
USENIX Association

Proceedings of the
5th Symposium on Operating Systems

Design and Implementation

Boston, Massachusetts, USA
December 9–11, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Luna: a Flexible Java Protection System
Chris Hawblitzel, Dartmouth College

Thorsten von Eicken, Expertcity, Inc.

Abstract
Extensible Java systems face a difficult trade-off
between sharing and protection. On one hand, Java’s
ability to run different protection domains in a single
virtual machine enables domains to share data easily
and communicate without address space switches. On
the other hand, unrestricted sharing blurs the
boundaries between protection domains, making it
difficult to terminate domains and enforce restrictions
on resource usage. Existing solutions to these
problems restrict sharing in an ad-hoc fashion, ruling
out many desirable programming styles.

This paper presents an extension to Java’s type system
that systematically addresses the issues of data sharing,
revocation, thread control, and resource control.
Multiple tasks running in a single virtual machines
share data using special remote pointers, which have
different types from local pointers. The distinction
between local and remote pointers allows the Java run-
time system to mediate the communication between
tasks without slowing down operations on ordinary
pointers. The extensions to Java are implemented by a
system called Luna, based on the Guavac and Marmot
compilers, extended with special optimizations to
support both fast inter-task communication and
dynamic access control. The paper describes two
applications written in Luna: a simple extensible web
server, and an extension of the Squid web cache to
support dynamic content generation.

1. Introduction
Traditional operating systems such as Unix, Windows
NT, and more recent microkernels use virtual memory
to protect different programs from one another and to
divide a computer's finite resources among the
programs. In these systems, the process or task is the
central unit of protection and resource control, and
cleanly encapsulates each program's memory usage and
processor usage. In recent years, language-based
protection has become a viable alternative to virtual
memory based protection for many types of extensible
applications. For instance, the Java programming
language is now used to extend browsers with applets,
servers with servlets [Java], active network routers
with new protocols [WGT98], databases with
customizations [GMS+98], and agent systems with
mobile agents [Gen]. In these systems, the language

subsumes the role of a traditional operating system, and
is responsible for protecting programs from one
another.

Language-based protection relies on the safety of a
programming language’s type system to restrict the
operations that a program is allowed to perform. The
language provides a set of types (integers, functions,
and records, for instance), and operations that can
manipulate instances of different types. Some
operations make sense for some types but not others.
For instance, a Java program can invoke a method of
an object, but it cannot perform a method invocation on
an integer.

Type-safe languages implement capability based access
control very naturally: a pointer (also called a
reference in Java jargon) cannot be forged, and can
therefore serve as a capability. Languages typically
provide additional access control mechanisms, such as
Java’s private, default, protected, public, and
final access qualifiers that specify which code has
access to which fields and methods of an object.
Wallach et al [WBD+97] discusses Java access control
mechanisms in detail.

Safe languages hold many potential advantages over
virtual memory based systems: fine-grained sharing,
no expensive address space switches, natural
capability-based access control, abstract datatype
enforcement, and code portability. Unfortunately, this
list of language protection advantages is matched by an
equally long list of drawbacks. The performance of
safe languages tends to lag behind lower level
languages like C, typical language-based systems
support only one language, and relying on a language
for protection requires trusting that the language's
compiler (the just-in-time compiler in Java's case) and
run-time system are written correctly. Other research
has made great strides in attacking these problems
([BSP+95], [HLP98], [MWC+98], [NL98], [Sha97]).
This paper focuses on a different set of problems,
arising from the lack of OS features and structures in
current language-based systems.

For example, early Java systems suffered from
unexpected interactions between data, threads, and
code. Consider Java's Thread.stop and
ThreadGroup.stop methods, which
asynchronously terminate a thread or group of threads.
These would seem ideal for stopping a runaway applet

that is consuming all of a browser’s CPU time and
memory. However, closer inspection reveals several
difficult problems:

• The wrong code gets interrupted: in Java, a call
from an applet to the system is just a function call,
so that the system code runs in the applet's thread.
The applet can kill or suspend the thread while the
system code is running, possibly leaving the
system in an inconsistent or deadlocked state.

• Malicious code eludes termination: terminating a
malicious program's threads does not terminate the
program's code, which may still exist in overridden
methods of objects that the malicious program
created and passed to other protection domains. If
one of these other domains invokes the rogue
object methods, the malicious code is revived.
Java mitigates this problem by making key
datatypes final (e.g. String, array types) or
primitive (e.g. int, float) so that they cannot
contain overridden methods, but a purer object-
oriented language would have more difficulties.

• Damaged objects violate abstract datatype
integrity: under Java's synchronization
mechanisms, a thread may enter an object's
method, acquire a lock, start an atomic operation,
and then get terminated in the middle of the
operation, releasing the lock and leaving the object
in a "damaged" state that violates its intended
abstraction.

• Resources aren't reclaimed: when a traditional
operating system shuts down a process, both the
process's threads and memory are shut down.
Java's termination is weaker, stopping threads but
not necessarily reclaiming other resources.

Sun deprecated the Thread.stop and
ThreadGroup.stop methods, leaving no officially
sanctioned way to stop an applet [Javb]. The Java
Community Process is currently considering a new API
for isolating protection domains, which would prevent
the direct sharing of objects and threads between
domains. In this case, it is much easier to terminate an
applet and reclaim its resources. While a better
isolation mechanism is a clear step forward for many
applications, these applications still require
communication between programs. The design of the
communication mechanism is the key to obtaining the
promised advantages of language-based protection,
such as fine-grained sharing.

The rest of this paper discusses existing research on
combining isolation and communication, and then
attempts to synthesize desirable features of different
approaches into a single model, where tasks implement

isolation and remote pointers enable communication
between tasks. The paper describes a type system for
remote pointers, and then describes how tasks and
remote pointers are implemented and optimized in an
extension to Java that we call Luna. Luna is
implemented as a source-level extension to the Guavac
source-to-bytecode compiler, which produces special
Luna bytecode that runs on an extension to the
Marmot, a sophisticated optimizing Java virtual
machine [FKR+99]. The extensions to the source
language are small, while the extensions to Marmot's
run-time system are more involved. Note that tasks
and remote pointers would apply to languages besides
Java; an earlier paper [HvE99] describes the
application of these ideas both in a C-like procedural
language with modules and as a formal extension of the
typed lambda calculus for which we proved soundness.

