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Abstract

SUNDR is a network file system designed to store data
securely on untrusted servers. SUNDR lets clients de-
tect any attempts at unauthorized file modification by
malicious server operators or users. SUNDR’s protocol
achieves a property called fork consistency, which guar-
antees that clients can detect any integrity or consistency
failures as long as they see each other’s file modifications.
An implementation is described that performs compara-
bly with NFS (sometimes better and sometimes worse),
while offering significantly stronger security.

1 Introduction

SUNDR is a network file system that addresses a long-
standing tension between data integrity and accessibility.
Protecting data is often viewed as the problem of build-
ing a better fence around storage servers—limiting the
number of people with access, disabling unnecessary soft-
ware that might be remotely exploitable, and staying cur-
rent with security patches. This approach has two draw-
backs. First, experience shows that people frequently do
not build high enough fences (or sometimes entrust fences
to administrators who are not completely trustworthy).
Second and more important, high fences are inconvenient;
they restrict the ways in which people can access, update,
and manage data.

This tension is particularly evident for free software
source code repositories. Free software projects often
involve geographically dispersed developers committing
source changes from all around the Internet, making it
impractical to fend off attackers with firewalls. Hosting
code repositories also requires a palette of tools such as
CVS [4] and SSH [35], many of which have had remotely
exploitable bugs.

Worse yet, many projects rely on third-party host-
ing services that centralize responsibility for large
numbers of otherwise independent code repositories.
sourceforge.net, for example, hosts CVS repositories
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for over 20,000 different software packages. Many of
these packages are bundled with various operating sys-
tem distributions, often without a meaningful audit. By
compromising sourceforge, an attacker can therefore in-
troduce subtle vulnerabilities in software that may even-
tually run on thousands or even millions of machines.

Such concerns are no mere academic exercise. For ex-
ample, the Debian GNU/Linux development cluster was
compromised in 2003 [2]. An unauthorized attacker used
a sniffed password and a kernel vulnerability to gain su-
peruser access to Debian’s primary CVS and Web servers.
After detecting the break-in, administrators were forced
to freeze development for several days, as they employed
manual and ad-hoc sanity checks to assess the extent of
the damage. Similar attacks have also succeeded against
Apache [1], Gnome [32], and other popular projects.

Rather than hope for invulnerable servers, we have de-
veloped SUNDR, a network file system that reduces the
need to trust storage servers in the first place. SUNDR
cryptographically protects all file system contents so that
clients can detect any unauthorized attempts to change
files. In contrast to previous Byzantine-fault-tolerant file
systems [6, 27] that distribute trust but assume a thresh-
old fraction of honest servers, SUNDR vests the authority
to write files entirely in users’ public keys. Even a mali-
cious user who gains complete administrative control of a
SUNDR server cannot convince clients to accept altered
contents of files he lacks permission to write.

Because of its security properties, SUNDR also creates
new options for managing data. By using SUNDR, orga-
nizations can outsource storage management without fear
of server operators tampering with data. SUNDR also en-
ables new options for data backup and recovery: after a
disaster, a SUNDR server can recover file system data
from untrusted clients’ file caches. Since clients always
cryptographically verify the file system’s state, they are
indifferent to whether data was recovered from untrusted
clients or resided on the untrusted server all along.

This paper details the SUNDR file system’s design and
implementation. We first describe SUNDR’s security pro-
tocol and then present a prototype implementation that
gives performance generally comparable to the popular
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NFS file system under both an example software develop-
ment workload and microbenchmarks. Our results show
that applications like CVS can benefit from SUNDR’s
strong security guarantees while paying a digestible per-
formance penalty.

2 Setting

SUNDR provides a file system interface to remote stor-
age, like NFS [29] and other network file systems. To se-
cure a source code repository, for instance, members of a
project can mount a remote SUNDR file system on direc-
tory /sundr and use /sundr/cvsroot as a CVS reposi-
tory. All checkouts and commits then take place through
SUNDR, ensuring users will detect any attempts by the
hosting site to tamper with repository contents.

Figure 1 shows SUNDR’s basic architecture. When ap-
plications access the file system, the client software inter-
nally translates their system calls into a series of fetch and
modify operations, where fetch means retrieving a file’s
contents or validating a cached local copy, and modify
means making new file system state visible to other users.
Fetch and modify, in turn, are implemented in terms of
SUNDR protocol RPCs to the server. Section 3 explains
the protocol, while Section 5 describes the server design.

To set up a SUNDR server, one runs the server software
on a networked machine with dedicated SUNDR disks
or partitions. The server can then host one or more file
systems. To create a file system, one generates a pub-
lic/private superuser signature key pair and gives the pub-
lic key to the server, while keeping the private key secret.
The private key provides exclusive write access to the root
directory of the file system. It also directly or indirectly
allows access to any file below the root. However, the
privileges are confined to that one file system. Thus, when
a SUNDR server hosts multiple file systems with different
superusers, no single person has write access to all files.

Each user of a SUNDR file system also has a signature
key. When establishing an account, users exchange public
keys with the superuser. The superuser manages accounts
with two superuser-owned file in the root directory of the
file system: .sundr.users lists users’ public keys and
numeric IDs, while .sundr.group designates groups and
their membership. To mount a file system, one must spec-
ify the superuser’s public key as a command-line argu-
ment to the client, and must furthermore give the client ac-
cess to a private key. (SUNDR could equally well manage
keys and groups with more flexible certificate schemes;
the system only requires some way for users to validate
each other’s keys and group membership.)

Throughout this paper, we use the term user to desig-
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Figure 1: Basic SUNDR architecture.

nate an entity possessing the private half of a signature
key mapped to some user ID in the .sundr.users file.
Depending on context, this can either be the person who
owns the private key, or a client using the key to act on
behalf of the user. However, SUNDR assumes a user is
aware of the last operation he or she has performed. In the
implementation, the client remembers the last operation it
has performed on behalf of each user. To move between
clients, a user needs both his or her private key and the last
operation performed on his or her behalf (concisely spec-
ified by a version number). Alternatively, one person can
employ multiple user IDs (possibly with the same public
key) for different clients, assigning all file permissions to
a personal group.

SUNDR’s architecture draws an important distinction
between the administration of servers and the administra-
tion of file systems. To administer a server, one does not
need any private superuser keys.1 In fact, for best secu-
rity, key pairs should be generated on separate, trusted ma-
chines, and private keys should never reside on the server,
even in memory. Important keys, such as the superuser
key, should be stored off line when not in use (for exam-
ple on a floppy disk, encrypted with a passphrase).

3 The SUNDR protocol

SUNDR’s protocol lets clients detect unauthorized at-
tempts to modify files, even by attackers in control of the
server. When the server behaves correctly, a fetch reflects
exactly the authorized modifications that happened before
it.2 We call this property fetch-modify consistency.

If the server is dishonest, clients enforce a slightly

1The server does actually have its own public key, but only to pre-
vent network attackers from “framing” honest servers; the server key is
irrelevant to SUNDR’s security against compromised servers.

