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Luna: a Flexible Java Protection System 
Chris Hawblitzel, Dartmouth College 

Thorsten von Eicken, Expertcity, Inc.

Abstract 
Extensible Java systems face a difficult trade-off 
between sharing and protection.  On one hand, Java’s 
ability to run different protection domains in a single 
virtual machine enables domains to share data easily 
and communicate without address space switches.  On 
the other hand, unrestricted sharing blurs the 
boundaries between protection domains, making it 
difficult to terminate domains and enforce restrictions 
on resource usage.  Existing solutions to these 
problems restrict sharing in an ad-hoc fashion, ruling 
out many desirable programming styles. 

This paper presents an extension to Java’s type system 
that systematically addresses the issues of data sharing, 
revocation, thread control, and resource control.  
Multiple tasks running in a single virtual machines 
share data using special remote pointers, which have 
different types from local pointers.  The distinction 
between local and remote pointers allows the Java run-
time system to mediate the communication between 
tasks without slowing down operations on ordinary 
pointers.  The extensions to Java are implemented by a 
system called Luna, based on the Guavac and Marmot 
compilers, extended with special optimizations to 
support both fast inter-task communication and 
dynamic access control.  The paper describes two 
applications written in Luna: a simple extensible web 
server, and an extension of the Squid web cache to 
support dynamic content generation. 

1. Introduction 
Traditional operating systems such as Unix, Windows 
NT, and more recent microkernels use virtual memory 
to protect different programs from one another and to 
divide a computer's finite resources among the 
programs.  In these systems, the process or task is the 
central unit of protection and resource control, and 
cleanly encapsulates each program's memory usage and 
processor usage.  In recent years, language-based 
protection has become a viable alternative to virtual 
memory based protection for many types of extensible 
applications.  For instance, the Java programming 
language is now used to extend browsers with applets, 
servers with servlets [Java], active network routers 
with new protocols [WGT98], databases with 
customizations [GMS+98], and agent systems with 
mobile agents [Gen].  In these systems, the language 

subsumes the role of a traditional operating system, and 
is responsible for protecting programs from one 
another. 

Language-based protection relies on the safety of a 
programming language’s type system to restrict the 
operations that a program is allowed to perform.  The 
language provides a set of types (integers, functions, 
and records, for instance), and operations that can 
manipulate instances of different types.  Some 
operations make sense for some types but not others.  
For instance, a Java program can invoke a method of 
an object, but it cannot perform a method invocation on 
an integer. 

Type-safe languages implement capability based access 
control very naturally:  a pointer (also called a 
reference in Java jargon) cannot be forged, and can 
therefore serve as a capability.  Languages typically 
provide additional access control mechanisms, such as 
Java’s private, default, protected, public, and 
final access qualifiers that specify which code has 
access to which fields and methods of an object.  
Wallach et al [WBD+97] discusses Java access control 
mechanisms in detail. 

Safe languages hold many potential advantages over 
virtual memory based systems:  fine-grained sharing, 
no expensive address space switches, natural 
capability-based access control, abstract datatype 
enforcement, and code portability.  Unfortunately, this 
list of language protection advantages is matched by an 
equally long list of drawbacks.  The performance of 
safe languages tends to lag behind lower level 
languages like C, typical language-based systems 
support only one language, and relying on a language 
for protection requires trusting that the language's 
compiler (the just-in-time compiler in Java's case) and 
run-time system are written correctly.  Other research 
has made great strides in attacking these problems 
([BSP+95], [HLP98], [MWC+98], [NL98], [Sha97]).  
This paper focuses on a different set of problems, 
arising from the lack of OS features and structures in 
current language-based systems. 

For example, early Java systems suffered from 
unexpected interactions between data, threads, and 
code.  Consider Java's Thread.stop and 
ThreadGroup.stop methods, which 
asynchronously terminate a thread or group of threads.  
These would seem ideal for stopping a runaway applet 



that is consuming all of a browser’s CPU time and 
memory.  However, closer inspection reveals several 
difficult problems: 

• The wrong code gets interrupted:  in Java, a call 
from an applet to the system is just a function call, 
so that the system code runs in the applet's thread.  
The applet can kill or suspend the thread while the 
system code is running, possibly leaving the 
system in an inconsistent or deadlocked state. 

• Malicious code eludes termination:  terminating a 
malicious program's threads does not terminate the 
program's code, which may still exist in overridden 
methods of objects that the malicious program 
created and passed to other protection domains.  If 
one of these other domains invokes the rogue 
object methods, the malicious code is revived.  
Java mitigates this problem by making key 
datatypes final (e.g. String, array types) or 
primitive (e.g. int, float) so that they cannot 
contain overridden methods, but a purer object-
oriented language would have more difficulties. 

• Damaged objects violate abstract datatype 
integrity:  under Java's synchronization 
mechanisms, a thread may enter an object's 
method, acquire a lock, start an atomic operation, 
and then get terminated in the middle of the 
operation, releasing the lock and leaving the object 
in a "damaged" state that violates its intended 
abstraction. 

• Resources aren't reclaimed:  when a traditional 
operating system shuts down a process, both the 
process's threads and memory are shut down.  
Java's termination is weaker, stopping threads but 
not necessarily reclaiming other resources. 

Sun deprecated the Thread.stop and 
ThreadGroup.stop methods, leaving no officially 
sanctioned way to stop an applet [Javb].  The Java 
Community Process is currently considering a new API 
for isolating protection domains, which would prevent 
the direct sharing of objects and threads between 
domains.  In this case, it is much easier to terminate an 
applet and reclaim its resources.  While a better 
isolation mechanism is a clear step forward for many 
applications, these applications still require 
communication between programs.  The design of the 
communication mechanism is the key to obtaining the 
promised advantages of language-based protection, 
such as fine-grained sharing. 