2. Balancing sharing and isolation:
existing approaches

The two goals of sharing and isolation conflict with
each other, and building a system to support both
requires compromises. For example, DrScheme/MrEd
[FFK+99] restricts communication to a hierarchical
parent-to-child pattern, providing no support for peer-
to-peer sharing (e.g. applet-to-applet or agent-to-agent
sharing), in order to allow a parent to cleanly terminate
a child. DrScheme's approach also leaves much of the
responsibility for clean termination to the programmer.
For example, the parent is expected to explicitly
relinquish pointers to objects in a child domain in order
to avoid damaged objects and ensure memory
reclamation; MrEd's "custodians" do not do this
automatically.

At the opposite extreme, the J-Kernel [HCC+98]
allows communication between arbitrary protection
domains (even mutually suspicious domains), but only
allows the domains to share special "capability" objects
through which they can perform remote method
invocations. The system ensures that these capability
objects are revocable, so that when a protection domain
is shut down, the capabilities that it exported are
revoked and the domain's memory is reclaimed. Bryce
et al [BR00] describe a similar “object space” model
that makes it easier to share indirect references to
objects, but still does not allow direct sharing of arrays
or object fields. The Java Community Process is also
considering a mechanism to let isolated programs pass
data by copy. Unfortunately, these heavyweight
approaches abandon many of the advantages of
lightweight protected sharing, and rule out
programming styles based on shared memory.

The J-Kernel and object space approaches contrast with
KaffeOS [BHL00], which makes sharing of byte arrays

and primitive data fields easy. KaffeOS is oriented
towards a shared memory style of programming, at the
expense of more object-oriented programming styles
based on method invocation. For example, KaffeOS
“shared heaps” cannot contain objects whose methods
may be overridden arbitrarily, because such sharing
would let one domain’s thread call another domain’s
code (causing the problems with domain termination
described in the previous section). Java is very object-
oriented, though, most Java classes have overrideable
methods. This means, for example, that KaffeOS must
prohibit the sharing of an object containing a field of
type Object, because this field might hold an object
that overrides one of Object’s methods, such as
equals or hashCode. A purer object-oriented
language, where all methods may be overridden, would
be even worse.

3. Remote pointers and the task model
All the systems in the previous section strive to draw
clear boundaries between different domains. This
common goal motivates DrScheme’s parent-to-child
communication model, the J-Kernel’s restriction on
object sharing, and KaffeOS’s restriction on shared
object types.

We propose expressing the domain boundaries
explicitly in Luna’s type system, in order to build a
system that supports object-oriented remote method
invocations, shared memory, and arbitrary peer-to-peer
communication in a natural way. In our approach, a
single virtual machine will contain many tasks, each
with its own objects, threads, and code. Inter-task
communication is organized around the concept of a
revocable remote pointer, which is built into Luna's
type system. Pointers from one task to an object in
another task have a special type indicated by a tilde
(e.g. "String~", "Hashtable~"). These remote
pointers are dynamically revocable, so that when a task
is shut down, pointers into the task are revoked, and the
task's objects, code and threads are safely deallocated.
This allows fine-grained sharing between arbitrary
tasks to coexist with clean termination, effective thread
and resource control, and powerful optimization, as
discussed in the following subsections.

Resource control

When objects are shared at a fine granularity, which
programs should be charged for the objects and how
can memory usage be tracked? One solution is to
charge for all the objects reachable from a program's
roots. While this may work in traditional operating
systems with fixed sized shared memory buffers of
"raw data", it is dangerous for abstract data types and
pointer based data structures. Program A can give

program B a single object with some private field
pointing to all of A's private data, and program B gets
charged for all of A's data. Fine-grained sharing looks
less pleasant when any shared object can act as a
resource Trojan horse. Luna offers a simple
alternative: a task pays only for those objects that it
explicitly allocates with the Java new operator; it is not
charged for objects allocated by other tasks.

Revocation

In ordinary Java, pointers can serve as capabilities, but
once a program is given a pointer to an object, that
pointer cannot be revoked. Why would anyone want to
revoke a capability? Revocation assists termination:
Luna revokes all remote pointers into a task when the
task is terminated. This neatly solves the damaged
object problem: a dead task may contain damaged
objects, but revocation ensures that these objects are
not accessible from other tasks. Revocation also helps
to implement the principle of least privilege, since it is
better to give someone access to something for only the
necessary duration and then revoke the access than to
give them access forever. Revocation accommodates
changing preferences over time. An agent once
considered trustworthy may abuse the trust and
necessitate revoking its privileges. At a lower level,
revocation is a good way to give someone temporary,
fast access to a resource, such as idle network buffer
space or a rectangle in video memory. In addition to
these device-specific examples, revocation is also used
in general purpose operating system mechanisms: for
instance, FBufs [DP93] dynamically revoke write
access to buffers when data is transferred between
protection domains.

Revocation has been a historical problem for capability
systems [WLH81], but it is particularly difficult at the
language level. While adding a level of indirection to
every capability may be a way to implement revocation
in an operating system with coarse-grained capabilities
[Red74], adding a level of indirection to every Java
object is undesirable. Luna's static distinction between
local and remote pointers ensures that only pointers
shared between tasks incur the overhead of supporting
revocation (as described below, the high cost of locks
on modern processors makes this overhead a serious
concern).

Controlling threads

If a call from one program to another is just a function
call, as it is in standard Java, the caller and callee
programs share the same thread. Who is allowed to
terminate or suspend the shared thread? In current Java
browsers, an applet can call the browser and then kill
the thread while the browser is in the middle of a

sensitive operation. Luna, on the other hand, switches
threads during a method invocation on a remote
pointer, so that the caller and callee each have their
own threads, which is similar to IPC and RPC
mechanisms in traditional operating systems. Luna's
remote pointer types statically signal which method
invocations are on local objects (needing no thread
switch) and which are cross-task method invocations
on remote objects.