2Formally, happens before can be any irreflexive partial order that
preserves the temporal order of non-concurrent operations (as in Lin-
earizability [11]), orders any two operations by the same client, and or-
ders a modification with respect to any other operation on the same file.
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weaker property called fork consistency. Intuitively, under
fork consistency, a dishonest server could cause a fetch by
a user A to miss a modify by B. However, either user will
detect the attack upon seeing a subsequent operation by
the other. Thus, to perpetuate the deception, the server
must fork the two user’s views of the file system. Put
equivalently, if A’s client accepts some modification by
B, then at least until B performed that modification, both
users had identical, fetch-modify-consistent views of the
file system.

We have formally specified fork consistency [16], and,
assuming digital signatures and a collision-resistant hash
function, proven SUNDR’s protocol achieves it [17].
Therefore, a violation of fork consistency means the un-
derlying cryptography was broken, the implementation
deviated from the protocol, or there is a flaw in our map-
ping from high-level Unix system calls to low-level fetch
and modify operations.

In order to discuss the implications of fork consistency
and to describe SUNDR, we start with a simple straw-man
file system that achieves fork consistency at the cost of
great inefficiency (Section 3.1). We then propose an im-
proved system with more reasonable bandwidth require-
ments called “Serialized SUNDR” (Section 3.3). We fi-
nally relax serialization requirements, to arrive at “con-
current SUNDR,” the system we have built (Section 3.4).

3.1 A straw-man file system

In the roughest approximation of SUNDR, the straw-man
file system, we avoid any concurrent operations and allow
the system to consume unreasonable amounts of band-
width and computation. The server maintains a single,
untrusted global lock on the file system. To fetch or mod-
ify a file, a user first acquires the lock, then performs the
desired operation, then releases the lock. So long as the
server is honest, the operations are totally ordered and
each operation completes before the next begins.

The straw-man file server stores a complete, ordered
list of every fetch or modify operation ever performed.
Each operation also contains a digital signature from the
user who performed it. The signature covers not just the
operation but also the complete history of all operations
that precede it. For example, after five operations, the
history might appear as follows:

sig

mod(f3)
user B

fetch(f3)fetch(f2)
user A

sig sig
user A

mod(f2)

sig

fetch(f2)

sig
user Buser A

To fetch or modify a file, a client acquires the global
lock, downloads the entire history of the file system, and

validates each user’s most recent signature. The client
also checks that its own user’s previous operation is in
the downloaded history (unless this is the user’s very first
operation on the file system).

The client then traverses the operation history to con-
struct a local copy of the file system. For each modify en-
countered, the client additionally checks that the operation
was actually permitted, using the user and group files to
validate the signing user against the file’s owner or group.
If all checks succeed, the client appends a new operation
to the list, signs the new history, sends it to the server, and
releases the lock. If the operation is a modification, the
appended record contains new contents for one or more
files or directories.

Now consider, informally, what a malicious server
can do. To convince a client of a file modification, the
server must send it a signed history. Assuming the server
does not know users’ keys and cannot forge signatures,
any modifications clients accept must actually have been
signed by an authorized user. The server can still trick
users into signing inappropriate histories, however, by
concealing other users’ previous operations. For instance,
consider what would happen in the last operation of the
above history if the server failed to show user B the most
recent modification to file f2. Users A and B would sign
the following histories:

user B:

user A:

sig

sig

sig

sig

fetch(f2)

sig

sig

sig

sig
user B user A user A

user Buser Auser Buser A
fetch(f2)

mod(f3) fetch(f3) mod(f2)

mod(f3) fetch(f3)

user A

fetch(f2)

Neither history is a prefix of the other. Since clients
always check for their own user’s previous operation in
the history, from this point on, A will sign only extensions
of the first history and B will sign only extensions of the
second. Thus, while before the attack the users enjoyed
fetch-modify consistency, after the attack the users have
been forked.

Suppose further that the server acts in collusion with
malicious users or otherwise comes to possess the signa-
ture keys of compromised users. If we restrict the analysis
to consider only histories signed by honest (i.e., uncom-
promised) users, we see that a similar forking property
holds. Once two honest users sign incompatible histo-
ries, they cannot see each others’ subsequent operations
without detecting the problem. Of course, since the server
can extend and sign compromised users’ histories, it can
change any files compromised users can write. The re-
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maining files, however, can be modified only in honest
users’ histories and thus continue to be fork consistent.

3.2 Implications of fork consistency

Fork consistency is the strongest notion of integrity possi-
ble without on-line trusted parties. Suppose user A comes
on line, modifies a file, and goes off line. Later, B comes
on line and reads the file. If B doesn’t know whether A
has accessed the file system, it cannot detect an attack in
which the server simply discards A’s changes. Fork con-
sistency implies this is the only type of undetectable attack
by the server on file integrity or consistency. Moreover, if
A and B ever communicate or see each other’s future file
system operations, they can detect the attack.

Given fork consistency, one can leverage any trusted
parties that are on line to gain stronger consistency, even
fetch-modify consistency. For instance, as described later
in Section 5, the SUNDR server consists of two pro-
grams, a block store for handling data, and a consistency
server with a very small amount of state. Moving the con-
sistency server to a trusted machine trivially guarantees
fetch-modify consistency. The problem is that trusted ma-
chines may have worse connectivity or availability than
untrusted ones.

To bound the window of inconsistency without placing
a trusted machine on the critical path, one can use a “time
stamp box” with permission to write a single file. The
box could simply update that file through SUNDR every
5 seconds. All users who see the box’s updates know they
could only have been partitioned from each other in the
past 5 seconds. Such boxes could be replicated for Byzan-
tine fault tolerance, each replica updating a single file.

Alternatively, direct client-client communication can
be leveraged to increase consistency. Users can write
login and logout records with current network addresses
to files so as to find each other and continuously ex-
change information on their latest operations. If a mali-
cious server cannot disrupt network communication be-
tween clients, it will be unable to fork the file system state
once on-line clients know of each other. Those who deem
malicious network partitions serious enough to warrant
service delays in the face of client failures can conserva-
tively pause file access during communication outages.

3.3 Serialized SUNDR

The straw-man file system is impractical for two reasons.
First, it must record and ship around complete file sys-
tem operation histories, requiring enormous amounts of
bandwidth and storage. Second, the serialization of oper-
ations through a global lock is impractical for a multi-user

network file system. This subsection explains SUNDR’s
solution to the first problem; we describe a simplified file
system that still serializes operations with a global lock,
but is in other respects similar to SUNDR. Subsection 3.4
explains how SUNDR lets clients execute non-conflicting
operations concurrently.

Instead of signing operation histories, as in the straw-
man file system, SUNDR effectively takes the approach
of signing file system snapshots. Roughly speaking, users
sign messages that tie together the complete state of all
files with two mechanisms. First, all files writable by a
particular user or group are efficiently aggregated into a
single hash value called the i-handle using hash trees [18].
Second, each i-handle is tied to the latest version of every
other i-handle using version vectors [23].

3.3.1 Data structures

Before delving into the protocol’s details, we begin by de-
scribing SUNDR’s storage interface and data structures.
Like several recent file systems [9, 20], SUNDR names
all on-disk data structures by cryptographic handles. The
block store indexes most persistent data structures by their
20-byte SHA-1hashes, making the server a kind of large,
high-performance hash table. It is believed to be compu-
tationally infeasible to find any two different data blocks
with the same SHA-1 hash. Thus, when a client requests
the block with a particular hash, it can check the integrity
of the response by hashing it. An incidental benefit of
hash-based storage is that blocks common to multiple files
need be stored only once.