The rest of this paper discusses existing research on 
combining isolation and communication, and then 
attempts to synthesize desirable features of different 
approaches into a single model, where tasks implement 

isolation and remote pointers enable communication 
between tasks.  The paper describes a type system for 
remote pointers, and then describes how tasks and 
remote pointers are implemented and optimized in an 
extension to Java that we call Luna.  Luna is 
implemented as a source-level extension to the Guavac 
source-to-bytecode compiler, which produces special 
Luna bytecode that runs on an extension to the 
Marmot, a sophisticated optimizing Java virtual 
machine [FKR+99].  The extensions to the source 
language are small, while the extensions to Marmot's 
run-time system are more involved.  Note that tasks 
and remote pointers would apply to languages besides 
Java; an earlier paper [HvE99] describes the 
application of these ideas both in a C-like procedural 
language with modules and as a formal extension of the 
typed lambda calculus for which we proved soundness. 

2. Balancing sharing and isolation: 
existing approaches 

The two goals of sharing and isolation conflict with 
each other, and building a system to support both 
requires compromises.  For example, DrScheme/MrEd 
[FFK+99] restricts communication to a hierarchical 
parent-to-child pattern, providing no support for peer-
to-peer sharing (e.g. applet-to-applet or agent-to-agent 
sharing), in order to allow a parent to cleanly terminate 
a child.  DrScheme's approach also leaves much of the 
responsibility for clean termination to the programmer.  
For example, the parent is expected to explicitly 
relinquish pointers to objects in a child domain in order 
to avoid damaged objects and ensure memory 
reclamation; MrEd's "custodians" do not do this 
automatically. 

At the opposite extreme, the J-Kernel [HCC+98] 
allows communication between arbitrary protection 
domains (even mutually suspicious domains), but only 
allows the domains to share special "capability" objects 
through which they can perform remote method 
invocations.  The system ensures that these capability 
objects are revocable, so that when a protection domain 
is shut down, the capabilities that it exported are 
revoked and the domain's memory is reclaimed.  Bryce 
et al [BR00] describe a similar “object space” model 
that makes it easier to share indirect references to 
objects, but still does not allow direct sharing of arrays 
or object fields.  The Java Community Process is also 
considering a mechanism to let isolated programs pass 
data by copy. Unfortunately, these heavyweight 
approaches abandon many of the advantages of 
lightweight protected sharing, and rule out 
programming styles based on shared memory. 

The J-Kernel and object space approaches contrast with 
KaffeOS [BHL00], which makes sharing of byte arrays 



and primitive data fields easy.  KaffeOS is oriented 
towards a shared memory style of programming, at the 
expense of more object-oriented programming styles 
based on method invocation.  For example, KaffeOS 
“shared heaps” cannot contain objects whose methods 
may be overridden arbitrarily, because such sharing 
would let one domain’s thread call another domain’s 
code (causing the problems with domain termination 
described in the previous section).  Java is very object-
oriented, though, most Java classes have overrideable 
methods.  This means, for example, that KaffeOS must 
prohibit the sharing of an object containing a field of 
type Object, because this field might hold an object 
that overrides one of Object’s methods, such as 
equals or hashCode.  A purer object-oriented 
language, where all methods may be overridden, would 
be even worse. 

3. Remote pointers and the task model 
All the systems in the previous section strive to draw 
clear boundaries between different domains.  This 
common goal motivates DrScheme’s parent-to-child 
communication model, the J-Kernel’s restriction on 
object sharing, and KaffeOS’s restriction on shared 
object types. 

We propose expressing the domain boundaries 
explicitly in Luna’s type system, in order to build a 
system that supports object-oriented remote method 
invocations, shared memory, and arbitrary peer-to-peer 
communication in a natural way.  In our approach, a 
single virtual machine will contain many tasks, each 
with its own objects, threads, and code.  Inter-task 
communication is organized around the concept of a 
revocable remote pointer, which is built into Luna's 
type system.  Pointers from one task to an object in 
another task have a special type indicated by a tilde 
(e.g. "String~", "Hashtable~").  These remote 
pointers are dynamically revocable, so that when a task 
is shut down, pointers into the task are revoked, and the 
task's objects, code and threads are safely deallocated.  
This allows fine-grained sharing between arbitrary 
tasks to coexist with clean termination, effective thread 
and resource control, and powerful optimization, as 
discussed in the following subsections. 

Resource control 

When objects are shared at a fine granularity, which 
programs should be charged for the objects and how 
can memory usage be tracked?  One solution is to 
charge for all the objects reachable from a program's 
roots.  While this may work in traditional operating 
systems with fixed sized shared memory buffers of 
"raw data", it is dangerous for abstract data types and 
pointer based data structures.  Program A can give 

program B a single object with some private field 
pointing to all of A's private data, and program B gets 
charged for all of A's data.  Fine-grained sharing looks 
less pleasant when any shared object can act as a 
resource Trojan horse.  Luna offers a simple 
alternative: a task pays only for those objects that it 
explicitly allocates with the Java new operator; it is not 
charged for objects allocated by other tasks. 