Reasoning about the system structure

Analyzing the security of a system requires analyzing
the communication patterns between programs.
Limited, well-defined communication channels make
this easy; unconstrained fine-grained sharing makes a
mess. Luna's remote pointer types statically mark the
boundaries between tasks, and thus form a static
blueprint of the system's cross-task communication
patterns.

Optimization

While dynamic loading is a useful tool for system
extensibility, many optimization techniques rely on
global information (such as “this method is never
overridden and may therefore be inlined”) that may be
invalidated as code is dynamically loaded. One way to
reconcile these whole-program optimizations with
dynamic loading is to undo optimizations as necessary
when new code is loaded. Suppose a browser uses the
Java class Vector, but never overrides the methods of
this class. In this situation, the browser may inline
method invocations on objects of type Vector. If a
newly loaded applet introduces a class (say,
SortedVector) that overrides these methods,
however, the browser’s code must be dynamically
recompiled to remove the inlining, because the applet
might pass a SortedVector object to the browser,
and the browser might invoke one of the object’s
overridden methods. Dynamic recompilation is
complicated to implement, requiring close cooperation
between the compiler and run-time system. Moreover,
in a language-based protection system, where multiple
programs are loaded into a single environment, it
penalizes one program for the actions of another
program. Why should a browser have to undo its
internal optimizations because of code contained in a
dynamically loaded applet? It is difficult to predict the
performance a program when its optimization depends
on other programs’ code.

Luna solves this problem by making the task the
fundamental unit of loading, instead of loading classes
individually. This enables “whole-task optimizations”
of operations on local pointers, so that Luna is able to
exploit Marmot's inlining and static method binding.

In the example above, the browser would continue to
make inlined calls to its own Vector objects, because
a local pointer of type Vector cannot point to the
applet task’s SortedVector objects. The only
Marmot whole-program optimization that Luna does
not implement is object stack allocation, which adds
extra method table entries to some classes (Luna must
ensure that method tables and field layouts are
consistent across tasks, to support operations on remote
pointers).

4. Remote pointers
In order to preserve the advantages of safe language
protection (fine-grained sharing, low cross-task call
overheads, simple capability-based access control, and
enforcement of abstract data types), remote pointers
support the same operations as local pointers:
field/array element access, method invocation,
synchronization, equality testing, casting, and
instanceof testing, although most of these operations
have different semantics and performance for remote
pointers. As Figure 1 indicates, there is one remote
pointer type for each class/interface type and array
type. For convenience, we will refer to the objects
pointed to by local and remote pointers as "local
objects" and "remote objects" respectively.

Type = PrimitiveType
 | ReferenceType
 | ReferenceType~
PrimitiveType = boolean | byte
 | short | int | long | char
 | float | double
ReferenceType = ClassType
 | InterfaceType
 | Type[]

Figure 1: Luna's type system

The key difference between remote pointers and local
pointers is revocation. Luna's task model requires that
remote pointers into a task be revoked when the task is
killed, but the previous section argues that revocation is
also useful at a finer granularity. To realize these uses,
Luna gives the programmer a special handle with
which to control access to remote pointers. This
handle is a Java object called a permit. A permit is
allocated in an unrevoked state, and can later be
revoked:

public class Permit {
 public Permit();
 public void revoke();
 ...
}

A remote pointer is implemented as a two-word value
that consists of a local pointer paired with a permit.
The @ operator converts a local pointer into a remote
pointer:

Permit p = new Permit();
String s = "hello";
String~ sr = s @ p;

Once a task has used the @ operator to create a remote
pointer, it can pass the remote pointer to other tasks,
which can use them until the remote pointer's permit is
revoked. Operations on remote pointers perform a run-
time access check: the expression "sr.length()"
will evaluate sr's length if p is unrevoked, and raise an
exception if p is revoked. Permits can selectively
revoke access to data: if permit p1 is revoked while p2
is not, then s is accessible through the remote pointer
(s @ p2) but inaccessible through the remote
pointer (s @ p1). Note there is no way to
decompose a remote pointer into its two parts: the local
pointers to s and p can't be extracted from sr; this
prevents other tasks from gaining direct access to them.
In other words, a task's access to another task's data is
always mediated by a permit ("complete mediation" is
one cornerstone of a secure system [SS75][WBD+97]).

When a task is terminated, all the permits created by
the task are revoked. This mass revocation makes all
of a task’s objects unreachable and therefore garbage
collectable. The permits stored in the remote pointers
supply sufficient information for this garbage
collection; Luna does not need to keep a table of all
remote references. This means that remote pointer
creation is extremely fast: it consists only of pairing
two words together, which requires no heap allocation,
lock acquisitions, or bookkeeping.

In order to preserve the invariant that only remote
pointers cross task boundaries, local pointers cannot be
written to remote object fields or passed as arguments
to remote method invocations, while primitive types
and remote pointers can. Reads from remote objects
are more flexible: a local pointer can be read from a
remote object or returned from a remote method
invocation, but the local pointer is automatically
promoted to a remote pointer. This means that in the
function below, the expression "list.next" has type
List~, not type List, because from the perspective
of the second function, a local field of a remote
pointer is still remote. At run-time, "list.next"
evaluates to a remote pointer containing the same
permit as the remote pointer list contained. This
allows a single permit to control access to the entire
list, not just the first element (as would be the case with
indirection-based implementations of revocation
[HCC+98, Red74]). This aggregation of access

control is crucial for mediating access to complex
shared data structures; it would be unwieldy for a
programmer to have to revoke every object in a large
data structure individually.

class List {
 int i;
 List next;
}
List~ second(List~ list) {
 return list.next;
}

Remote pointers cannot be used interchangeably with
local pointers. For instance, a hash table object
expecting keys of type "Object" cannot be passed a
remote pointer (which has type "Object~"). This
forces the programmer to either design a new type of
hash table that can accommodate remote keys (and can
deal with their revocation robustly), or, more
commonly, to make a local copy of a remote object's
data and use that as the hash table key. Similarly,
remote pointers, like Java's primitive types, must be
boxed by the programmer to be placed in Java's
standard container classes, such as Vector, that store
Objects (this also serves a pragmatic implementation
purpose, because remote pointers are a different size
than local pointers, and are treated differently by the
garbage collector).