SUNDR also stores messages signed by users. These
are indexed by a hash of the public key and an index num-
ber (so as to distinguish multiple messages signed by the
same key).

Figure 2 shows the persistent data structures SUNDR
stores and indexes by hash, as well as the algorithm
for computing i-handles. Every file is identified by a
〈principal, i-number〉 pair, where principal is the user or
group allowed to write the file, and i-number is a per-
principal inode number. Directory entries map file names
onto 〈principal, i-number〉 pairs. A per-principal data
structure called the i-table maps each i-number in use
to the corresponding inode. User i-tables map each i-
number to a hash of the corresponding inode, which we
call the file’s i-hash. Group i-tables add a level of indi-
rection, mapping a group i-number onto a user i-number.
(The indirection allows the same user to perform multiple
successive writes to a group-owned file without updating
the group’s i-handle.) Inodes themselves contain SHA-1
hashes of file data blocks and indirect blocks.

Each i-table is stored as a B+-tree, where internal nodes
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i-handle
group g’s

2 → H(i2)

3 → H(i3)

4 → H(i4)

5 → H(i5)

6 → H(i6)
...

0K→ H(d0)

8K→ H(d1)
...

(maps offset→data)i-handle

group g’s i-table (tg)

H∗(tu2
)

(maps i#→〈user,i#〉)

user u2’s

metadata

inode i4

(maps i#→i-hash)
user u2’s i-table (tu2

)

data block d0

... "locore.S" → 〈u2, 5〉

"main.c" → 〈g, 4〉

...

inode i6

2 → 〈u1, 7〉

3 → 〈u2, 4〉

4 → 〈u1, 2〉
. . .

(maps name→ 〈u/g, i#〉)
directory blockH∗(tg)

Figure 2: User and group i-handles. An i-handle is the root of a hash tree containing a user or group i-table. (H
denotes SHA-1, while H∗ denotes recursive application of SHA-1 to compute the root of a hash tree.) A group i-table
maps group inode numbers to user inode numbers. A user i-table maps a user’s inode numbers to i-hashes. An i-hash
is the hash of an inode, which in turn contains hashes of file data blocks.

contain the SHA-1 hashes of their children, thus forming
a hash tree. The hash of the B+-tree root is the i-handle.
Since the block store allows blocks to be requested by
SHA-1 hash, given a user’s i-handle, a client can fetch
and verify any block of any file in the user’s i-table by re-
cursively requesting the appropriate intermediary blocks.
The next question, of course, is how to obtain and verify
a user’s latest i-handle.

3.3.2 Protocol

i-handles are stored in digitally-signed messages known
as version structures, shown in Figure 3. Each version
structure is signed by a particular user. The structure must
always contain the user’s i-handle. In addition, it can op-
tionally contain one or more i-handles of groups to which
the user belongs. Finally, the version structure contains
a version vector consisting of a version number for every
user and group in the system.

When user u performs a file system operation, u’s client
acquires the global lock and downloads the latest version
structure for each user and group. We call this set of ver-
sion structures the version structure list, or VSL. (Much
of the VSL’s transfer can be elided if only a few users and
groups have changed version structures since the user’s
last operation.) The client then computes a new version
structure z by potentially updating i-handles and by set-
ting the version numbers in z to reflect the current state of
the file system.

More specifically, to set the i-handles in z, on a fetch,

g-5 . . .〉

structure (yu2
)

u2’s i-table (tu2
)

2 → H(i2)

3 → H(i3)
...

3 → 〈u2, 4〉

2 → 〈u1, 7〉

g’s i-table (tg)

...

H∗(tu2
)

u2

g : H∗(tg)

version vector:

u2’s signature

〈u1-7 u2-3

u2’s version

Figure 3: A version structure containing a group i-handle.

the client simply copies u’s previous i-handle into z, as
nothing has changed. For a modify, the client computes
and includes new i-handles for u and for any groups
whose i-tables it is modifying.

The client then sets z’s version vector to reflect the ver-
sion number of each VSL entry. For any version structure
like z, and any principal (user or group) p, let z[p] denote
p’s version number in z’s version vector (or 0 if z contains
no entry for p). For each principal p, if yp is p’s entry in
the VSL (i.e., the version structure containing p’s latest
i-handle), set z[p] ← yp[p].

Finally, the client bumps version numbers to reflect the
i-handles in z. It sets z[u] ← z[u] + 1, since z always
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hB

1.

2.

3.

4.

5.

sigA hA 〈A-1〉

sig

sig

sig

sig

〈A-1 B-1〉

〈A-2 B-1〉

〈A-3 B-1〉

〈A-2 B-2〉

A

A

B

B

hA

h′

A

hB

Figure 4: Signed version structures with a forking attack.

contains u’s i-handle, and for any group g whose i-handle
z contains, sets z[g] ← z[g] + 1.

The client then checks the VSL for consistency. Given
two version structures x and y, we define x ≤ y iff
∀p x[p] ≤ y[p]. To check consistency, the client verifies
that the VSL contains u’s previous version structure, and
that the set of all VSL entries combined with z is totally
ordered by ≤. If it is, the user signs the new version struc-
ture and sends it to the server with a COMMIT RPC. The
server adds the new structure to the VSL and retires the
old entries for updated i-handles, at which point the client
releases the file system lock.

Figure 4 revisits the forking attack from the end of Sec-
tion 3.1, showing how version vectors evolve in SUNDR.
With each version structure signed, a user reflects the
highest version number seen from every other user, and
also increments his own version number to reflect the
most recent i-handle. A violation of consistency causes
users to sign incompatible version structures—i.e., two
structures x and y such that x 6≤ y and y 6≤ x. In this
example, the server performs a forking attack after step 3.
User A updates his i-handle from hA to h′

A in 4, but in 5,
B is not aware of the change. The result is that the two
version structures signed in 4 and 5 are incompatible.

Just as in the straw-man file system, once two users
have signed incompatible version structures, they will
never again sign compatible ones, and thus cannot ever
see each other’s operations without detecting the attack
(as proven in earlier work [16]).

One optimization worth mentioning is that SUNDR
amortizes the cost of recomputing hash trees over several
operations. As shown in Figure 5, an i-handle contains
not just a hash tree root, but also a small log of changes
that have been made to the i-table. The change log further-
more avoids the need for other users to fetch i-table blocks

∆2 4 → 〈u1, 2〉

5 → 〈u3, 4〉

3 → 〈u2, 4〉

2 → 〈u1, 7〉

...

group g’s i-table (tg)
(maps i#→〈user,i#〉)

group g’s
i-handle
H∗(t′g)

change log:
∆1

...

Figure 5: i-table for group g, showing the change log. t′g
is a recent i-table; applying the log to t′g yields tg .

when re-validating a cached file that has not changed since
the hash tree root was last computed.