Revocation 

In ordinary Java, pointers can serve as capabilities, but 
once a program is given a pointer to an object, that 
pointer cannot be revoked.  Why would anyone want to 
revoke a capability?  Revocation assists termination:  
Luna revokes all remote pointers into a task when the 
task is terminated.  This neatly solves the damaged 
object problem: a dead task may contain damaged 
objects, but revocation ensures that these objects are 
not accessible from other tasks.  Revocation also helps 
to implement the principle of least privilege, since it is 
better to give someone access to something for only the 
necessary duration and then revoke the access than to 
give them access forever.  Revocation accommodates 
changing preferences over time.  An agent once 
considered trustworthy may abuse the trust and 
necessitate revoking its privileges.  At a lower level, 
revocation is a good way to give someone temporary, 
fast access to a resource, such as idle network buffer 
space or a rectangle in video memory.  In addition to 
these device-specific examples, revocation is also used 
in general purpose operating system mechanisms: for 
instance, FBufs [DP93] dynamically revoke write 
access to buffers when data is transferred between 
protection domains. 

Revocation has been a historical problem for capability 
systems [WLH81], but it is particularly difficult at the 
language level.  While adding a level of indirection to 
every capability may be a way to implement revocation 
in an operating system with coarse-grained capabilities 
[Red74], adding a level of indirection to every Java 
object is undesirable.  Luna's static distinction between 
local and remote pointers ensures that only pointers 
shared between tasks incur the overhead of supporting 
revocation (as described below, the high cost of locks 
on modern processors makes this overhead a serious 
concern). 

Controlling threads 

If a call from one program to another is just a function 
call, as it is in standard Java, the caller and callee 
programs share the same thread.  Who is allowed to 
terminate or suspend the shared thread?  In current Java 
browsers, an applet can call the browser and then kill 
the thread while the browser is in the middle of a 



sensitive operation.  Luna, on the other hand, switches 
threads during a method invocation on a remote 
pointer, so that the caller and callee each have their 
own threads, which is similar to IPC and RPC 
mechanisms in traditional operating systems.  Luna's 
remote pointer types statically signal which method 
invocations are on local objects (needing no thread 
switch) and which are cross-task method invocations 
on remote objects. 

Reasoning about the system structure 

Analyzing the security of a system requires analyzing 
the communication patterns between programs.  
Limited, well-defined communication channels make 
this easy; unconstrained fine-grained sharing makes a 
mess.  Luna's remote pointer types statically mark the 
boundaries between tasks, and thus form a static 
blueprint of the system's cross-task communication 
patterns. 

Optimization 

While dynamic loading is a useful tool for system 
extensibility, many optimization techniques rely on 
global information (such as “this method is never 
overridden and may therefore be inlined”) that may be 
invalidated as code is dynamically loaded.  One way to 
reconcile these whole-program optimizations with 
dynamic loading is to undo optimizations as necessary 
when new code is loaded.  Suppose a browser uses the 
Java class Vector, but never overrides the methods of 
this class.  In this situation, the browser may inline 
method invocations on objects of type Vector.  If a 
newly loaded applet introduces a class (say, 
SortedVector) that overrides these methods, 
however, the browser’s code must be dynamically 
recompiled to remove the inlining, because the applet 
might pass a SortedVector object to the browser, 
and the browser might invoke one of the object’s 
overridden methods.  Dynamic recompilation is 
complicated to implement, requiring close cooperation 
between the compiler and run-time system.  Moreover, 
in a language-based protection system, where multiple 
programs are loaded into a single environment, it 
penalizes one program for the actions of another 
program.  Why should a browser have to undo its 
internal optimizations because of code contained in a 
dynamically loaded applet?  It is difficult to predict the 
performance a program when its optimization depends 
on other programs’ code. 

Luna solves this problem by making the task the 
fundamental unit of loading, instead of loading classes 
individually.  This enables “whole-task optimizations” 
of operations on local pointers, so that Luna is able to 
exploit Marmot's inlining and static method binding.  

In the example above, the browser would continue to 
make inlined calls to its own Vector objects, because 
a local pointer of type Vector cannot point to the 
applet task’s SortedVector objects.  The only 
Marmot whole-program optimization that Luna does 
not implement is object stack allocation, which adds 
extra method table entries to some classes (Luna must 
ensure that method tables and field layouts are 
consistent across tasks, to support operations on remote 
pointers). 

4. Remote pointers 
In order to preserve the advantages of safe language 
protection (fine-grained sharing, low cross-task call 
overheads, simple capability-based access control, and 
enforcement of abstract data types), remote pointers 
support the same operations as local pointers:  
field/array element access, method invocation, 
synchronization, equality testing, casting, and 
instanceof testing, although most of these operations 
have different semantics and performance for remote 
pointers.  As Figure 1 indicates, there is one remote 
pointer type for each class/interface type and array 
type.  For convenience, we will refer to the objects 
pointed to by local and remote pointers as "local 
objects" and "remote objects" respectively. 

Type = PrimitiveType 
     | ReferenceType 
     | ReferenceType~ 
PrimitiveType = boolean | byte 
     | short | int | long | char 
     | float | double 
ReferenceType = ClassType 
              | InterfaceType 
              | Type[] 

Figure 1: Luna's type system 

The key difference between remote pointers and local 
pointers is revocation.  Luna's task model requires that 
remote pointers into a task be revoked when the task is 
killed, but the previous section argues that revocation is 
also useful at a finer granularity.  To realize these uses, 
Luna gives the programmer a special handle with 
which to control access to remote pointers.  This 
handle is a Java object called a permit.  A permit is 
allocated in an unrevoked state, and can later be 
revoked: 

public class Permit { 
    public Permit(); 
    public void revoke(); 
    ... 
} 