These restrictions on remote pointers raise questions
about Luna’s expressiveness—do programmers have to
write two versions of every function, one for local
pointers and one for remote pointers? In fact, Luna is
not usually programmed this way. Instead, Luna tasks
are typically very similar to programs based on remote
method invocation. In the example below, the call to
x.f is like a remote method invocation, except that the
code explicitly copies the argument and return value,
rather than using an RMI-generated stub (note: the
remote keyword is an access control keyword, like
public or private; it gives other tasks the right to
call the method). If desired, the remote pointer
manipulation below can easily be hidden behind RMI-
style interfaces.

class X {
 remote String f(Vector~ v) {
 Vector vlocal = new Vector(v);
 ...
 return “ok”;
 }
}
X~ x = ...;
Vector~ v1 = ...;
String s = new String(x.f(v1));

Constructors that copy data from a remote object are
common in Luna; snippets of the String constructor are
shown below. Although Java has a clone method
that makes a copy of any Cloneable object, Luna does
not have an analogous “remote clone” operation for
making local copies of remote objects. This is
deliberate: suppose that someone passed a malicious
subclass of Vector in as the v argument to the f
method above. If we made a complete local copy of
this object, we would have to import the code defined
by the malicious subclass into our own task, in order to
handle the local method invocations on the copied
object. Luna never implicitly imports code from
another task like this—this would violate the invariant
that a task’s threads only run the task’s own code. In
the example above, the expression “new
Vector(v)” copies the data from v, but not the code.

public String(String~ value) {
 ...
 char[]~ vchars = value.chars;
 for(int i = 0; i < len; i++)
 lchars[i] = vchars[i + off];
...
}

Although Luna’s style of “remote method invocation”
is less automated than Java RMI’s automatically
generated stubs, it is more flexible. Programmers can
delay copying data until it is needed, or use shared
objects directly rather than copying.

The ability to share data between tasks raises
synchronization and consistency issues: what happens
if a task is terminated in the middle of an operation on
shared data? Although Luna doesn't have a transaction
mechanism, it allows a class to acquire a remote lock
on one of its own objects for reading shared data. For
writing, it's often safest to make a remote call to the
task owning the object, and let that task modify its own
object (if a task dies while writing to its own object, the
object becomes unreachable along with the rest of the
task's objects).

While remote pointers provide a revocation
mechanism, they don't set a particular policy for
handling revocation. It's still the application's duty to
decide what to do in case of one of its communication
partners becomes unreachable. Typically, well-
behaved applications coordinate their actions with each
other, and rely on Luna's revocation as an enforcement
mechanism of last resort.

5. Implementation
This section describes the implementation of remote
pointer operations in more detail. Operations on

remote pointers require revocation checks, and the
compiler and run-time system cooperate to implement
these checks. For field and array accesses to remote
pointers, the compiler emits code that enters a critical
section, checks a flag in the remote pointer's permit,
performs the access (or raises an exception, if the
permit is revoked), and exits the critical section.

Method invocations are more intricate. A method
invocation on a remote pointer calls another task's
code, and therefore must execute in one of the other
task's threads. This thread switch allows the caller
thread to be killed without abruptly terminating the
callee thread. However, Luna is implemented over
Win32 kernel threads, and switching kernel threads is
an expensive operation. Therefore, cross-task calls
only switch kernel threads lazily, when a call must be
interrupted. In the normal case, a cross-task call only
switches stacks, which can be done without involving
Win32. To see how this works, consider a method in
task A that calls a method in task B, which in turn calls
a method in task C. This sequence executes in a single
kernel thread, but involves 3 separate stacks. If task B
is now terminated, B's stack is deallocated, C's method
continues to run in the original kernel thread, and a
new kernel thread is allocated which resumes A's
method (and raises an exception in A's method to
indicate that the call to B aborted abnormally). This
model is similar to RPC models described for the
Mach[FL94] and Spring[HK93] microkernels.

In more detail, then, a cross-task method invocation
enters a critical section, checks the remote pointer's
permit, grabs a stack from the target task's free stack
pool, exits the critical section, switches the stack
pointer, pushes the arguments, and makes the call. A
return from the invocation enters a critical section,
returns the stack to the free pool, and exits the critical
section.

At this point, the reader would be correct to worry
about the cost of entering and exiting a critical section.
On an 800MHz Pentium III processor, a lock followed
by an unlock, both written in hand-optimized assembly
using an atomic compare and exchange instruction,
takes 85 cycles when measured in a tight loop. The
bottleneck is access to the bus: on a multiprocessor, an
atomic operation must "lock" the bus while it executes.
On a uniprocessor, the bus lock may be safely omitted,
which cuts the cost of a lock/unlock sequence to 21
cycles. Because the choice of uniprocessor vs.
multiprocessor has such a large impact on the cost of
remote pointer accesses, we report both numbers in our
benchmarks. User-level thread scheduling allows
further reductions of lock costs [SCM99], but we have
not implemented a user-level threads package for Luna.
One last optimization is possible on a uniprocessor:

remote pointer field reads (but not writes) can omit the
critical section by checking the permit after reading the
field. If the check finds that the permit is revoked, then
the read is discarded, and if the check finds that the
permit is valid, then the permit must also have been
valid when the read occurred. Unfortunately, relaxed
cache consistency prohibits this optimization on
multiprocessors.

Figure 2 shows the performance of local and remote
field accesses, and local and remote method
invocations to a function with an empty body. Both the
local and remote method invocations perform a simple
method table dispatch. All measurements indicate the
number of cycles taken on an 800MHz Pentium III
processor with 256MB of RAM and a 256K L2 cache,
measured in a tight loop (note: an empty loop takes 2
cycles per iteration; this was not subtracted from the
numbers below).

 local remote
(uniproc
essor)

remote
(multipro
cessor)

field read 3 5 96

field write 3 35 96

method invocation 11 115 238

allocate new remote
pointer

 2 2

allocate, revoke, and
garbage collect permit

 ~900 ~900

Figure 2: Remote pointer performance, without
caching optimizations

Allocating a new remote pointer on the stack simply
pairs two words (a local pointer and a permit) together
on the stack; if these words are already on the stack,
then the pairing operation is essentially free.
Allocating a new permit, however, requires heap
allocation (which accounts for over half the cost shown
in the table) and some data manipulation and
synchronization to maintain the permits in a tree
structure for each task.