3.4 Concurrent SUNDR

While the version structures in SUNDR detect inconsis-
tency, serialized SUNDR is too conservative in what it
prohibits. Each client must wait for the previous client’s
version vector before computing and signing its own, so
as to reflect the appropriate version numbers. Instead, we
would like most operations to proceed concurrently. The
only time one client should have to wait for another is
when it reads a file the other is in the process of writing.3

3.4.1 Update certificates

SUNDR’s solution to concurrent updates is for users to
pre-declare a fetch or modify operation before receiving
the VSL from the server. They do so with signed mes-
sages called update certificates. If yu is u’s current VSL
entry, an update certificate for u’s next operation contains:

• u’s next version number
(

yu[u] + 1, unless u is
pipelining multiple updates

)

,

• a hash of u’s VSL entry (H(yu)), and

• a (possibly empty) list of modifications to perform.

Each modification (or delta) can be one of four types:

• Set file 〈user, i#〉 to i-hash h.

• Set group file 〈group, i#〉 to 〈user, i#〉.

• Set/delete entry name in directory 〈user/group, i#〉.

3One might wish to avoid waiting for other clients even in the event
of such a read-after-write conflict. However, this turns out to be impos-
sible with untrusted servers. If a single signed message could atomically
switch between two file states, the server could conceal the change ini-
tially, then apply it long after forking the file system, when users should
no longer see each others’ updates.
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• Pre-allocate a range of group i-numbers (pointing
them to unallocated user i-numbers).

The client sends the update certificate to the server in an
UPDATE RPC. The server replies with both the VSL and a
list of all pending operations not yet reflected in the VSL,
which we call the pending version list or PVL.

Note that both fetch and modify operations require UP-
DATE RPCs, though fetches contain no deltas. (The RPC
name refers to updating the VSL, not file contents.) More-
over, when executing complex system calls such as re-
name, a single UPDATE RPC may contain deltas affecting
multiple files and directories, possibly in different i-tables.

An honest server totally orders operations according to
the arrival order of UPDATE RPCs. If operation O1 is
reflected in the VSL or PVL returned for O2’s UPDATE

RPC, then we say O1 happened before O2. Conversely,
if O2 is reflected in O1’s VSL or PVL, then O2 happened
before O1. If neither happened before the other, then the
server has mounted a forking attack.

When signing an update certificate, a client cannot pre-
dict the version vector of its next version structure, as
the vector may depend on concurrent operations by other
clients. The server, however, knows precisely what op-
erations the forthcoming version structure must reflect.
For each update certificate, the server therefore calculates
the forthcoming version structure, except for the i-handle.
This unsigned version structure is paired with its update
certificate in the PVL, so that the PVL is actually a list of
〈update certificate, unsigned version structure〉 pairs.

The algorithm for computing a new version structure,
z, begins as in serialized SUNDR: for each principal p,
set z[p] ← yp[p], where yp is p’s entry in the VSL. Then,
z’s version vector must be incremented to reflect pending
updates in the PVL, including u’s own. For user version
numbers, this is simple; for each update certificate signed
by user u, set z[u] ← z[u]+1. For groups, the situation is
complicated by the fact that operations may commit out of
order when slow and fast clients update the same i-table.
For any PVL entry updating group g’s i-table, we wish to
increment z[g] if and only if the PVL entry happened af-
ter yg (since we already initialized z[g] with yg[g]). We
determine whether or not to increment the version num-
ber by comparing yg to the PVL entry’s unsigned version
vector, call it `. If ` 6≤ yg, set z[g] ← z[g] + 1. The result
is the same version vector one would obtain in serialized
SUNDR by waiting for all previous version structures.

Upon receiving the VSL and PVL, a client ensures that
the VSL, the unsigned version structures in the PVL, and
its new version structure are totally ordered. It also checks
for conflicts. If none of the operations in the PVL change
files the client is currently fetching or group i-tables it is

modifying, the client simply signs a new version structure
and sends it to the server for inclusion in the VSL.

3.4.2 Update conflicts

If a client is fetching a file and the PVL contains a modifi-
cation to that file, this signifies a read-after-write conflict.
In this case, the client still commits its version structure
as before but then waits for fetched files to be commit-
ted to the VSL before returning to the application. (A
FETCHPENDING RPC lets clients request a particular ver-
sion structure from the server as soon as it arrives.)

A trickier situation occurs when the PVL contains a
modification to a group i-handle that the client also wishes
to modify, signifying a write-after-write conflict. How
should a client, u, modifying a group g’s i-table, tg , re-
compute g’s i-handle, hg, when other operations in the
PVL also affect tg? Since any operation in the PVL hap-
pened before u’s new version structure, call it z, the han-
dle hg in z must reflect all operations on tg in the PVL.
On the other hand, if the server has behaved incorrectly,
one or more of the forthcoming version structures corre-
sponding to these PVL entries may be incompatible with
z. In this case, it is critical that z not somehow “launder”
operations that should have alerted people to the server’s
misbehavior.

Recall that clients already check the PVL for read-after-
write conflicts. When a client sees a conflicting mod-
ification in the PVL, it will wait for the corresponding
VSL entry even if u has already incorporated the change
in hg . However, the problem remains that a malicious
server might prematurely drop entries from the PVL, in
which case a client could incorrectly fetch modifications
reflected by tg but never properly committed.

The solution is for u to incorporate any modifications
of tg in the PVL not yet reflected in yg , and also to record
the current contents of the PVL in a new field of the ver-
sion structure. In this way, other clients can detect missing
PVL entries when they notice those entries referenced in
u’s version structure. Rather than include the full PVL,
which might be large, u simply records, for each PVL en-
try, the user performing the operation, that user’s version
number for the operation, and a hash of the expected ver-
sion structure with i-handles omitted.

When u applies changes from the PVL, it can often do
so by simply appending the changes to the change log of
g’s i-handle, which is far more efficient than rehashing the
i-table and often saves u from fetching uncached portions
of the i-table.
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∆3: set 〈g, 4〉 → 〈u2, 11〉

to directory 〈g, 4〉
∆2: add entry (“X” → 〈u1, 7〉)

∆1: set 〈u1, 7〉 → hX

∆3: set 〈g, 4〉 → 〈u1, 8〉

to directory 〈g, 4〉

. . .
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Figure 6: Concurrent updates to /sundr/tmp/ by different users.

3.4.3 Example

Figure 6 shows an example of two users u1 and u2 in the
group g modifying the same directory. u1 creates file X

while u2 creates Y, both in /sundr/tmp/. The directory
is group-writable, while the files are not. (For the exam-
ple, we assume no other pending updates.)

Assume /sundr/tmp/ is mapped to group g’s i-
number 4. User u1 first calculates the i-hash of file X,
call it hX , then allocates his own i-number for X, call it 7.
u1 then allocates another i-number, 8, to hold the contents
of the modified directory. Finally, u1 sends the server an
update certificate declaring three deltas, namely the map-
ping of file 〈u1, 7〉 to i-hash hX , the addition of entry
(“X” → 〈u1, 7〉) to the directory, and the re-mapping of
g’s i-number 4 to 〈u1, 8〉.

u2 similarly sends the server an update certificate for
the creation of file Y in /sundr/tmp/. If the server orders
u1’s update before u2’s, it will respond to u1 with the VSL
and a PVL containing only u1’s update, while it will send
u2 a PVL reflecting both updates. u2 will therefore apply
u1’s modification to the directory before computing the
i-handle for g, incorporating u1’s directory entry for X.
u2 would also ordinarily incorporate u1’s re-mapping of
the directory 〈g, 4〉 → 〈u1, 7〉, except that u2’s own re-
mapping of the same directory supersedes u1’s.

