

Paxos Replicated State Machines as the Basis of a High-Performance
Data Store

William J. Bolosky*, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters and Peng Li

Microsoft and *Microsoft Research

{bolosky, dexterb, rhaagens, norbertk, pengli}@microsoft.com

Abstract
Conventional wisdom holds that Paxos is too expensive to use for high-volume, high-throughput, data-intensive

applications. Consequently, fault-tolerant storage systems typically rely on special hardware, semantics weaker than

sequential consistency, a limited update interface (such as append-only), primary-backup replication schemes that

serialize all reads through the primary, clock synchronization for correctness, or some combination thereof. We

demonstrate that a Paxos-based replicated state machine implementing a storage service can achieve performance

close to the limits of the underlying hardware while tolerating arbitrary machine restarts, some permanent machine

or disk failures and a limited set of Byzantine faults. We also compare it with two versions of primary-backup. The

replicated state machine can serve as the data store for a file system or storage array. We present a novel algorithm

for ensuring read consistency without logging, along with a sketch of a proof of its correctness.

1. Introduction
Replicated State Machines (RSMs) [31, 35] provide

desirable semantics, with operations fully serialized

and durably committed by the time a result is re-

turned. When implemented with Paxos [20], they

also tolerate arbitrary computer and process restarts

and permanent stopping faults of a minority of com-

puters, with only very weak assumptions about the

underlying system--essentially that it doesn’t exhibit

Byzantine [22] behavior. Conventional wisdom

holds that the cost of obtaining these properties is too

high to make Paxos RSMs useful in practice for ap-

plications that require performance. For instance,

Birman [4] writes:

Given that it offers stronger failure guarantees,
why not just insist that all multicast primitives

be dynamically uniform [his term for what

Paxos achieves]? … From a theory perspec-

tive, it makes sense to do precisely this. Dy-
namic uniformity is a simple property to formal-
ize, and applications using a dynamically uni-
form multicast layer are easier to prove cor-
rect.

But the bad news is that dynamic uniformity is

very costly [emphasis his].

On the other hand, there are major systems
(notably Paxos…) in which … dynamic uni-
formity is the default. … [T]he cost is so high
that the resulting applications may be unac-
ceptably sluggish.

We argue that at least in the case of systems that are

replicated over a local area network and have opera-

tions that often require using hard disks, this simply

is not true. The extra message costs of Paxos over

other replication techniques are overwhelmed by the

roughly two orders of magnitude larger disk latency

that occurs regardless of the replication model. Fur-

thermore, while the operation serialization and com-

mit-before-reply properties of Paxos RSMs seem to

be at odds with getting good performance from disks,

we show that a careful implementation can operate

disks efficiently while preserving Paxos’ sequential

consistency. Our measurements show that a Paxos

RSM that implements a virtual disk service has per-

formance close to the limits of the underlying hard-

ware, and better than primary-backup for a mixed

read-write load.

The current state of the art involves weakened se-

mantics, stronger assumptions about the system, re-

stricted functionality, special hardware support or

performance compromises. For example, the Google

File System [13] uses append-mostly files, weakens

data consistency and sacrifices efficiency on over-

writes, but achieves very good performance and scale

for appends and reads. Google’s Paxos-based imple-

mentation [8] of the Chubby lock service [5] relies on

clock synchronization to avoid stale reads and re-

stricts its state to fit in memory; its published perfor-

mance is about a fifth of ours
1
. Storage-area network

(SAN) based disk systems often use special hardware

1
 Though differences in hardware limit the value of

this comparison.

such as replicated battery-backed RAM to achieve

fault tolerance, and are usually much more costly

than ordinary computers, disks and networks. There

are a number of flavors of primary-backup replication

[4], but typically these systems run at the slower rate

of the primary or the median backup, and may rely on

(often loose) clock synchronization for correctness.

Furthermore, they typically read only from the prima-

ry, which at worst wastes the read bandwidth of the

backup disks and at best is unable to choose where to

send reads at runtime, which can result in unneces-

sary interference of writes with reads. Many Byzan-

tine-fault tolerant (BFT) [1, 9, 18] systems do not

commit operations to stable storage before returning

results, and so cannot tolerate system-wide power

failures without losing updates. In contrast, our Pax-

os-based RSM runs on standard servers with directly

attached disks and an ordinary Ethernet switch,

makes no assumptions about clock synchronization to

ensure correctness, delivers random read perfor-

mance that grows nearly linearly in the number of

replicas and random write performance that is limited

by the performance of the disks and the size of the

write reorder buffer, but is not affected by the dis-

tributed parts of the system. It performs 12%-69%

better than primary-backup replication on an online

transaction processing load.