The cross-task invocations, while slower than local
invocations, are nevertheless faster than round-trip IPC
on the fastest x86 uniprocessor microkernels
[LES+97], and are orders of magnitude faster than
Win32 LRPC calls. Unfortunately, the field accesses
that require locks are slow to the point of being useless:
if shared data were always so expensive to access, it
would make more sense to copy data than to share it.

Luckily, standard caching and invalidation techniques
apply to remote pointer accesses, because accesses to
the data are more frequent than revocation of the data.

Caching permit information

This section describes how Luna imitates a hardware
TLB to reduce the cost of repeated access checks of the
same permit. However, Luna's approach differs from a
hardware TLB in that a TLB operates entirely on
dynamic information, while Luna takes advantage of
static information to detect permit reuse. As a simple
example, consider the following loop, which zeroes the
elements of a remote list (using the list class defined in
the previous section).

void zero(List~ list) {
 while(list != null) {
 list.i = 0;
 list = list.next;
 }
}

As Luna compiles this function from a typed high level
representation to a typed low level representation, it
adds type information to indicate repeated uses of the
same permit. This information is computed using a
straightforward intraprocedural dataflow analysis. In
the zero loop, Luna's analysis sees that list.next
has the same permit as list, and therefore every field
access to list uses the same permit as the loop runs.
The typed representation generated by the analysis is
similar to the type system formalized in [HvE99]: the
function is quantified over a permit variable ρ, and the
two word remote pointer values are split into separate
one word pointer and permit values, of type List{ρ}
and permit{ρ}, respectively:

∀ρ .void zero(List{ρ} list0,
 permit{ρ} p0) {
 List{ρ} list1 = list0;
 while(list1 != null) {
 list1.i = 0;
 list1 = list1.next;
 }
}

This representation allows the one word pointer and
permit values to be stored in unrelated stack slots and
registers, and for multiple values of type List{ρ} to
be controlled by a single permit value. Furthermore,
except for the revocation check, the list traversal can
treat the list traversal like a traversal of a local list, so
the "list1 = list1.next" statement need not
create a new two word remote pointer each time it
executes.

A simple dataflow analysis determines that the same ρ
is checked repeatedly in the inner loop. Based on this,
Luna inserts code outside the loop to cache this
permit's revocation flag in a register or stack slot, so
that an access check is done with a simple test of the
cached value, with no locking. At run-time, this
caching code adds the current stack frame to a doubly
linked list held by the permit, and removes the stack
frame from the permit's list after the loop is finished.
As a further optimization, each thread keeps recently
cached permits in a small thread-local direct-mapped
cache rather than releasing them immediately. The
combined overhead of the pre-loop and post-loop
caching code is about 30 cycles on a uniprocessor and
63 cycles on a multiprocessor if the permit is found in
the thread’s direct-mapped cache, and 125 cycles
(uniprocessor) / 205 cycles (multiprocessor) if it is not.
Thus, the optimizations pay off after about 1 to 3
accesses to the shared data. If the permit is revoked, it
invalidates the cached information in each stack frame
in its list by suspending each affected frame's thread,
advancing the thread to a safe point (which Luna places
at every call site and backwards branch), and then
using the GC information at the safe point to determine
which registers and stack slots must be modified to
invalidate the cached access control information.

Luna optimizes further under the following conditions:
(i) the loop contains no call instructions, exception
handlers, or other loops, (ii) the loop uses only one
permit, (iii) all paths inside the loop from the loop
header block back to itself check the permit for
revocation. If these are satisfied (the zero loop, for
example, satisfies them), Luna places safe points
before the loop's revocation checks rather than at the
loop's backwards branches, and then omits the code for
the revocation checks entirely. If the permit is
revoked, and the thread is advanced to a safe point
inside the loop, then the thread is left at a point where a
revocation check would have appeared, and a
revocation exception is raised asynchronously in the
thread at this point, so that it appears to the user that
there was actually a check in the code there. Luna
advances Java code to a safe point by setting
breakpoints rather than by polling, so this optimization
reduces the per-iteration cost of the revocation checks
to zero.

These optimizations preserve the original semantics of
the Luna program: they only throw exceptions at
points where the original Luna program could have
thrown an exception, and precisely reflect the state of
the program when the revocation exception is thrown.
A call to Permit.revoke raises all the necessary
exceptions before returning, so that afterwards, no
threads can possibly access data using the permit (i.e.
revocation is still immediate, not delayed). Stated

more strongly, any possible program execution trace
under these optimizations is also a legal execution trace
in an unoptimized Luna implementation.

Figure 3 shows the assembly language code generated
for the body of the zero loop. While the loop body is
essentially the same as a the code generated to zero a
local list, the remote traversal must manipulate the
permit's linked list before and after the inner loop, and
the cost of this is significant: figure 4 shows the cost of
repeatedly zeroing the elements of the same list, for
local and remote lists of size 10 and 100. Luna's static
and dynamic optimizations make the speed of these
loops reasonable, though not at good as the local case.

remote list traversal code
loop: /* list.i = 0 (safe point) */
 mov dword ptr [eax+8],0
 /* list = list.next (safe point) */
 mov eax,dword ptr [eax+12]
 /* if(list == 0) goto done */
 cmp eax,0
 je done
 jmp loop
 ...
done:

Figure 3: inner loop code for list traversal

list size
(elements)

local remote
(uniproce
ssor)

remote
(multipro
cessor)

10 49 82 117

100 334 458 496

Figure 4: speed of local and remote list traversals

Garbage collection

GC information plays a part in caching/invalidation,
and the garbage collector (an extension of Marmot's
copying collector) treats remote pointers specially in
other ways as well. When the collector traverses a
remote pointer, it checks to see whether its permit was
revoked. If the permit is unrevoked, then the remote
pointer is treated as a strong pointer, while if the permit
is null or revoked, the remote pointer is treated as a
weak pointer, since the revocation makes the object
semantically unreachable through the remote pointer.
This allows a task's objects to be garbage collected
even if there are outstanding revoked remote pointers
to the objects. In particular, when a task is terminated,
all of the task's permits are automatically revoked,
causing all the task's objects to become collectable, so

that a task's resources are reclaimed when the task is
terminated.

