238570-001 and Department of Homeland
Security grant FA8750-05-2-0142.

References
[1] T. Ball and S. Rajamani. Automatically validating temporal safety proper-

ties of interfaces. In SPIN 2001 Workshop on Model Checking of Software,
May 2001.

[2] Berkeley DB. http://www.sleepycat.com.

[3] G. Brat, K. Havelund, S. Park, and W. Visser. Model checking programs. In
IEEE International Conference on Automated Software Engineering, 2000.

[4] N. Brown. Private communication., Mar. 2005.
[5] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic

programming errors. Software: Practice and Experience, 30(7):775–802,
2000.

[6] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[7] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code.
In ICSE 2000, 2000.

[8] The Coverity software analysis toolset. http://coverity.com.

[9] M. Das, S. Lerner, and M. Seigle. Path-sensitive program verification in
polynomial time. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation, Berlin, Germany,
June 2002.

[10] G. Dunlap, S. T. King, S. Cinar, M. Basrat, and P. Chen. ReVirt: enabling
intrusion analysis through virtual-machine logging and replay. In Proceed-
ings of the Fifth Symposium on Operating Systems Design and Implemen-
tation, Dec. 2002.

[11] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In Proceedings
of Operating Systems Design and Implementation, Sept. 2000.

[12] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation,
pages 234–245. ACM Press, 2002.

[13] P. Godefroid. Model Checking for Programming Languages using VeriSoft.
In Proceedings of the 24th ACM Symposium on Principles of Programming
Languages, 1997.

[14] HFS and HFS+ utilities. http://darwinsource.opendarwin.
org/10.2.6/diskdev cmds-208.11.

[15] G. J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279–295, 1997.

[16] G. J. Holzmann. From code to models. In Proc. 2nd Int. Conf. on Applica-
tions of Concurrency to System Design, pages 3–10, Newcastle upon Tyne,
U.K., 2001.

[17] M. K. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[18] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC:
A pragmatic approach to model checking real code. In Proceedings of the
Fifth Symposium on Operating Systems Design and Implementation, 2002.

[19] Linux NFS. http://nfs.sourceforge.net/.
[20] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of inex-

pensive disks. ACM SIGMOD Conference, pages 109–116, June 1988.

[21] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Iron file systems. In Proceed-
ings of the Twentieth ACM Symposium on Operating Systems Principles,
pages 206–220, New York, NY, USA, 2005. ACM Press.

[22] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in system design.
ACM Transactions on Computer Systems, 2(4):277–288, Nov. 1984.

[23] Sandberg, Goldberg, Kleiman, Walsh, and Lyon. Design and implementa-
tion of the Sun network file system, 1985.

[24] A simple block driver. http://lwn.net/Articles/58719/.

[25] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Semantically-smart disk systems. In
Second USENIX Conference on File and Storage Technologies, 2003.

[26] Linux software RAID. http://cgi.cse.unsw.edu.au/∼neilb/
SoftRaid.

[27] Subversion. http://subversion.tigris.org.
[28] J. Sugerman. Private communication., Dec. 2005.

[29] VMware GSX server. http://www.vmware.com/products/
server/.

[30] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking
to find serious file system errors. In Proceedings of the Sixth Symposium
on Operating Systems Design and Implementation, Dec. 2004.

[31] J. Yang, P. Twohey, B. Pfaff, C. Sar, and D. Engler. eXplode: A lightweight,
general approach for finding serious errors in storage systems. In Workshop
on the Evaluation of Software Defect Detection Tools, June 2005.

[32] Zfs: the last word in file systems. http://www.sun.com/
2004-0914/feature/.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association146