The idea of an RSM is that if a computation is deter-

ministic, then it can be made fault-tolerant by running

copies of it on multiple computers and feeding the

same inputs in the same order to each of the replicas.

Paxos is responsible for assuring the sequence of

operations. We modified the SMART [25] library

(which uses Paxos) to provide a framework for im-

plementing RSMs. SMART stored its data in SQL

Server [10]; we replaced its store and log and made

extensive internal changes to improve its perfor-

mance, such as combining the Paxos log with the

store’s log. We also invented a new protocol to order

reads without requiring logging or relying on time for

correctness. To differentiate the original version of

SMART from our improved version, we refer to the

new code as SMARTER
2
. We describe the changes

to SMART and provide a sketch of a correctness

proof for our read protocol.

Disk-based storage systems have high operation la-

tency (often >10ms without queuing delay) and per-

form much better when they’re able to reorder re-

quests so as to minimize the distance that the disk

head has to travel [39]. On the face of it, this is at

odds with the determinism requirements of an RSM:

If two operations depend on one another, then their

2
 SMART, Enhanced Revision.

order of execution will determine their result. Reor-

dering across such a dependency could in turn cause

the replicas’ states to diverge. We address this prob-

lem by using IO parallelism both before and after the

RSM runs, but by presenting the RSM with fully se-

rial inputs. This is loosely analogous to how out-of-

order processors [37] present a sequential assembly

language model while operating internally in parallel.

This paper presents Gaios
3
, a reliable data store con-

structed as an RSM using SMARTER. Gaios can be

used as a reliable disk or as a stream store (something

like the i-node layer of a file system) that provides

operations like create, delete, read, (over-)write, ap-

pend, extend and truncate. We wrote a Windows

disk driver that uses the Gaios RSM as its store, cre-

ating a small number of large streams that store the

data of a virtual disk. While it is beyond the scope of

this paper, one could achieve scalability in both per-

formance and storage capacity by running multiple

instances of Gaios across multiple disks and nodes.

We use both microbenchmarks and an industry

standard online transaction processing (OLTP)

benchmark to evaluate Gaios. We compare Gaios

both to a local, directly attached disk and to two vari-

ants of primary-backup replication. We find that

Gaios exposes most of the performance of the under-

lying hardware, and that on the OLTP load it outper-

forms even the best case version of primary-backup

replication because SMARTER is able to direct reads

away from nodes that are writing, resulting in less

interference between the two.

Section 2 describes the Paxos protocol to a level of

detail sufficient to understand its effects on perfor-

mance. It also describes how to use Paxos to imple-

ment replicated state machines. Section 3 presents

the Gaios architecture in detail, including our read

algorithm and its proof sketch. Section 4 contains

experimental results. Section 5 considers related

work and the final section is a summary and conclu-

sion.

2. Paxos Replicated State Ma-
chines
A state machine is a deterministic computation that

takes an input and a state and produces an output and

a new state. Paxos is a protocol that results in an

agreement on an order of inputs among a group of

replicas, even when the computers in the group crash

3
 Gaios is the capital and main port on the Greek is-

land of Paxos.

and restart or when a minority of computers perma-

nently fail. By using Paxos to serialize the inputs of

a state machine, the state machine can be replicated

by running a copy on each of a set of computers and

feeding each copy the inputs in the order determined

by Paxos.

This section describes the Paxos protocol in sufficient

detail to understand its performance implications. It

does not attempt to be a full description, and in par-

ticular gives short shrift to the view change algo-

rithm, which is by far the most interesting part of

Paxos. Because view change happens only rarely and

is inexpensive when it does, it does not have a large

effect on overall system performance. Other papers

[20, 21, 23] provide more in-depth descriptions of

Paxos.

2.1 The Paxos Protocol
As SMART uses it, Paxos binds requests that come

from clients to slots. Slots are sequentially num-

bered, starting with 1. A state machine will execute

the request in slot 1, followed by that in slot 2, etc.

When thinking about how SMART works, it is help-

ful to think about two separate, interacting pieces:

the Agreement Engine and the Execution Engine.