6. Application 1: extensible web server
We ported a small (~4000 line) web server, originally
developed for the J-Kernel, to Luna. The port changed
fewer than 100 lines of existing code and added about
600 lines of new code.

The server implements Sun's servlet API [Java]. To
preserve this API, the server includes wrapper classes
which lazily copy remote object data into local objects
when the servlet requests the data, so that a servlet
need not concern itself with remote pointers directly:

class RemoteHttpServlet {
 Servlet servlet;
 remote HttpResponseImpl service(
 HttpRequestImpl~ req) {
 HttpResponseImpl rep = new
 HttpResponseImpl();
 servlet.service(new
 RemoteRequest(req), rep);
 return rep;
 }
 ...
}

The server makes a remote method invocation on the
servlet’s RemoteHttpServlet wrapper object,
which wraps the request in a RemoteRequest object
before calling the servlet’s local Servlet object. The
RemoteRequest constructor copies only the remote
pointer to the request data, while other methods (e.g.
getContentType) copy data from the remote
request object as needed.

class RemoteRequest
 implements ServletRequest {
 public RemoteRequest(
 ServletRequestImpl~ req) {
 this.req = req;
 }
 public String getContentType() {
 if(ContentType == null
 && req.ContentType != null)
 ContentType = new
 String(req.ContentType);
 return ContentType;
 }
 ...
}

Figure 5 shows the time taken to dispatch a request to a
servlet (which lives in a different task from the server)
and process the response, for a servlet which returns a
fixed sized message, not counting the time to transfer

the data to or from the underlying sockets, and not
counting the cost of spawning a thread to handle the
request. The figure shows Luna's performance with
and without the caching optimizations, and compares
this to the performance of a modified server where both
the server and servlet reside in the same task, so that no
remote pointers are used. The measurements show that
Luna's caching optimizations pay off for large
messages, especially for a multiprocessor.

response
size

(bytes)

Single
task
(local
pointers
only)

Multiple
tasks,no
caching
(uni/multi-
processor)

Multiple
tasks,
caching
(uni/multi-
processor)

100 233µs 266µs /
270µs

266µs /
266µs

1000 300µs 400µs /
467µs

333µs /
333µs

10000 1000µs 1500µs /
2403µs

1070µs /
1137µs

Figure 5: servlet response speed

7. Application 2: active cache
The web server in the previous section used very high-
level RMI-style communication between the server and
its servlets. This section presents an extension to the
popular Squid web cache [Squ] to support active
content analysis and generation, built using a lower-
level shared memory style of communication between
the Squid cache and the Luna active extensions. We
choose a low-level style partly for performance, and
partly because this interfaces naturally with Squid
(which is written in C, not Java). A low-level interface
is not always convenient to use, but it would not be
hard to build a higher-level interface, such as the
Active Cache Protocol [CZB98] over the lower level.
The low-level interface also meant that there were only
about 400 lines of Luna code, compared to 60,000 lines
of Squid C code.

The active cache consists of Squid, one “root task”
written in Luna, and an arbitrary number of extension
tasks written in Luna. If an HTTP request hits in
Squid’s cache, and the cache entry is marked as
belonging to an extension, then Squid selects a thread
from the root task’s pool of waiting threads, and passes
the request to the thread. The root task then makes a
cross-task call into the proper extension, which in turn
calls the root task one or more times to read data from
disk or send data out a socket.

Squid must pass the original request data into the root
task and then on into the extension task. Similarly, the
extension task forms a response, which it passes back
to the root task and ultimately into C code that writes
the response to the socket. To avoid copying the data,
the C code allocates a large pool of fixed-sized buffers.
Each buffer contains a proper Java header to make it
look like a Java object of type byte[]. However, the
buffers do not live in the Java heap and are not garbage
collected. This raises a delicate issue: if the C code
wants to reuse or deallocate a buffer, how can it be sure
that there are no Java pointers to it?

For example, suppose that a buffer received an HTTP
request for extension A, and this buffer is later
overwritten with an HTTP request for extension B. A
should not be able to use its pointer to the buffer to
read B’s data. To prevent this, the root task protects
the buffers with permits, and revokes access to a buffer
before giving the buffer to another extension task.
Similarly, B should not be able to read A’s old data in
the buffer. Therefore, the C code sets the “length”
field of the buffer’s Java header to exactly the size of
B’s received data, so that none of A’s old data is
visible from Java (because of Java’s bounds checking,
which Marmot implements using a combination of
static analysis and run-time checks).

Since the buffers live in the C heap, they aren't
automatically “charged” to the task that is using them
at any given moment. This is a limitation of Luna's
simple task model, but it wouldn't be hard to work
around: Squid would simply have to track the buffer
usage itself, and bill the appropriate task. The
extensions presumably trust Squid to generate an
accurate bill. Rather than attempt to stretch the task
model to cover all possible trust/sharing/billing models,
it seems simpler to use tasks as a default resource
accounting model, and have trusted tasks account for
resources that fall outside the task model.

Using the Pentium’s cycle counter, we measured the
total time for each stage of a request, where the request
is about 370 bytes long, and the extension sends a
preallocated 500 byte buffer back as a response. The
dominant costs are in Squid and the C socket routines:
it takes 6397µs for Squid to read and parse request and
see that it is a cache hit, and it takes 5930µs to write
the final response to a C socket. By contrast, the cost
of the Luna code is small (in part because no data
copying is required): 4µs to prepare the request data for
the extension and signal a thread in the thread pool,
12µs to context switch to the new thread, and 57µs for
the root task and extension code to generate and deliver
the response to the C socket routines.