A remote pointer is implemented as a two-word value 
that consists of a local pointer paired with a permit.  
The @ operator converts a local pointer into a remote 
pointer: 

Permit p = new Permit(); 
String s = "hello"; 
String~ sr = s @ p; 

Once a task has used the @ operator to create a remote 
pointer, it can pass the remote pointer to other tasks, 
which can use them until the remote pointer's permit is 
revoked.  Operations on remote pointers perform a run-
time access check: the expression "sr.length()" 
will evaluate sr's length if p is unrevoked, and raise an 
exception if p is revoked.  Permits can selectively 
revoke access to data: if permit p1 is revoked while p2 
is not, then s is accessible through the remote pointer 
(s @ p2) but inaccessible through the remote 
pointer (s @ p1).  Note there is no way to 
decompose a remote pointer into its two parts: the local 
pointers to s and p can't be extracted from sr; this 
prevents other tasks from gaining direct access to them.  
In other words, a task's access to another task's data is 
always mediated by a permit ("complete mediation" is 
one cornerstone of a secure system [SS75][WBD+97]). 

When a task is terminated, all the permits created by 
the task are revoked.  This mass revocation makes all 
of a task’s objects unreachable and therefore garbage 
collectable. The permits stored in the remote pointers 
supply sufficient information for this garbage 
collection; Luna does not need to keep a table of all 
remote references.  This means that remote pointer 
creation is extremely fast: it consists only of pairing 
two words together, which requires no heap allocation, 
lock acquisitions, or bookkeeping. 

In order to preserve the invariant that only remote 
pointers cross task boundaries, local pointers cannot be 
written to remote object fields or passed as arguments 
to remote method invocations, while primitive types 
and remote pointers can.  Reads from remote objects 
are more flexible:  a local pointer can be read from a 
remote object or returned from a remote method 
invocation, but the local pointer is automatically 
promoted to a remote pointer.  This means that in the 
function below, the expression "list.next" has type 
List~, not type List, because from the perspective 
of the second function, a local field of a remote 
pointer is still remote.  At run-time, "list.next" 
evaluates to a remote pointer containing the same 
permit as the remote pointer list contained.  This 
allows a single permit to control access to the entire 
list, not just the first element (as would be the case with 
indirection-based implementations of revocation 
[HCC+98, Red74]).  This aggregation of access 

control is crucial for mediating access to complex 
shared data structures; it would be unwieldy for a 
programmer to have to revoke every object in a large 
data structure individually. 

class List { 
    int i; 
    List next; 
} 
List~ second(List~ list) { 
    return list.next; 
} 

Remote pointers cannot be used interchangeably with 
local pointers. For instance, a hash table object 
expecting keys of type "Object" cannot be passed a 
remote pointer (which has type "Object~").  This 
forces the programmer to either design a new type of 
hash table that can accommodate remote keys (and can 
deal with their revocation robustly), or, more 
commonly, to make a local copy of a remote object's 
data and use that as the hash table key.  Similarly, 
remote pointers, like Java's primitive types, must be 
boxed by the programmer to be placed in Java's 
standard container classes, such as Vector, that store 
Objects (this also serves a pragmatic implementation 
purpose, because remote pointers are a different size 
than local pointers, and are treated differently by the 
garbage collector). 

These restrictions on remote pointers raise questions 
about Luna’s expressiveness—do programmers have to 
write two versions of every function, one for local 
pointers and one for remote pointers?  In fact, Luna is 
not usually programmed this way.  Instead, Luna tasks 
are typically very similar to programs based on remote 
method invocation.  In the example below, the call to 
x.f is like a remote method invocation, except that the 
code explicitly copies the argument and return value, 
rather than using an RMI-generated stub (note: the 
remote keyword is an access control keyword, like 
public or private; it gives other tasks the right to 
call the method).  If desired, the remote pointer 
manipulation below can easily be hidden behind RMI-
style interfaces. 

class X { 
   remote String f(Vector~ v) { 
      Vector vlocal = new Vector(v); 
      ... 
      return “ok”; 
  }  
} 
X~ x = ...; 
Vector~ v1 = ...; 
String s = new String(x.f(v1)); 



Constructors that copy data from a remote object are 
common in Luna; snippets of the String constructor are 
shown below.  Although Java has a clone method 
that makes a copy of any Cloneable object, Luna does 
not have an analogous “remote clone” operation for 
making local copies of remote objects.  This is 
deliberate: suppose that someone passed a malicious 
subclass of Vector in as the v argument to the f 
method above.  If we made a complete local copy of 
this object, we would have to import the code defined 
by the malicious subclass into our own task, in order to 
handle the local method invocations on the copied 
object.  Luna never implicitly imports code from 
another task like this—this would violate the invariant 
that a task’s threads only run the task’s own code.  In 
the example above, the expression “new 
Vector(v)” copies the data from v, but not the code. 

 
public String(String~ value) { 
  ... 
  char[]~ vchars = value.chars; 
  for(int i = 0; i < len; i++) 
    lchars[i] = vchars[i + off]; 
... 
} 

Although Luna’s style of “remote method invocation” 
is less automated than Java RMI’s automatically 
generated stubs, it is more flexible.  Programmers can 
delay copying data until it is needed, or use shared 
objects directly rather than copying. 

The ability to share data between tasks raises 
synchronization and consistency issues: what happens 
if a task is terminated in the middle of an operation on 
shared data?  Although Luna doesn't have a transaction 
mechanism, it allows a class to acquire a remote lock 
on one of its own objects for reading shared data.  For 
writing, it's often safest to make a remote call to the 
task owning the object, and let that task modify its own 
object (if a task dies while writing to its own object, the 
object becomes unreachable along with the rest of the 
task's objects). 