The Agreement Engine uses Paxos to agree on an

operation sequence, but does not depend on the state

machine’s state. The Execution Engine consumes the

agreed-upon sequence of operations, updates the state

and produces replies. The Execution Engine does not

depend on a quorum algorithm because its input is

already linearized by the Agreement Engine.

The protocol attempts to have a single computer des-

ignated as leader at any one time, although it never

errs regardless of how many computers simultane-

ously believe they are leader. We will ignore the

possibility that there is not exactly one leader at any

time (except in the read-only protocol proof sketch in

Section 3.3.2) and refer to the leader, understanding

that this is a simplification. Changing leaders (usually

in response to a slow or failed machine) is called a

view change. View changes are relatively light-

weight; consequently, we set the view change

timeout in SMART to be about 750ms and accept

unnecessary view changes so that when the leader

fails, the system doesn’t have to be unresponsive for

very long. By contrast, primary-backup replication

algorithms often have to wait for a lease to expire

before they can complete a view change. In order to

assure correctness, the lease timeout must be greater

than the maximum clock skew between the nodes.

Figure 1 shows the usual message sequence for a

Paxos read/write operation, leaving out the computa-

tion and disk IO delays. When a client wants to

submit a read/write request, it sends the request to the

leader (getting redirected if it’s wrong about the cur-

rent leader). The leader receives the request, selects

the lowest unused slot number and sends a proposal

to the computers in the Paxos group, tentatively bind-

ing the request to the slot. The computers that re-

ceive the proposal write it to stable storage and then

acknowledge the proposal back to the leader. When

more than half of the computers in the group have

written the proposal (regardless of whether the leader

is among the set), it is permanently bound to the slot.

The leader then informs the group members that the

proposal has been decided with a commit message.

The Execution Engines on the replicas process com-

mitted requests in slot number order as they become

available, updating their state and generating a reply

for the client. It is only necessary for one of them to

send a reply, but it is permissible for several or all of

them to reply. The dotted lines on the reply messages

in Figure 1 indicate that only one of them is neces-

sary.

Figure 1: Read/Write Message Sequence

When the write to stable storage is done using a disk

and the network is local, the disk write is the most

expensive step by a large margin. Disk operations

take milliseconds or even tens of milliseconds, while

network messages take tens to several hundred mi-

croseconds. This observation led us to create an al-

gorithm for read-only requests that avoids the logging

step but uses the same number of network messages.

It is described in section 3.3.2

2.2 Implementing a Replicated
State Machine with Paxos
There are a number of complications in building an

efficient replicated state machine, among them avoid-

ing writing the state to disk on every operation.

SMART and Google’s later Paxos implementation

[8] solve this problem by using periodic atomic

checkpoints of the state. SMART (unlike Google)

writes out only the changed part of the state. If a

Commit

Leader Follower Follower

Request

Propose

Propose

Ack

Ack

Client

Commit

Reply

Reply

node crashes other than immediately after a check-

point, it will roll back its state and re-execute opera-

tions, which is harmless because the operations are

deterministic. Both implementations also provide for

catching up a replica by copying state from another,

but that has no performance implication in normal

operation and so is beyond the scope of this paper.

3. Architecture
SMARTER is at the heart of the Gaios system as

shown in Figure 2. It is responsible for the Paxos

protocol and overall control of the work flow in the

system. One way to think of what SMARTER does

is that it implements an asynchronous Remote Proce-

dure Call (RPC) where the server (the state machine)

runs on a fault-tolerant, replicated system.

Figure 2: Gaios Architecture

Gaios’s state machine implements a stream store.

Streams are named by 128-bit Globally Unique IDs

(GUIDs) and contain of a sparse array of bytes. The

interface includes create, delete, read, write, and

truncate. Reads and writes may be for a portion of a

stream and include checksums of the stream data.

SMARTER uses a custom log to record Paxos pro-

posals and the Local Stream Store (LSS) to hold state

machine state and SMARTER’s internal state. The

system has two clients, one a user-mode library that

exposes the functions of the Gaios RSM and the se-

cond a kernel-mode disk driver that presents a logical

disk to Windows, and backs the disk with streams

stored in the Gaios RSM.