An important subtlety of the protocol, shown in Fig-
ure 7, is that u2’s version structure contains a hash of u1’s
forthcoming version structure (without i-handles). This
ensures that if the server surreptitiously drops u1’s update
certificate from the PVL before u1 commits, whoever sees
the incorrect PVL must be forked from both u1 and u2.

g-5 . . .〉

u1

version 7

H(yu1
)

u1’s signature
∆1,∆2,∆3

u1’s unsigned
version

(`u1
)

structure

H∗(tu2
)

u2

g : H∗(tg)

u2’s version
structurecertificate

u1’s update

...
〈u1-7 u2-2

〈u1-7 u2-3

...

u2’s signature
〈u1-7-H(`u1

)〉

g-4 . . .〉

Figure 7: A pending update by user u1, reflected in user
u2’s version structure.

4 Discussion

SUNDR only detects attacks; it does not resolve them.
Following a server compromise, two users might find
themselves caching divergent copies of the same direc-
tory tree. Resolving such differences has been studied
in the context of optimistic file system replication [13,
22], though invariably some conflicts require application-
specific reconciliation. With CVS, users might employ
CVS’s own merging facilities to resolve forks.

SUNDR’s protocol leaves considerable opportunities
for compression and optimization. In particular, though
version structure signatures must cover a version vector
with all users and groups, there is no need to transmit en-
tire vectors in RPCs. By ordering entries from most- to
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least-recently updated, the tail containing idle principals
can be omitted on all but a client’s first UPDATE RPC.
Moreover, by signing a hash of the version vector and
hashing from oldest to newest, clients could also pre-hash
idle principals’ version numbers to speed version vector
signatures. Finally, the contents of most unsigned version
structures in the PVL is implicit based on the order of the
PVL and could be omitted (since the server computes un-
signed version structures deterministically based on the
order in which it receives UPDATE RPCs). None of these
optimizations is currently implemented.

SUNDR’s semantics differ from those of traditional
Unix. Clients supply file modification and inode change
times when modifying files, allowing values that might be
prohibited in Unix. There is no time of last access. Di-
rectories have no “sticky bit.” A group-writable file in
SUNDR is not owned by a user (as in Unix) but rather
is owned by the group; such a file’s “owner” field indi-
cates the last user who wrote to it. In contrast to Unix
disk quotas, which charge the owner of a group-writable
file for writes by other users, if SUNDR’s block store en-
forced quotas, they would charge each user for precisely
the blocks written by that user.

One cannot change the owner of a file in SUNDR.
However, SUNDR can copy arbitrarily large files at the
cost of a few pointer manipulations, due to its hash-based
storage mechanism. Thus, SUNDR implements chown by
creating a copy of the file owned by the new user or group
and updating the directory entry to point to the new copy.
Doing so requires write permission on the directory and
changes the semantics of hard links (since chown only af-
fects a single link).

Yet another difference from Unix is that the owner of a
directory can delete any entries in the directory, including
non-empty subdirectories to which he or she does not have
write permission. Since Unix already allows users to re-
name such directories away, additionally allowing delete
permission does not appreciably affect security. In a sim-
ilar vein, users can create multiple hard links to directo-
ries, which could confuse some Unix software, or could
be useful in some situations. Other types of malformed
directory structure are interpreted as equivalent to some-
thing legal (e.g., only the first of two duplicate directory
entries counts).

SUNDR does not yet offer read protection or confiden-
tiality. Confidentiality can be achieved through encrypted
storage, a widely studied problem [5, 10, 12, 34].

In terms of network latency, SUNDR is comparable
with other polling network file systems. SUNDR waits
for an UPDATE RPC to complete before returning from an
application file system call. If the system call caused only

modifies, or if all fetched data hit in the cache, this is the
only synchronous round trip required; the COMMIT can be
sent in the background (except for fsync). This behavior is
similar to systems such as NFS3, which makes an ACCESS

RPC on each open and writes data back to the server on
each close. We note that callback- or lease-based file sys-
tems can actually achieve zero round trips when the server
has committed to notifying clients of cache invalidations.

5 File system implementation

The SUNDR client is implemented at user level, using a
modified version of the xfs device driver from the ARLA
file system [33] on top of a slightly modified FreeBSD
kernel. Server functionality is divided between two pro-
grams, a consistency server, which handles update cer-
tificates and version structures, and a block store, which
actually stores data, update certificates, and version struc-
tures on disk. For experiments in this paper, the block
server and consistency server ran on the same machine,
communicating over Unix-domain sockets. They can also
be configured to run on different machines and communi-
cate over an authenticated TCP connection.

5.1 File system client

The xfs device driver used by SUNDR is designed for
whole-file caching. When a file is opened, xfs makes an
upcall to the SUNDR client asking for the file’s data. The
client returns the identity of a local file that has a cached
copy of the data. All reads and writes are performed on
the cached copy, without further involvement of SUNDR.
When the file is closed (or flushed with fsync), if it has
been modified, xfs makes another upcall asking the client
to write the data back to the server. Several other types of
upcalls allow xfs to look up names in directories, request
file attributes, create/delete files, and change metadata.

As distributed, xfs’s interface posed two problems for
SUNDR. First, xfs caches information like local file bind-
ings to satisfy some requests without upcalls. In SUNDR,
some of these requests require interaction with the consis-
tency server for the security properties to hold. We there-
fore modified xfs to invalidate its cache tokens immedi-
ately after getting or writing back cached data, so as to
ensure that the user-level client gets control whenever the
protocol requires an UPDATE RPC. We similarly changed
xfs to defeat the kernel’s name cache.

Second, some system calls that should require only a
single interaction with the SUNDR consistency server re-
sult in multiple kernel vnode operations and xfs upcalls.
For example, the system call “stat ("a/b/c", &sb)”
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results in three xfs GETNODE upcalls (for the directory
lookups) and one GETATTR. The whole system call should
require only one UPDATE RPC. Yet if the user-level client
does not know that the four upcalls are on behalf of the
same system call, it must check the freshness of its i-
handles four separate times with four UPDATE RPCs.

To eliminate unnecessary RPCs, we modified the
FreeBSD kernel to count the number of system call invo-
cations that might require an interaction with the consis-
tency server. We increment the counter at the start of every
system call that takes a pathname as an argument (e.g.,
stat, open, readlink, chdir). The SUNDR client
memory-maps this counter and records the last value it
has seen. If xfs makes an upcall that does not change the
state of the file system, and the counter has not changed,
then the client can use its cached copies of all i-handles.

5.2 Signature optimization

The cost of digital signatures on the critical path in
SUNDR is significant. Our implementation therefore uses
the ESIGN signature scheme,4 which is over an order
of magnitude faster than more popular schemes such as
RSA. All experiments reported in this paper use 2,048-bit
public keys, which, with known techniques, would require
a much larger work factor to break than 1,024-bit RSA.

To move verification out of the critical path, the consis-
tency server also processes and replies to an UPDATE RPC
before verifying the signature on its update certificate. It
verifies the signature after replying, but before accepting
any other RPCs from other users. If the signature fails
to verify, the server removes the update certificate from
the PVL and and drops the TCP connection to the forging
client. (Such behavior is acceptable because only a faulty
client would send invalid signatures.) This optimization
allows the consistency server’s verification of one signa-
ture to overlap with the client’s computation of the next.