While remote pointers provide a revocation 
mechanism, they don't set a particular policy for 
handling revocation.  It's still the application's duty to 
decide what to do in case of one of its communication 
partners becomes unreachable.  Typically, well-
behaved applications coordinate their actions with each 
other, and rely on Luna's revocation as an enforcement 
mechanism of last resort. 

5. Implementation 
This section describes the implementation of remote 
pointer operations in more detail.  Operations on 

remote pointers require revocation checks, and the 
compiler and run-time system cooperate to implement 
these checks.  For field and array accesses to remote 
pointers, the compiler emits code that enters a critical 
section, checks a flag in the remote pointer's permit, 
performs the access (or raises an exception, if the 
permit is revoked), and exits the critical section. 

Method invocations are more intricate.  A method 
invocation on a remote pointer calls another task's 
code, and therefore must execute in one of the other 
task's threads.  This thread switch allows the caller 
thread to be killed without abruptly terminating the 
callee thread.  However, Luna is implemented over 
Win32 kernel threads, and switching kernel threads is 
an expensive operation.  Therefore, cross-task calls 
only switch kernel threads lazily, when a call must be 
interrupted.  In the normal case, a cross-task call only 
switches stacks, which can be done without involving 
Win32.  To see how this works, consider a method in 
task A that calls a method in task B, which in turn calls 
a method in task C.  This sequence executes in a single 
kernel thread, but involves 3 separate stacks.  If task B 
is now terminated, B's stack is deallocated, C's method 
continues to run in the original kernel thread, and a 
new kernel thread is allocated which resumes A's 
method (and raises an exception in A's method to 
indicate that the call to B aborted abnormally).  This 
model is similar to RPC models described for the 
Mach[FL94] and Spring[HK93] microkernels. 

In more detail, then, a cross-task method invocation 
enters a critical section, checks the remote pointer's 
permit, grabs a stack from the target task's free stack 
pool, exits the critical section, switches the stack 
pointer, pushes the arguments, and makes the call.  A 
return from the invocation enters a critical section, 
returns the stack to the free pool, and exits the critical 
section. 

At this point, the reader would be correct to worry 
about the cost of entering and exiting a critical section.  
On an 800MHz Pentium III processor, a lock followed 
by an unlock, both written in hand-optimized assembly 
using an atomic compare and exchange instruction, 
takes 85 cycles when measured in a tight loop.  The 
bottleneck is access to the bus:  on a multiprocessor, an 
atomic operation must "lock" the bus while it executes.  
On a uniprocessor, the bus lock may be safely omitted, 
which cuts the cost of a lock/unlock sequence to 21 
cycles.  Because the choice of uniprocessor vs. 
multiprocessor has such a large impact on the cost of 
remote pointer accesses, we report both numbers in our 
benchmarks.  User-level thread scheduling allows 
further reductions of lock costs [SCM99], but we have 
not implemented a user-level threads package for Luna.  
One last optimization is possible on a uniprocessor: 



remote pointer field reads (but not writes) can omit the 
critical section by checking the permit after reading the 
field.  If the check finds that the permit is revoked, then 
the read is discarded, and if the check finds that the 
permit is valid, then the permit must also have been 
valid when the read occurred.  Unfortunately, relaxed 
cache consistency prohibits this optimization on 
multiprocessors. 

Figure 2 shows the performance of local and remote 
field accesses, and local and remote method 
invocations to a function with an empty body.  Both the 
local and remote method invocations perform a simple 
method table dispatch.  All measurements indicate the 
number of cycles taken on an 800MHz Pentium III 
processor with 256MB of RAM and a 256K L2 cache, 
measured in a tight loop (note: an empty loop takes 2 
cycles per iteration; this was not subtracted from the 
numbers below). 

 local remote 
(uniproc
essor) 

remote 
(multipro
cessor) 

field read 3 5 96 

field write 3 35 96 

method invocation 11 115 238 

allocate new remote 
pointer 

 2 2 

allocate, revoke, and 
garbage collect permit 

 ~900 ~900 

Figure 2: Remote pointer performance, without 
caching optimizations 

Allocating a new remote pointer on the stack simply 
pairs two words (a local pointer and a permit) together 
on the stack; if these words are already on the stack, 
then the pairing operation is essentially free.  
Allocating a new permit, however, requires heap 
allocation (which accounts for over half the cost shown 
in the table) and some data manipulation and 
synchronization to maintain the permits in a tree 
structure for each task. 

The cross-task invocations, while slower than local 
invocations, are nevertheless faster than round-trip IPC 
on the fastest x86 uniprocessor microkernels 
[LES+97], and are orders of magnitude faster than 
Win32 LRPC calls.  Unfortunately, the field accesses 
that require locks are slow to the point of being useless: 
if shared data were always so expensive to access, it 
would make more sense to copy data than to share it.  

Luckily, standard caching and invalidation techniques 
apply to remote pointer accesses, because accesses to 
the data are more frequent than revocation of the data. 