3.1 SMARTER
Among the changes we made to SMART

4
 were to

present a pluggable interface for storage and log pro-

viders, rather than having SQL Server hardwired for

both functions; to have a zero-copy data path; to al-

low IO prefetching at proposal time; to batch client

operations; to have a parallel network transport and

deal with the frequent message reorderings that that

produces; to detect and handle some hardware errors

and non-determinism; and to have a more efficient

protocol for read-only requests. SMARTER per-

forms the basic Paxos functions: client, leadership,

interacting with the logging subsystem and RSM,

feeding committed operations to the RSM, and man-

aging the RSM state and sending replies to the client.

It is also responsible for other functions such as view

change, state transfer, log trimming, etc.

The SMARTER client pipelines and batches requests.

Pipelining means that it can allow multiple requests

to be outstanding simultaneously. In the implementa-

tion measured in this paper, the maximum pipeline

depth is set to 6, although we don’t believe that our

results are particularly sensitive to the value. Batch-

ing means that when there are client requests waiting

for a free pipeline slot, SMARTER may combine

several of them into a single composite request.

Unlike in primary-backup replication systems,

SMART does not require that the leader be among

the majority that has logged the proposal; any majori-

ty will do. This allows the system to run at the speed

of the median member (for odd sized configurations).

Furthermore, there is no requirement that the majori-

ty set for different operations be the same. Neverthe-

less all Execution Engines will see the same binding

of operations to slots and all replicas will have identi-

cal state at a given slot number.

The leader’s network bandwidth could become a bot-

tleneck when request messages are large. In this case

SMARTER forwards the propose messages in a chain

rather than sending them directly as shown in Figure

1. Because the sequential access bandwidth of a disk

is comparable to the bandwidth of a gigabit Ethernet

link, this optimization is often important.

4
 When we refer to “SMART” in the text, we mean

either the original system, or to a part of SMARTER

that is identical to it.

 Application

written for

Gaios

Standard App

NTFS

Gaios Disk

Driver

SMARTER Client

SMARTER Server

Log

Gaios

RSM

NTFS

xN

Network

Stream

Store

User

Kernel

User

Kernel

3.2 The Local Stream Store
Gaios uses a custom store called the Local Stream

Store for its data (but not for its log). The LSS in

turn uses a single, large file in NTFS against which it

runs non-cached IO.

The LSS writes in a batch mode. It takes requests,

executes them in memory, and then upon request

atomically checkpoints its entire state. The LSS is

designed so that it can overlap (in-memory) operation

execution with most of the process of writing the

checkpoint to disk, so there is only a brief pause in

execution when a checkpoint is initiated.

The LSS maintains checksums for all stream data.

The checksum algorithm is selectable; we used

CRC32 [17] for all experiments in this paper, result-

ing in 4 bytes of checksum for 4K of data, or 0.1%

overhead. The checksums are stored separately from

the data so that all accesses to data and its associated

checksum happen in separate disk IOs. This is im-

portant in the case that the disk misdirects a read or

write, or leaves a write unimplemented [3]. No sin-

gle misdirected or unimplemented IO will undetecta-

bly corrupt the LSS. Checksums are stored near each

other and are read in batches, so few seeks are needed

to read and write the checksums.

The LSS provides deterministic free space. Regard-

less of the order in which IOs complete and when and

how often the store is checkpointed, as long as the set

of requests is the same the system will report the

same amount of free space. This is important for

RSM determinism, and would be a real obstacle with

a store like NTFS [28] that is subject to space use by

external components and in any case is not determin-

istic in free space.

3.2.1 Minimizing Data Copies
Because SMART used SQL Server as its store, it

wrote each operation to the disk four times. When

logging, it wrote a proposed operation into a table

and then committed the transaction. This resulted in

two writes to the disk: one into SQL’s transaction log

and a second one to the table. The state machine

state was also stored in a set of SQL tables, so any

changes to the state because of the operation were

likewise written to the disk twice.

For a service that had a low volume of operations this

wasn’t a big concern. However, for a storage service

that needs to handle data rates comparable to a disk’s

100 MB/s it can be a performance limitation. Elimi-

nating one of the four copies was easy: We imple-

mented the proposal store as a log rather than a table.

Once the extra write in the proposal phase was gone,

we were left with the proposal log, the transaction log

for the final location and the write into the final loca-

tion. We combined the proposal log and the transac-

tion log into a single copy of the data, but it required

careful thinking to get it right. Just because an opera-

tion is proposed does not mean that it will be execut-

ed; there could be a view change and the proposal

may never get quorum. Furthermore, RSMs are not

required to write any data that comes in an opera-

tion—they can process it in any way they want, for

example maintaining counters or storing indices, so

it’s not possible to get rid of the LSS’s transaction

log entirely.