Clients similarly overlap computation and network la-
tency. Roughly half the cost of an ESIGN signature is at-
tributable to computations that do not depend on the mes-
sage contents. Thus, while waiting for the reply to an UP-
DATE RPC, the client precomputes its next signature.

5.3 Consistency server

The consistency server orders operations for SUNDR
clients and maintains the VSL and PVL as described in
Section 3. In addition, it polices client operations and re-
jects invalid RPCs, so that a malicious user cannot cause

4Specifically, we use the version of ESIGN shown secure in the ran-
dom oracle model by [21], with parameter e = 8.

an honest server to fail. For crash recovery, the consis-
tency server must store VSL and PVL to persistent stor-
age before responding to client RPCs. The current consis-
tency server stores these to the block server. Because the
VSLs and PVLs are small relative to the size of the file
system, it would also be feasible to use non-volatile RAM
(NVRAM).

6 Block store implementation

A block storage daemon called bstor handles all disk
storage in SUNDR. Clients interact directly with bstor
to store blocks and retrieve them by SHA-1 hash value.
The consistency server uses bstor to store signed update
and version structures. Because a SUNDR server does
not have signature keys, it lacks permission to repair the
file system after a crash. For this reason, bstor must
synchronously store all data to disk before returning to
clients, posing a performance challenge. bstor therefore
heavily optimizes synchronous write performance.

bstor’s basic idea is to write incoming data blocks to
a temporary log, then to move these blocks to Venti-like
storage in batches. Venti [24] is an archival block store
that appends variable-sized blocks to a large, append-only
IDE log disk while indexing the blocks by SHA-1 hash
on one or more fast SCSI disks. bstor’s temporary log
relaxes the archival semantics of Venti, allowing short-
lived blocks to be deleted within a small window of their
creation. bstor maintains an archival flavor, though, by
supporting periodic file system snapshots.

The temporary log allows bstor to achieve low latency
on synchronous writes, which under Venti require an in-
dex lookup to ensure the block is not a duplicate. More-
over, bstor sector-aligns all blocks in the temporary log,
temporarily wasting an average of half a sector per block
so as to avoid multiple writes to the same sector, which
would each cost at least one disk rotation. The temporary
log improves write throughput even under sustained load,
because transferring blocks to the permanent log in large
batches allows bstor to order index disk accesses.

bstor keeps a large in-memory cache of recently used
blocks. In particular, it caches all blocks in the temporary
log so as to avoid reading from the temporary log disk.
Though bstor does not currently use special hardware, in
Section 7 we describe how SUNDR’s performance would
improve if bstor had a small amount of NVRAM to store
update certificates.

6.1 Interface

bstor exposes the following RPCs to SUNDR clients:
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STORE (header, block)
RETRIEVE (hash)
VSTORE (header, pubkey, n, block)
VRETRIEVE (pubkey, n, [time])
DECREF (hash)
SNAPSHOT ()

The STORE RPC writes a block and its header to sta-
ble storage if bstor does not already have a copy of the
block. The header has information encapsulating the
block’s owner and creation time, as well as fields use-
ful in concert with encoding or compression. The RE-
TRIEVE RPC retrieves a block from the store given its
SHA-1 hash. It also returns the first header STOREd with
the particular block.

The VSTORE and VRETRIEVE RPCs are like STORE

and RETRIEVE, but for signed blocks. Signed blocks are
indexed by the public key and a small index number, n.
VRETRIEVE, by default, fetches the most recent version
of a signed block. When supplied with a timestamp as an
optional third argument, VRETRIEVE returns the newest
block written before the given time.

DECREF (short for “decrement reference count”) in-
forms the store that a block with a particular SHA-1 hash
might be discarded. SUNDR clients use DECREF to dis-
card temporary files and short-lived metadata. bstor’s
deletion semantics are conservative. When a block is first
stored, bstor establishes a short window (one minute by
default) during which it can be deleted. If a client STOREs
then DECREFs a block within this window, bstor marks
the block as garbage and does not permanently store it.
If two clients store the same block during the dereference
window, the block is marked as permanent.

An administrator should issue a SNAPSHOT RPC peri-
odically to create a coherent file system image that clients
can later revert to in the case of accidental data disrup-
tion. Upon receiving this RPC, bstor simply immunizes
all newly-stored blocks from future DECREF’s and flags
them to be stored in the permanent log. SNAPSHOT and
VRETRIEVE’s time argument are designed to allow brows-
ing of previous file system state, though this functionality
is not yet implemented in the client.

6.2 Index

bstor’s index system locates blocks on the permanent log,
keyed by their SHA-1 hashes. An ideal index is a sim-
ple in-memory hash table mapping 20-byte SHA-1 block
hashes to 8-byte log disk offsets. If we assume that the
average block stored on the system is 8 KB, then the in-
dex must have roughly 1/128 the capacity of the log disk.
Although at present such a ratio of disk to memory is pos-

sible with commodity components, we are not convinced
that memory will keep up with hard disks in the future.

We instead use Venti’s strategy of striping a disk-
resident hash table over multiple high-speed SCSI
disks. bstor hashes 20-byte SHA-1 hashes down to
〈index-disk-id, index-disk-offset〉 pairs. The disk offsets
point to sector-sized on-disk data structures called buck-
ets, which contain 15 index-entries, sorted by SHA-1
hash. index-entries in turn map SHA-1 hashes to offsets
on the permanent data log. Whenever an index-entry is
written to or read from disk, bstor also stores it in an in-
memory LRU cache.

bstor accesses the index system as Venti does when
answering RETRIEVE RPCs that miss the block cache.
When bstor moves data from the temporary to the per-
manent log, it must access the index system sometimes
twice per block (once to check a block is not a duplicate,
and once to write a new index entry after the block is com-
mitted the permanent log). In both cases, bstor sorts these
disk accesses so that the index disks service a batch of
requests with one disk arm sweep. Despite these opti-
mizations, bstor writes blocks to the permanent log in the
order they arrived; randomly reordering blocks would hin-
der sequential read performance over large files.

6.3 Data management

To recover from a crash or an unclean shutdown, the sys-
tem first recreates an index consistent with the permanent
log, starting from its last known checkpoint. Index re-
covery is necessary because the server updates the index
lazily after storing blocks to the permanent log. bstor then
processes the temporary log, storing all fresh blocks to the
permanent log, updating the index appropriately.

Venti’s authors argue that archival storage is practical
because IDE disk capacity is growing faster than users
generate data. For users who do not fit this paradigm,
however, bstor could alternatively be modified to support
mark-and-sweep garbage collection. The general idea is
to copy all reachable blocks to a new log disk, then recycle
the old disk. With two disks, bstor could still respond to
RPCs during garbage collection.

7 Performance

The primary goal in testing SUNDR was to ensure that
its security benefits do not come at too high a price rela-
tive to existing file systems. In this section, we compare
SUNDR’s overall performance to NFS. We also perform
microbenchmarks to help explain our application-level re-
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sults, and to support our claims that our block server out-
performs a Venti-like architecture in our setting.