8. Comparison to related work
SPIN [BSP+95] used Modula-3 to safely extend an
operating system kernel. It demonstrated that a high
level language could eloquently express the interfaces
between layers and enforce the layers' abstractions.
Luna maintains both these properties: although the tilde
throws in an additional constraint, Luna still expresses
interfaces in the language itself, and uses the language
features to enforce abstractions.

Several projects [FFK+99] [HCC+98] [VB99]
[BHL00] [BTS+00] [RCW01] have explored the idea
of safe language tasks. Rudys et. al. [RCW01] propose
a model where a task is defined by only code and
threads, and object ownership is not tracked. Alta
[BTS+00] restricts the types of objects available for
inter-task sharing to some extent, but otherwise
provides an all-or-nothing choice: either unrestricted
sharing between two tasks or no sharing at all. Luna
tries for the best of both worlds: allow sharing
between arbitrary tasks, but use the type system to
track the sharing.

KaffeOS [BHL00] uses write barriers to restrict the
propagation of inter-task pointers, so that sharing
between tasks is confined to specially allocated buffers
(it severely restricts the types of objects that may be
placed in the buffers: no abstract datatypes with
overridden methods, for example). KaffeOS doesn't
have a static distinction between local and remote
pointers, so the write barrier cost is incurred for all
pointers, and errors are caught at run-time rather than
statically. On the other hand, KaffeOS requires only
changes to Java's implementation, not the Java
language.

Although this paper discusses implementation issues
directly related to remote pointers, there are other
important implementation issues. KaffeOS, for
example, garbage collects different tasks separately to
minimize the interference between tasks (with respect
to memory accounting and predictable GC behavior),
while Luna still only uses a single collector. MVM
[CD01] and ShMVM [CDN02], in addition to dealing
with separate garbage collection, attempt to share code
transparently between tasks to a much greater extent
than Luna does, and provide a mechanism for each task
to load isolated native code. We believe that the
techniques from these systems could be integrated into
Luna without much difficulty, although there is one
difficult time/space tradeoff: greater sharing of
compiled code between tasks would save memory but
limit Luna's whole-task optimizations.

Both KaffeOS and Alta concentrate on shared memory
communication; while Alta supports inter-task RPC, it
is more than an order of magnitude slower than Luna's

cross-task calls. The J-Kernel [HCC+98], on the other
side, supports RPC (with deep copies of arguments and
return values) but not shared memory. The J-Kernel's
copy routine is trusted and not customizable, whereas
Luna lets the user write their own copy routines by
using field accesses to remote objects (such as the lazy
copies implemented in our web server). A drawback to
Luna's approach is that such customization demands
serious optimization to prevent excessive revocation
checking overhead.

Luna's remote pointer types and the lower level
annotated typed representation were inspired by the
region annotations of Tofte et al [TT94][CWM99].
Originally, we imagined having one "region" per task,
but then decided to let a task allocate multiple
"permits", so that it can selectively revoke some
permits but not others.

9. Conclusions
When we first started working on language based
protection, we had wild hopes of outperforming
traditional operating systems and microkernels. The
lack of separate address spaces would allow fine-
grained sharing and make protection and
communication dirt cheap. All that we needed to do
was to solve the (apparently) minor problems of
revocation, resource control, and terminating tasks so
that the system would be robust enough to handle
servers, agents systems, and active network systems.
We found that these issues weren't nearly as easy to
solve in a tightly coupled safe-language system as they
were in a traditional system that clearly divides tasks
into separate address spaces (and has a very fast TLB
enforcing this division). Rather than admit defeat to
traditional systems on these issues, we introduced a
clear separation between tasks into Luna, but unlike the
dynamic separation based on virtual memory address
spaces, we made a static distinction in the type system.
The contribution of this paper lies in:

• an argument for a task model in safe language
setting, where each task has its own code, objects,
and threads

• a type system extension (~) which allows complete
mediation of inter-task communication

• a run-time mechanism that uses the ~ to implement
revocation and termination. We found that the
costs of revocation were reasonable for method
invocations, but array and field accesses were
challenging to optimize, requiring extensive
cooperation between the compiler and run-time
system.

• the application of these ideas to a real-world
language, using the fastest optimizing Java virtual
machine (Marmot) that we could get our hands on,
to demonstrate that our mechanism did not
preclude global optimizations or optimization of
operations on local pointers, even in the presence
of dynamic loading

• the demonstration of a variety of approaches to
inter-task sharing (shared-data, remote procedure
call, lazy copying) in two extensible applications

The result is a system that combines the robustness,
structure, and communication flexibility of a
microkernel with the ease of expression, portability,
and abstraction enforcement of a high-level
programming language.

References
[BH99] G. Back and W. Hsieh. Drawing the Red

Line in Java. Proceedings of the Seventh
IEEE Workshop on Hot Topics in
Operating Systems, Rio Rico, AZ, March
1999

[BHL00] G. Back, W. C. Hsieh, and J. Lepreau.
Processes in KaffeOS: Isolation, Resource
Management, and Sharing in Java.
Proceedings of the 4th Symposium on
Operating Systems Design and
Implementation, October 2000

[BR00] C. Bryce and C. Razafimahefa. An
Approach to Safe Object Sharing. ACM
Conference on Object-Oriented
Programming Systems, Languages and
Applications (OOPSLA), Minneapolis,
USA, October 2000

[BSP+95] B. N. Bershad, S. Savage, P. Pardyak, E. G.
Sirer, M. Fiuczynski, D. Becker, S. Eggers,
and C. Chambers. Extensibility, Safety and
Performance in the SPIN Operating
System. 15th ACM Symposium on
Operating Systems Principles, p. 267–284,
Copper Mountain, CO, December 1995.

[BTS+00] G. Back, P. Tullmann, L. Stoller, W. C.
Hsieh, and J. Lepreau. Techniques for the
Design of Java Operating Systems.
Proceedings of the USENIX 2000 Annual
Technical Conference, San Diego, CA,
June 2000

[CD01] G. Czajkowski and L. Daynès.
Multitasking without Compromise: A
Virtual Machine Evolution. In OOPSLA
2001, Tampa Bay, FL, Oct. 2001.