We modified the transaction log for the LSS to allow

it to contain pointers into the proposal log. When the

LSS executes a write of data that was already in the

proposal log, it uses a special kind of transaction log

record that references the proposal log and modifies

the proposal log truncation logic accordingly. The

necessity for the store to see the proposal log writes

is why it’s shown as interposing between SMARTER

and the log in Figure 2. In practice in Gaios data is

written twice, to the proposal log and to the LSS’s

store.

It would be possible to build a system that has a sin-

gle-write data path. Doing this, however, runs into a

problem: Systems that do atomic updates need to

have a copy of either the old or new data at all times

so that an interrupted update can roll forward or

backward [14]. This means that, in practice, single-

write systems need to use a write-to-new store rather

than an overwriting store. Because we wanted Gaios

efficiently to support database loads, and because

databases often optimize the on-disk layout assuming

it is in-order, we chose not to build a single-write

system. This choice has nothing to do with the repli-

cation algorithm (or, in fact, SMARTER). If we re-

placed the LSS with a log-structured or another

write-to-new store we could have a single-write path.

3.3 Disk-Efficient Request Pro-
cessing
State machines are defined in terms of handling a

single operation at a time. Disks work best when

they are presented with a number of simultaneous

requests and can reorder them to minimize disk arm

movements, using something like the elevator

(SCAN) algorithm [12] to reduce overall time. Rec-

onciling these requirements is the essence of getting

performance from a state-machine based data store

that is backed by disks.

Gaios solves this problem differently for read-only

and read-write requests. Read-write requests do their

writes exclusively into in-memory cache, which is

cleaned in large chunks at checkpoint time in a disk-

efficient order. Read-only requests (ordinarily) run on

only one replica. As they arrive, they are reordered

and sent to the disk in a disk efficient manner, and

are executed once the disk read has completed in

whatever order the reads complete.

3.3.1 Read-Write Processing
SMART’s handling of read-write requests is in some

ways analogous to how databases implement transac-

tions [14]. The programming model for a state ma-

chine is ACID (atomic, consistent, isolated and dura-

ble), while the system handles the work necessary to

operate the disk efficiently. In both, atomicity is

achieved by logging requests, and durability by wait-

ing for the log writes to complete before replying to

the user. In both, the system retires writes to the non-

log portion of the disk efficiently, and trims the log

after these updates complete.

Unlike databases, however, SMART achieves isola-

tion and consistency by executing only one request at

a time in the state machine. This has two benefits: It

ensures determinism across multiple replicas; and, it

removes the need to take locks during execution.

The price is that if two read-write operations are in-

dependent of one another, they still have to execute

in the predetermined order, even if the earlier one has

to block waiting for IO and the later one does not.

SMARTER exports an interface to the state machine

that allows it to inspect an operation prior to execu-

tion, and to initiate any cache prefetches that might

help its eventual execution. SMARTER calls this

interface when it first receives a propose message.

This allows the local store to overlap its prefetch with

logging, waiting for quorum and any other operations

serialized before the proposed operation. It is possi-

ble that a proposed operation may never reach quor-

um and so may never be executed. Since prefetches

do not affect the system state (just what is in the

cache), incorrect prefetches are harmless.

During operation execution, any reads in read/write

operations are likely to hit in cache because they’ve

been prefetched. Writes are always applied in

memory. Ordinarily writes will not block, but if the

system has too much dirty memory SMARTER will

throttle writes until the dirty memory size is suffi-

ciently small. The local stream store releases dirty

memory as it is written out to the disk rather than

waiting until the end of a flush, so write throttling

does not result in a large amount of jitter.

3.3.2 Read-Only Processing
SMARTER uses five techniques to improve read-

only performance: It executes a particular read-only

operation on only one replica; it uses a novel agree-

ment protocol that does not require logging; it reor-

ders the reads into a disk-efficient schedule, subject

to ordering constraints to maintain consistency; it

spreads the reads among the replicas to leverage all

of the disk arms; and, it tries to direct reads away

from replicas whose LSS is writing a checkpoint, so

that reads aren’t stuck behind a queue of writes.