Caching permit information 

This section describes how Luna imitates a hardware 
TLB to reduce the cost of repeated access checks of the 
same permit.  However, Luna's approach differs from a 
hardware TLB in that a TLB operates entirely on 
dynamic information, while Luna takes advantage of 
static information to detect permit reuse.  As a simple 
example, consider the following loop, which zeroes the 
elements of a remote list (using the list class defined in 
the previous section). 

void zero(List~ list) { 
    while(list != null) { 
        list.i = 0; 
        list = list.next; 
    } 
} 

As Luna compiles this function from a typed high level 
representation to a typed low level representation, it 
adds type information to indicate repeated uses of the 
same permit.  This information is computed using a 
straightforward intraprocedural dataflow analysis.  In 
the zero loop, Luna's analysis sees that list.next 
has the same permit as list, and therefore every field 
access to list uses the same permit as the loop runs.  
The typed representation generated by the analysis is 
similar to the type system formalized in [HvE99]: the 
function is quantified over a permit variable ρ, and the 
two word remote pointer values are split into separate 
one word pointer and permit values, of type List{ρ} 
and permit{ρ}, respectively: 

∀ρ .void zero(List{ρ} list0, 
             permit{ρ} p0) { 
    List{ρ} list1 = list0; 
    while(list1 != null) { 
        list1.i = 0; 
        list1 = list1.next; 
    } 
} 

This representation allows the one word pointer and 
permit values to be stored in unrelated stack slots and 
registers, and for multiple values of type List{ρ} to 
be controlled by a single permit value.  Furthermore, 
except for the revocation check, the list traversal can 
treat the list traversal like a traversal of a local list, so 
the "list1 = list1.next" statement need not 
create a new two word remote pointer each time it 
executes. 



A simple dataflow analysis determines that the same ρ 
is checked repeatedly in the inner loop.  Based on this, 
Luna inserts code outside the loop to cache this 
permit's revocation flag in a register or stack slot, so 
that an access check is done with a simple test of the 
cached value, with no locking.  At run-time, this 
caching code adds the current stack frame to a doubly 
linked list held by the permit, and removes the stack 
frame from the permit's list after the loop is finished.  
As a further optimization, each thread keeps recently 
cached permits in a small thread-local direct-mapped 
cache rather than releasing them immediately.  The 
combined overhead of the pre-loop and post-loop 
caching code is about 30 cycles on a uniprocessor and 
63 cycles on a multiprocessor if the permit is found in 
the thread’s direct-mapped cache, and 125 cycles 
(uniprocessor) / 205 cycles (multiprocessor) if it is not.  
Thus, the optimizations pay off after about 1 to 3 
accesses to the shared data.  If the permit is revoked, it 
invalidates the cached information in each stack frame 
in its list by suspending each affected frame's thread, 
advancing the thread to a safe point (which Luna places 
at every call site and backwards branch), and then 
using the GC information at the safe point to determine 
which registers and stack slots must be modified to 
invalidate the cached access control information. 

Luna optimizes further under the following conditions: 
(i) the loop contains no call instructions, exception 
handlers, or other loops, (ii) the loop uses only one 
permit, (iii) all paths inside the loop from the loop 
header block back to itself check the permit for 
revocation.  If these are satisfied (the zero loop, for 
example, satisfies them), Luna places safe points 
before the loop's revocation checks rather than at the 
loop's backwards branches, and then omits the code for 
the revocation checks entirely.  If the permit is 
revoked, and the thread is advanced to a safe point 
inside the loop, then the thread is left at a point where a 
revocation check would have appeared, and a 
revocation exception is raised asynchronously in the 
thread at this point, so that it appears to the user that 
there was actually a check in the code there.  Luna 
advances Java code to a safe point by setting 
breakpoints rather than by polling, so this optimization 
reduces the per-iteration cost of the revocation checks 
to zero. 

These optimizations preserve the original semantics of 
the Luna program:  they only throw exceptions at 
points where the original Luna program could have 
thrown an exception, and precisely reflect the state of 
the program when the revocation exception is thrown.  
A call to Permit.revoke raises all the necessary 
exceptions before returning, so that afterwards, no 
threads can possibly access data using the permit (i.e. 
revocation is still immediate, not delayed).  Stated 

more strongly, any possible program execution trace 
under these optimizations is also a legal execution trace 
in an unoptimized Luna implementation. 

Figure 3 shows the assembly language code generated 
for the body of the zero loop.  While the loop body is 
essentially the same as a the code generated to zero a 
local list, the remote traversal must manipulate the 
permit's linked list before and after the inner loop, and 
the cost of this is significant: figure 4 shows the cost of 
repeatedly zeroing the elements of the same list, for 
local and remote lists of size 10 and 100.  Luna's static 
and dynamic optimizations make the speed of these 
loops reasonable, though not at good as the local case. 

remote list traversal code 
loop:  /* list.i = 0 (safe point) */ 
       mov dword ptr [eax+8],0 
       /* list = list.next (safe point) */ 
       mov eax,dword ptr [eax+12] 
       /* if(list == 0) goto done */ 
       cmp eax,0 
       je done 
       jmp loop 
       ... 
done: 

Figure 3: inner loop code for list traversal 

list size 
(elements) 

local remote 
(uniproce
ssor) 

remote 
(multipro
cessor) 

10 49 82 117 

100 334 458 496 

Figure 4: speed of local and remote list traversals 

Garbage collection 

GC information plays a part in caching/invalidation, 
and the garbage collector (an extension of Marmot's 
copying collector) treats remote pointers specially in 
other ways as well.  When the collector traverses a 
remote pointer, it checks to see whether its permit was 
revoked.  If the permit is unrevoked, then the remote 
pointer is treated as a strong pointer, while if the permit 
is null or revoked, the remote pointer is treated as a 
weak pointer, since the revocation makes the object 
semantically unreachable through the remote pointer.  
This allows a task's objects to be garbage collected 
even if there are outstanding revoked remote pointers 
to the objects.  In particular, when a task is terminated, 
all of the task's permits are automatically revoked, 
causing all the task's objects to become collectable, so 



that a task's resources are reclaimed when the task is 
terminated. 