7.1 Experimental setup

We carried out our experiments on a cluster of 3 GHz
Pentium IV machines running FreeBSD 4.9. All ma-
chines were connected with fast Ethernet with ping times
of 110 µs. For block server microbenchmarks, we ad-
ditionally connected the block server and client with gi-
gabit Ethernet. The machine running bstor has 3 GB of
RAM and an array of disks: four Seagate Cheetah 18 GB
SCSI drives that spin at 15,000 RPM were used for the in-
dex; two Western Digital Caviar 180 GB 7200 RPM EIDE
drives were used for the permanent and temporary logs.

7.2 Microbenchmarks

7.2.1 bstor

Our goals in evaluating bstor are to quantify its raw per-
formance and justify our design improvements relative to
Venti. In our experiments, we configured bstor’s four
SCSI disks each to use 4 GB of space for indexing. If
one hopes to maintain good index performance (and not
overflow buckets), then the index should remain less than
half full. With our configuration (8 GB of usable index
and 32-byte index entries), bstor can accommodate up to
2 TB of permanent data. For flow control and fairness,
bstor allowed clients to make up to 40 outstanding RPCs.
For the purposes of the microbenchmarks, we disabled
bstor’s block cache but enabled an index cache of up to
100,000 entries. The circular temporary log was 720 MB
and never filled up during our experiments.

We measured bstor’s performance while storing and
fetching a batch of 20,000 unique 8 KB blocks. Figure 8
shows the averaged results from 20 runs of a 20,000 block
experiment. In all cases, standard deviations were less
than 5% of the average results. The first two results show
that bstor can absorb bursts of 8 KB blocks at almost twice
fast Ethernet rates, but that sustained throughput is limited
by bstor’s ability to shuffle blocks from the temporary to
the permanent logs, which it can do at 11.9 MB/s. The
bottleneck in STOREing blocks to the temporary log is cur-
rently CPU, and future versions of bstor might eliminate
some unnecessary memcpys to achieve better throughput.
On the other hand, bstor can process the temporary log
only as fast as it can read from its index disks, and there
is little room for improvement here unless disks become
faster or more index disks are used.

To compare with a Venti-like system, we implemented
a Venti-like store mechanism. In VENTI STORE, bstor

Operation MB/s

STORE (burst) 18.4
STORE (sustained) 11.9
VENTI STORE 5.1
RETRIEVE (random + cold index cache) 1.2
RETRIEVE (sequential + cold index cache) 9.1
RETRIEVE (sequential + warm index cache) 25.5

Figure 8: bstor throughput measurements with the block
cache disabled.

first checks for a block’s existence in the index and stores
the block to the permanent log only if it is not found.
That is, each VENTI STORE entails an access to the index
disks. Our results show that VENTI STORE can achieve
only 27% of STORE’s burst throughput, and 43% of its
sustained throughput.

Figure 8 also presents read measurements for bstor. If
a client reads blocks in the same order they are written
(i.e., “sequential” reads), then bstor need not seek across
the permanent log disk. Throughput in this case is limited
by the per-block cost of locating hashes on the index disks
and therefore increases to 25.5 MB/s with a warm index
cache. Randomly-issued reads fare poorly, even with a
warm index cache, because bstor must seek across the
permanent log. In the context of SUNDR, slow random
RETRIEVEs should not affect overall system performance
if the client aggressively caches blocks and reads large
files sequentially.

Finally, the latency of bstor RPCs is largely a func-
tion of seek times. STORE RPCs do not require seeks
and therefore return in 1.6 ms. VENTI STORE returns in
6.7 ms (after one seek across the index disk at a cost of
about 4.4 ms). Sequential RETRIEVEs that hit and miss
the index cache return in 1.9 and 6.3 ms, respectively. A
seek across the log disk takes about 6.1 ms; therefore ran-
dom RETRIEVEs that hit and miss the index cache return
in 8.0 and 12.4 ms respectively.

7.2.2 Cryptographic overhead

SUNDR clients sign and verify version structures and up-
date certificates using 2,048-bit ESIGN keys. Our im-
plementation (based on the GNU Multiprecision library
version 4.1.4) can complete signatures in approximately
150 µs and can verify them 100 µs. Precomputing a sig-
nature requires roughly 80 µs, while finalizing a precom-
puted signature is around 75 µs. We observed that these
measurements can vary on the Pentium IV by as much as a
factor of two, even in well-controlled micro-benchmarks.
By comparison, an optimized version of the Rabin sig-
nature scheme with 1,280-bit keys, running on the same
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hardware, can compute signatures in 3.1 ms and can ver-
ify them in 27 µs.

7.3 End-to-end evaluation

In end-to-end experiments, we compare SUNDR to both
NFS2 and NFS3 servers running on the same hardware.
To show NFS in the best possible light, the NFS exper-
iments run on the fast SCSI disks SUNDR uses for in-
dexes, not the slower, larger EIDE log disks. We include
NFS2 results because NFS2’s write-through semantics are
more like SUNDR’s. Both NFS2 and SUNDR write all
modified file data to disk before returning from a close
system call, while NFS3 does not offer this guarantee.

Finally, we described in Section 5.3 that SUNDR
clients must wait for the consistency server to write small
pieces of data (VSLs and PVLs) to stable storage. The
consistency server’s storing of PVLs in particular is on
the client’s critical path. We present result sets for con-
sistency servers running with and without flushes to sec-
ondary storage. We intend the mode with flushes disabled
to simulate a consistency server with NVRAM.

All application results shown are the average of three
runs. Relative standard deviations are less than 8% unless
otherwise noted.

7.3.1 LFS small file benchmark

The LFS small file benchmark [28] tests SUNDR’s perfor-
mance on simple file system operations. This benchmark
creates 1,000 1 KB files, reads them back, then deletes
them. We have modified the benchmark slightly to write
random data to the 1 KB files; writing the same file 1,000
times would give SUNDR’s hash-based block store an un-
fair advantage.

Figure 9 details our results when only one client is ac-
cessing the file system. In the create phase of the bench-
mark, a single file creation entails system calls to open,
read and close. On SUNDR/NVRAM, the open call in-
volves two serialized rounds of the consistency protocol,
each of which costs about 2 ms; the write call is a no-
op, since file changes are buffered until close; and the
close call involves one round of the protocol and one
synchronous write of file data to the block server, which
the client can overlap. Thus, the entire sequence takes
about 6 ms. Without NVRAM, each round of the protocol
takes approximately 1-2 ms longer, because the consis-
tency server must wait for bstor to flush.

Unlike SUNDR, an NFS server must wait for at least
one disk seek when creating a new file because it syn-
chronously writes metadata. A seek costs at least 4 ms on
our fast SCSI drives, and thus NFS can do no better than
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Figure 9: Single client LFS Small File Benchmark. 1000
operations on files with 1 KB of random content.

4 ms per file creation. In practice, NFS requires about
6 ms to service the three system calls in the create stage.

In the read phase of the benchmark, SUNDR performs
one round of the consistency protocol in the open system
call. The NFS3 client still accesses the server with an
ACCESS RPC, but the server is unlikely to need any data
not in its buffer cache at this point, and hence no seeking is
required. NFS2 does not contact the server in this phase.