Since a client needs only a single reply to an opera-

tion and read-only operations do not update state

there is no reason to execute them on all replicas.

Instead, the leader spreads the read-only requests

across the (live), non-checkpointing replicas using a

round-robin algorithm. By spreading the requests

across the replicas, it shares the load on the network

adapters and more importantly on the disk arms. For

random read loads where the limiting factor is the

rate at which the disk arms are able to move there is a

slightly less than linear speedup in performance as

more replicas are added (see Section 4). It is sub-

linear because spreading the reads over more drives

reduces read density and so results in longer seeks.

When a load contains a mix of reads and writes, they

will contend for the disk arm. It is usually the case

that on the data disk reads are more important than

writes because SMARTER acknowledges writes after

they’ve been logged and executed, but before they’ve

been written to the data disk by an LSS checkpoint.

Because checkpoints operate over a large number of

writes it is common for them to have more sequenti-

ality than reads, and so disk scheduling will starve

reads in favor of writes. SMARTER takes two steps

to alleviate this problem: It tries to direct reads away

from replicas that are processing checkpoints, and

when it fails to do that it suspends the checkpoint

writes when reads are outstanding (unless the system

is starving for memory, in which case it lets the reads

fend for themselves). The leader is able to direct

reads away from checkpointing replicas because the

replicas report whether they’re in checkpoint both in

their periodic status messages, and also in the

MY_VIEW_IS message in the read-only protocol,

described immediately hereafter.

A more interesting property of read-only operations

is that to be consistent as seen by the clients, they do

not need to execute in precise order with respect to

the read/write operations. All that’s necessary is that

they execute after any read/write operation that has

completed before the read-only request was issued.

That is, the state against which the read is run must

reflect any operation that any client has seen as com-

pleted, but may or may not reflect any subsequent

writes.

SMARTER’s read-only protocol is as follows:

1. Upon receipt of a read-only request by a

leader, stamp it with the greater of the high-

est operation number that the leader has

committed in sequence and the highest oper-

ation number that the leader re-proposed

when it started its view.

2. Send a WHATS_MY_VIEW message to all

replicas, checking whether they have recog-

nized a new leader.

3. Wait for at least half of all replicas (includ-

ing itself) to reply that they still recognize

the leader; if any do not, discard the read-

only request.

4. Dispatch the read-only request to a replica,

including the slot number recorded in step 1.

5. The selected replica waits for the stamped

slot number to execute, and then checks to

see if a new configuration has been chosen.

If so, it discards the request. Otherwise, it

executes it and sends the reply to the client.

In practice, SMARTER limits the traffic generated in

steps 2 & 3 by only having one view check outstand-

ing at a time, and batching all requests that arrive

during a given view check to create a single subse-

quent view check. We’ll ignore this for purposes of

the proof sketch, however.

SMARTER’s read-only protocol achieves the follow-

ing property: The state returned by a read-only re-

quest reflects the updates made by any writes for

which any client is aware of a completion at the time

the read is sent, and does not depend on clock syn-

chronization among any computers in the system. In

other words, the reads are never stale, even with an

asynchronous network.

We do not provide a full correctness proof for lack of

space. Instead we sketch it; in particular, we ignore

the possibility of a configuration change (a change in

the set of nodes implementing the state machine),

though we claim the protocol is correct even with

configuration changes.

Proof sketch: Consider a read-only request R sent by

a client. Let any write operation W be given such

that W has been completed to some client before R is

sent. Because W has completed to a client, it must

have been executed by a replica. Because replicas

execute all operations in order and only after they’ve

been committed, W and all earlier operations must

have been committed before R was sent. W was ei-

ther first committed by the leader to which R is sent

(call it L), or by a previous or subsequent leader (ac-

cording to the total order on the Paxos view ID). If it

was first committed by a previous leader, then by the

Paxos view change algorithm L saw it as committed

or re-proposed it when L started; if W was first

committed by L then L was aware of it. In either

case, the slot number in step 1 is greater than or equal

to W’s slot number.

If W was first committed by a subsequent leader to

L, then the subsequent leader must have existed by

the time L received the request in step 1, because by

hypothesis W had executed before R was sent. If

that is the case, then by the Paxos view change algo-

rithm a majority of computers in the group must have

responded to the new view. At least one of these

computers must have been in the set responding in

step 3, which would cause R to be dropped. So, if R

completes then W was not first committed by a lead-

er subsequent to L. Therefore, if R is not discarded

the slot number selected in step 1 is greater than or

equal to W’s slot number.