6. Application 1: extensible web server 
We ported a small (~4000 line) web server, originally 
developed for the J-Kernel, to Luna.  The port changed 
fewer than 100 lines of existing code and added about 
600 lines of new code. 

The server implements Sun's servlet API [Java].  To 
preserve this API, the server includes wrapper classes 
which lazily copy remote object data into local objects 
when the servlet requests the data, so that a servlet 
need not concern itself with remote pointers directly: 

class RemoteHttpServlet { 
  Servlet servlet; 
  remote HttpResponseImpl service( 
    HttpRequestImpl~ req) { 
      HttpResponseImpl rep = new 
        HttpResponseImpl(); 
      servlet.service(new 
        RemoteRequest(req), rep); 
      return rep; 
  } 
  ... 
} 

The server makes a remote method invocation on the 
servlet’s RemoteHttpServlet wrapper object, 
which wraps the request in a RemoteRequest object 
before calling the servlet’s local Servlet object.  The 
RemoteRequest constructor copies only the remote 
pointer to the request data, while other methods (e.g. 
getContentType) copy data from the remote 
request object as needed. 

class RemoteRequest 
        implements ServletRequest { 
    public RemoteRequest( 
      ServletRequestImpl~ req) { 
      this.req = req; 
    } 
    public String getContentType() { 
      if(ContentType == null 
       && req.ContentType != null) 
          ContentType = new 
            String(req.ContentType); 
      return ContentType; 
    } 
  ... 
} 

Figure 5 shows the time taken to dispatch a request to a 
servlet (which lives in a different task from the server) 
and process the response, for a servlet which returns a 
fixed sized message, not counting the time to transfer 

the data to or from the underlying sockets, and not 
counting the cost of spawning a thread to handle the 
request.  The figure shows Luna's performance with 
and without the caching optimizations, and compares 
this to the performance of a modified server where both 
the server and servlet reside in the same task, so that no 
remote pointers are used.  The measurements show that 
Luna's caching optimizations pay off for large 
messages, especially for a multiprocessor. 

response 
size 

(bytes) 

Single 
task 
(local 
pointers 
only) 

Multiple 
tasks,no 
caching 
(uni/multi-
processor) 

Multiple 
tasks, 
caching 
(uni/multi-
processor) 

100 233µs 266µs / 
270µs 

266µs / 
266µs 

1000 300µs 400µs / 
467µs 

333µs / 
333µs 

10000 1000µs 1500µs / 
2403µs 

1070µs / 
1137µs 

Figure 5: servlet response speed 

7. Application 2: active cache 
The web server in the previous section used very high-
level RMI-style communication between the server and 
its servlets.  This section presents an extension to the 
popular Squid web cache [Squ] to support active 
content analysis and generation, built using a lower-
level shared memory style of communication between 
the Squid cache and the Luna active extensions.  We 
choose a low-level style partly for performance, and 
partly because this interfaces naturally with Squid 
(which is written in C, not Java).  A low-level interface 
is not always convenient to use, but it would not be 
hard to build a higher-level interface, such as the 
Active Cache Protocol [CZB98] over the lower level.  
The low-level interface also meant that there were only 
about 400 lines of Luna code, compared to 60,000 lines 
of Squid C code. 

The active cache consists of Squid, one “root task” 
written in Luna, and an arbitrary number of extension 
tasks written in Luna.  If an HTTP request hits in 
Squid’s cache, and the cache entry is marked as 
belonging to an extension, then Squid selects a thread 
from the root task’s pool of waiting threads, and passes 
the request to the thread.  The root task then makes a 
cross-task call into the proper extension, which in turn 
calls the root task one or more times to read data from 
disk or send data out a socket. 



Squid must pass the original request data into the root 
task and then on into the extension task.  Similarly, the 
extension task forms a response, which it passes back 
to the root task and ultimately into C code that writes 
the response to the socket.  To avoid copying the data, 
the C code allocates a large pool of fixed-sized buffers.  
Each buffer contains a proper Java header to make it 
look like a Java object of type byte[].  However, the 
buffers do not live in the Java heap and are not garbage 
collected.  This raises a delicate issue:  if the C code 
wants to reuse or deallocate a buffer, how can it be sure 
that there are no Java pointers to it? 

For example, suppose that a buffer received an HTTP 
request for extension A, and this buffer is later 
overwritten with an HTTP request for extension B.  A 
should not be able to use its pointer to the buffer to 
read B’s data.  To prevent this, the root task protects 
the buffers with permits, and revokes access to a buffer 
before giving the buffer to another extension task.  
Similarly, B should not be able to read A’s old data in 
the buffer.  Therefore, the C code sets the “length” 
field of the buffer’s Java header to exactly the size of 
B’s received data, so that none of A’s old data is 
visible from Java (because of Java’s bounds checking, 
which Marmot implements using a combination of 
static analysis and run-time checks). 

Since the buffers live in the C heap, they aren't 
automatically “charged” to the task that is using them 
at any given moment.  This is a limitation of Luna's 
simple task model, but it wouldn't be hard to work 
around: Squid would simply have to track the buffer 
usage itself, and bill the appropriate task.  The 
extensions presumably trust Squid to generate an 
accurate bill.  Rather than attempt to stretch the task 
model to cover all possible trust/sharing/billing models, 
it seems simpler to use tasks as a default resource 
accounting model, and have trusted tasks account for 
resources that fall outside the task model. 