In the unlink stage of the benchmark, clients issue a
single unlink system call per file. An unlink for SUNDR
triggers one round of the consistency protocol and an
asynchronous write to the block server to store updated
i-table and directory blocks. SUNDR and SUNDR/
NVRAM in particular can outperform NFS in this stage
of the experiment because NFS servers again require at
least one synchronous disk seek per file unlinked.

We also performed experiments with multiple clients
performing the LFS small file benchmark concurrently in
different directories. Results for the create phase are re-
ported in Figure 10 and the other phases of the benchmark
show similar trends. A somewhat surprising result is that
SUNDR actually scales better than NFS as client concur-
rency increases in our limited tests. NFS is seek-bound
even in the single client case, and the number of seeks
the NFS servers require scale linearly with the number of
concurrent clients. For SUNDR, latencies induced by the
consistency protocol limit individual client performance,
but these latencies overlap when clients act concurrently.
SUNDR’s disk accesses are also scalable because they are
sequential, sector-aligned writes to bstor’s temporary log.

7.3.2 Group contention

The group protocol incurs additional overhead when fold-
ing other users’ changes into a group i-table or directory.
We characterized the cost of this mechanism by measur-
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Figure 10: Concurrent LFS Small File Benchmark, cre-
ate phase. 1000 creations of 1 KB files. (Relative stan-
dard deviation for SUNDR in 3 concurrent clients case is
13.7%)

ing a workload with a high degree of contention for a
group-owned directory. We ran a micro-benchmark that
simultaneously created 300 new files in the same, group-
writable directory on two clients. Each concurrent create
required the client to re-map the group i-number in the
group i-table and apply changes to the user’s copy of the
directory.

The clients took an average of 4.60 s and 4.26 s on
SUNDR/NVRAM and NFS3 respectively. For compari-
son, we also ran the benchmark concurrently in two sep-
arate directories, which required an average of 2.94 s
for SUNDR/NVRAM and 4.05 s for NFS3. The results
suggests that while contention incurs a noticeable cost,
SUNDR’s performance even in this case is not too far out
of line with NFS3.

7.3.3 Real workloads

Figure 11 shows SUNDR’s performance in untaring, con-
figuring, compiling, installing and cleaning an emacs 20.7
distribution. During the experiment, the SUNDR client
sent a total of 42,550 blocks to the block server, which
totaled 139.24 MB in size. Duplicate blocks, which bstor
discards, account for 29.5% of all data sent. The client
successfully DECREFed 10,747 blocks, for a total space
savings of 11.3%. In the end, 25,740 blocks which totaled
82.21 MB went out to permanent storage.

SUNDR is faster than NFS2 and competitive with
NFS3 in most stages of the Emacs build process. We be-
lieve that SUNDR’s sluggish performance in the install
phase is an artifact of our implementation, which serial-
izes concurrent xfs upcalls for simplicity (and not correct-
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Figure 11: Installation procedure for emacs 20.7
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Figure 12: Concurrent untar of emacs 20.7.tar

ness). Concurrent xfs upcalls are prevalent in this phase of
the experiment due to the install command’s manipulation
of file attributes.

Figure 12 details the performance of the untar phase of
the Emacs build as client concurrency increases. We noted
similar trends for the other phases of the build process.
These experiments suggest that the scalability SUNDR
exhibited in the LFS small file benchmarks extends to real
file system workloads.

7.3.4 CVS on SUNDR

We tested CVS over SUNDR to evaluate SUNDR’s per-
formance as a source code repository. Our experiment
follows a typical progression. First, client A imports an
arbitrary source tree—in this test groff-1.17.2, which
has 717 files totaling 6.79 MB. Second, clients A and B
check out a copy to their local disks. Third, A commits
groff-1.18, which affects 549 files (6.06 MB). Lastly,
B updates its local copy. Figure 13 shows the results.

SUNDR fares badly on the commit phase because CVS
repeatedly opens, memory maps, unmaps, and closes each
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Phase SUNDR SUNDR NFS3 SSH
NVRAM

Import 13.0 10.0 4.9 7.0
Checkout 13.5 11.5 11.6 18.2
Commit 38.9 32.8 15.7 11.5
Update 19.1 15.9 13.3 11.5

Figure 13: Run times for CVS experiments (in seconds).

repository file several times in rapid succession. Ev-
ery open requires an iteration of the consistency proto-
col in SUNDR, while FreeBSD’s NFS3 apparently elides
or asynchronously performs ACCESS RPCs after the first
of several closely-spaced open calls. CVS could feasibly
cache memory-mapped files at this point in the experi-
ment, since a single CVS client holds a lock on the di-
rectory. This small change would significantly improve
SUNDR’s performance in the benchmark.

8 Related work

A number of non-networked file systems have used cryp-
tographic storage to keep data secret [5, 34] and check
integrity [31]. Several network file systems provide
varying degrees integrity checks but reduce integrity on
read sharing [25] or are vulnerable to consistency at-
tacks [10, 12, 19]. SUNDR is the first system to pro-
vide well-defined consistency semantics for an untrusted
server. An unimplemented but previously published ver-
sion of the SUNDR protocol [16] had no groups and thus
did not address write-after-write conflicts.

The Byzantine fault-tolerant file system, BFS [6], uses
replication to ensure the integrity of a network file sys-
tem. As long as more than 2/3 of a server’s replicas are
uncompromised, any data read from the file system will
have been written by a legitimate user. SUNDR, in con-
trast, does not require any replication or place any trust
in machines other than a user’s client. However, SUNDR
provides weaker freshness guarantees than BFS, because
of the possibility that a malicious SUNDR server can fork
the file system state if users have no other evidence of
each other’s on-line activity.

Several projects have investigated storing file systems
on peer-to-peer storage systems comprised of potentially
untrusted nodes. Farsite [3] spreads such a file system
across people’s unreliable desktop machines. CFS [7] is
a secure read-only file P2P system. Ivy [20], a read-write
version of CFS, can be convinced to re-order operations
clients have already seen. Pond [27] relies on a trusted
“inner core” of machines for security, distributing trust in
a BFS-like way.

SUNDR uses hash trees, introduced in [18], to verify a

file block’s integrity without touching the entire file sys-
tem. Duchamp [8], BFS [6], SFSRO [9] and TDB [14]
have all made use of hash trees for comparing data or
checking the integrity of part of a larger collection of data.

SUNDR uses version vectors to detect consistency vio-
lations. Version vectors were used by Ficus [22] to detect
update conflicts between file system replicas, and have
also been used to secure partial orderings [26, 30]. Our
straw-man file system somewhat resembles timeline en-
tanglement [15], which reasons about the temporal order-
ing of system states using hash chains.

9 Conclusions

SUNDR is a general-purpose, multi-user network file sys-
tem that never presents applications with incorrect file
system state, even when the server has been compromised.
SUNDR’s protocol provably guarantees fork consistency,
which essentially ensures that the server either behaves
correctly or that its failure will be detected after commu-
nication among users. In any event, the consequences of
an undetected server compromise are limited to conceal-
ing users’ operations from each other after some forking
point; the server cannot tamper with, inject, re-order, or
suppress file writes in any other way.

Measurements of our implementation show perfor-
mance that is usually close to and sometimes better than
the popular NFS file system. Yet by reducing the amount
of trust placed in the server, SUNDR both increases peo-
ple’s options for managing data and significantly im-
proves the security of their files.
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