[CDN02] G. Czajkowski, L. Daynès, and N.
Nystrom. Code Sharing Among Virtual
Machines. In ECOOP 2002, Málaga,
Spain, Jun. 2002.

[CWM99] K. Crary, D. Walker, and G. Morrisett.
Typed Memory Management in a Calculus
of Capabilities. In 26th ACM SIGPLAN-
SIGACT Symposium on Principles of
Programming Languages

[CZB98] P. Cao, J. Zhang, and K. Beach. Active
Cache: Caching Dynamic Contents on the
Web. Proceedings of IFIP International
Conference on Distributed Systems
Platforms and Open Distributed Processing
(Middleware '98), pp. 373-388.

[DP93] P. Druschel and L. L. Peterson. Fbufs: A
high-bandwidth cross-domain transfer
facility. Proceedings of the Fourteenth
ACM Symposium on Operating Systems
Principles, p. 189-202, Dec. 1993.

[FFK+99] M. Flatt, R. B. Findler, S. Krishnamurthi
and M. Felleisen. Programming Languages
as Operating Systems (or, Revenge of the
Son of the Lisp Machine). International
Conference on Functional Programming
(ICFP), Paris, France, Sep. 1999.

[FKR+99] R. Fitzgerald, T. B. Knoblock, E. Ruf, B.
Steensgard, D. Tarditi. Marmot: An
Optimizing Compiler for Java. Microsoft
Research Technical Report MSR-TR-99-
33, June 1999.

[FL94] B. Ford and J. Lepreau. Evolving Mach 3.0
to a Migrating Thread Model. Proceedings
of the Winter Usenix Conference, January
1994.

[Gen] General Magic. Odyssey.
http://www.genmagic.com/agents.

[GMS+98] M.Godfrey, T.Mayr, P.Seshadri, and T. von
Eicken. Secure and Portable Database
Extensibility. Proceedings of the 1998
ACM-SIGMOD Conference on the
Management of Data, p. 390-401, Seattle,
WA, June 1998.

[HCC+98] C. Hawblitzel, C. C. Chang, G. Czajkowski,
D. Hu, and T. von Eicken. Implementing
Multiple Protection Domains in Java. 1998
USENIX Annual Technical Conference, p.
259-270, New Orleans, LA, June 1998.

[HK93] G. Hamilton and P. Kougiouris. The Spring
Nucleus: a Microkernel for objects.
Proceedings of the Summer 1993 USENIX
Conference, p. 147-159, Cincinnati, OH,
June 1993.

[HLP98] R. Harper, P. Lee, and F. Pfenning. The
Fox Project: Advanced Language
Technology for Extensible Systems.
Technical Report CMU-CS-98-107,
Carnegie Mellon University.

[HvE99] C. Hawblitzel and T. von Eicken. Type
System Support for Dynamic Revocation.
ACM SIGPLAN Workshop on Compiler
Support for System Software, Atlanta, GA,
May 1999.

[Java] JavaSoft. Java Servlet API.
http://java.sun.com.

[Javb] JavaSoft. Why Are Thread.stop,
Thread.suspend, Thread.resume and
Runtime.runFinalizersOnExit Deprecated?
JDK 1.2 API documentation,
http://java.sun.com.

[LES+97] J. Liedtke, K. Elphinstone, S. Schönberg,
H. Härtig, G. Heiser, N. Islam, T. Jaeger.
Achieved IPC Performance. 6th Workshop
on Hot Topics in Operating Systems,
Chatham, MA, May 1997.

[MWC+98] G. Morrisett, D. Walker, K. Crary,
and N. Glew. From System F to Typed
Assembly Language. 25th ACM Symposium
on Principles of Programming Languages.
San Diego, CA, January 1998.

[NL98] G. Necula and P. Lee. The Design and
Implementation of a Certifying Compiler.
1998 ACM SIGPLAN Conference on
Programming Language Design and
Implementation. Montreal, Canada, June
1998.

[RCW01] A. Rudys, J. Clements, and D. S. Wallach.
Termination in Language-Based Systems.
Proceedings of the Network and Distributed
Systems Security Symposium (NDSS '01),
San Diego, California, February 2001.

[Red74] D. D. Redell. Naming and Protection in
Extendible Operating Systems. Technical
Report 140, Project MAC, MIT 1974.

[SCM99] O. Shivers, J. W. Clark and R. McGrath.
Atomic heap transactions and fine-grain
interrupts. Proceedings of the 1999 ACM
International Conference on Functional
Programming (ICFP), Sep. 1999, Paris,
France.

[Sha97] Z. Shao. Typed Common Intermediate
Format. 1997 USENIX Conference on
Domain-Specific Languages, Santa
Barbara, California, Oct. 1997.

[Squ] Squid Web Proxy Cache, www.squid-
cache.org.

[SS75] J. H. Saltzer and M. Schroeder. The
Protection of Information in Computer
System. Proceedings of the IEEE, Volume
63, Number 9, p. 1278–1308, September
1975.

[TT94] M. Tofte and J.P. Talpin. Implementation of
the Typed Call-by-Value Lambda Calculus
using a Stack of Regions. 21st ACM
Symposium on Principles of Programming
Languages, p. 188–201, Portland, OR,
January 1994.

[VB99] J. Vitek and C. Bryce. The JavaSeal mobile
agent kernel. In First International
Symposium on Agent Systems and
Applications and Third International
Symposium on Mobile Agents
(ASA/MA'99), October 1999.

[WBD+97] D. S. Wallach, D. Balfanz, D. Dean, and E.
W. Felten. Extensible Security
Architectures for Java. 16th ACM
Symposium on Operating Systems
Principles, p. 116–128, Saint-Malo, France,
October 1997.

[WLH81] W. A. Wulf, R. Levin, and S. P. Harbsion.
Hydra/C.mmp:An Experimental Computer
System. McGraw-Hill, 1981.

[WGT98] D. Wetherall, J. Guttag, and D. L.
Tennenhouse. ANTS: A Toolkit for Building
and Dynamically Deploying Network
Protocols. IEEE OPENARCH'98, San
Francisco, CA, April 1998.