Using the Pentium’s cycle counter, we measured the 
total time for each stage of a request, where the request 
is about 370 bytes long, and the extension sends a 
preallocated 500 byte buffer back as a response.  The 
dominant costs are in Squid and the C socket routines: 
it takes 6397µs for Squid to read and parse request and 
see that it is a cache hit, and it takes 5930µs to write 
the final response to a C socket.  By contrast, the cost 
of the Luna code is small (in part because no data 
copying is required): 4µs to prepare the request data for 
the extension and signal a thread in the thread pool, 
12µs to context switch to the new thread, and 57µs for 
the root task and extension code to generate and deliver 
the response to the C socket routines. 

8. Comparison to related work 
SPIN [BSP+95] used Modula-3 to safely extend an 
operating system kernel.  It demonstrated that a high 
level language could eloquently express the interfaces 
between layers and enforce the layers' abstractions.  
Luna maintains both these properties: although the tilde 
throws in an additional constraint, Luna still expresses 
interfaces in the language itself, and uses the language 
features to enforce abstractions. 

Several projects [FFK+99] [HCC+98] [VB99] 
[BHL00] [BTS+00] [RCW01] have explored the idea 
of safe language tasks.  Rudys et. al. [RCW01] propose 
a model where a task is defined by only code and 
threads, and object ownership is not tracked. Alta 
[BTS+00] restricts the types of objects available for 
inter-task sharing to some extent, but otherwise 
provides an all-or-nothing choice: either unrestricted 
sharing between two tasks or no sharing at all.  Luna 
tries for the best of both worlds:  allow sharing 
between arbitrary tasks, but use the type system to 
track the sharing. 

KaffeOS [BHL00] uses write barriers to restrict the 
propagation of inter-task pointers, so that sharing 
between tasks is confined to specially allocated buffers 
(it severely restricts the types of objects that may be 
placed in the buffers:  no abstract datatypes with 
overridden methods, for example).  KaffeOS doesn't 
have a static distinction between local and remote 
pointers, so the write barrier cost is incurred for all 
pointers, and errors are caught at run-time rather than 
statically.  On the other hand, KaffeOS requires only 
changes to Java's implementation, not the Java 
language. 

Although this paper discusses implementation issues 
directly related to remote pointers, there are other 
important implementation issues.  KaffeOS, for 
example, garbage collects different tasks separately to 
minimize the interference between tasks (with respect 
to memory accounting and predictable GC behavior), 
while Luna still only uses a single collector.  MVM 
[CD01] and ShMVM [CDN02], in addition to dealing 
with separate garbage collection, attempt to share code 
transparently between tasks to a much greater extent 
than Luna does, and provide a mechanism for each task 
to load isolated native code.  We believe that the 
techniques from these systems could be integrated into 
Luna without much difficulty, although there is one 
difficult time/space tradeoff: greater sharing of 
compiled code between tasks would save memory but 
limit Luna's whole-task optimizations. 

Both KaffeOS and Alta concentrate on shared memory 
communication; while Alta supports inter-task RPC, it 
is more than an order of magnitude slower than Luna's 



cross-task calls.  The J-Kernel [HCC+98], on the other 
side, supports RPC (with deep copies of arguments and 
return values) but not shared memory.  The J-Kernel's 
copy routine is trusted and not customizable, whereas 
Luna lets the user write their own copy routines by 
using field accesses to remote objects (such as the lazy 
copies implemented in our web server).  A drawback to 
Luna's approach is that such customization demands 
serious optimization to prevent excessive revocation 
checking overhead. 

Luna's remote pointer types and the lower level 
annotated typed representation were inspired by the 
region annotations of Tofte et al [TT94][CWM99].  
Originally, we imagined having one "region" per task, 
but then decided to let a task allocate multiple 
"permits", so that it can selectively revoke some 
permits but not others. 

9. Conclusions 
When we first started working on language based 
protection, we had wild hopes of outperforming 
traditional operating systems and microkernels.  The 
lack of separate address spaces would allow fine-
grained sharing and make protection and 
communication dirt cheap.  All that we needed to do 
was to solve the (apparently) minor problems of 
revocation, resource control, and terminating tasks so 
that the system would be robust enough to handle 
servers, agents systems, and active network systems.  
We found that these issues weren't nearly as easy to 
solve in a tightly coupled safe-language system as they 
were in a traditional system that clearly divides tasks 
into separate address spaces (and has a very fast TLB 
enforcing this division).  Rather than admit defeat to 
traditional systems on these issues, we introduced a 
clear separation between tasks into Luna, but unlike the 
dynamic separation based on virtual memory address 
spaces, we made a static distinction in the type system.  
The contribution of this paper lies in: 

• an argument for a task model in safe language 
setting, where each task has its own code, objects, 
and threads 

• a type system extension (~) which allows complete 
mediation of inter-task communication 

• a run-time mechanism that uses the ~ to implement 
revocation and termination.  We found that the 
costs of revocation were reasonable for method 
invocations, but array and field accesses were 
challenging to optimize, requiring extensive 
cooperation between the compiler and run-time 
system. 

• the application of these ideas to a real-world 
language, using the fastest optimizing Java virtual 
machine (Marmot) that we could get our hands on, 
to demonstrate that our mechanism did not 
preclude global optimizations or optimization of 
operations on local pointers, even in the presence 
of dynamic loading 

• the demonstration of a variety of approaches to 
inter-task sharing (shared-data, remote procedure 
call, lazy copying) in two extensible applications 

The result is a system that combines the robustness, 
structure, and communication flexibility of a 
microkernel with the ease of expression, portability, 
and abstraction enforcement of a high-level 
programming language. 
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