In step 5, the replica executing R waits until the slot

number from step 1 executes. Since W has a slot

number less than or equal to that slot number, W

executes before R. Because W was an arbitrary write

that completed before R was started SMARTER’s

read-only protocol achieves the desired consistency

property with respect to writes. The protocol did not

refer to clocks and so does not depend on clock syn-

chronization■

3.4 Non-Determinism
The RSM model assumes that the state machines are

deterministic, which implies that the state machine

code must avoid things like relying on wall clock

time. However, there are sources of non-determinism

other than coding errors in the RSM. Ordinary pro-

gramming issues like memory allocation failures as

well as hardware faults such as detected or undetect-

ed data corruptions in the disk [3], network, or

memory systems [30, 36] can cause replicas to mis-

behave and diverge.

Divergent RSMs can lead to inconsistencies exposed

to the user of the system. These problems are a sub-

set of the general class of Byzantine faults [22], and

could be handled by using a Byzantine-fault-tolerant

replication system [7]. However, such systems re-

quire more nodes to tolerate a given number of faults

(at least 3f+1 nodes for f faults, as opposed to 2f+1

for Paxos [26]), and also use more network commu-

nication. We have chosen instead to anticipate a set

of common Byzantine faults, detect them and turn

them into either harmless system restarts or to stop-

ping failures. The efficacy of this technique depends

on how well we anticipate the classes of failures as

well as our ability to detect and handle them. It also

relies on external security measures to prevent male-

factors from compromising the machines running the

service (which we assume and do not discuss fur-

ther).

Memory allocation failures are a source of nondeter-

minism. Rather than trying to force all replicas to fail

allocations deterministically, SMART simply induces

a process exit and restart, which leverages the fault

tolerance to handle the entire range of allocation

problems.

In most cases, network data corruptions are fairly

straightforward to handle. SMARTER verifies the

integrity of a message when it arrives, and drops it if

it fails the test. Since Paxos is designed to handle

lost messages this may result in a timeout and retry of

the original (presumably uncorrupted) message send.

In a system with fewer than f failed components,

many messages are redundant and so do not even

require a retransmission. As long as network corrup-

tions are rare, message drops have little performance

impact. As an optimization, SMARTER does not

compute checksums over the data portion of a client

request or proposal message. Instead, it calls the

RSM to verify the integrity of these messages. If the

RSM maintains checksums to be stored along with

the data on disk (as does Gaios), then it can use these

checksums and save the expense of having them

computed, transported and then discarded by the

lower-level SMARTER code.

Data corruptions on disk are detected either by the

disk itself or by the LSS’s checksum facility as de-

scribed in Section 3.2. SMARTER handles a detect-

ed, uncorrectable error by retrying it and if that fails

declaring a permanent failure of a replica and re-

building it by changing the configuration of the

group. See the SMART paper [25] for details of con-

figuration change.

In-memory corruptions can result in a multitude of

problems, and Gaios deals with a subset of them by

converting them into process restarts. Because Gaios

is a store, most of its memory holds the contents of

the store, either in the form of in-process write re-

quests or of cache. Therefore, we expect at least

those memory corruptions that are due to hardware

faults to be more likely to affect the store contents

than program state. These corruptions will be detect-

ed as the corrupted data fails verification on the disk

and/or network paths.

4. Experiments
We ran experiments to compare Gaios to three differ-

ent alternatives: a locally attached disk and two ver-

sions of primary-backup replication. We ran micro-

benchmarks to tease out the performance differences

for specific homogeneous loads and an industry

standard online transaction processing benchmark to

show a more realistic mixed read/write load. We

found that SMARTER’s ability to vector reads away

from checkpointing (writing) replicas conveyed a

performance advantage over primary-backup replica-

tion.

4.1 Hardware Configuration
We ran experiments on a set of computers connected

by a Cisco Catalyst 3560G gigabit Ethernet switch.

The switch bandwidth is large enough that it was not

a factor in any of the tests.

The computers had three hardware configurations.

Three computers (“old servers”) had 2 dual core

AMD Opteron 2216 processors running at 2.4 GHz, 8

GB of DRAM, four Western Digital WD7500AYYS

7200 RPM disk drives (as well as a boot drive not

used during the tests), and a dual port NVIDIA

nForce network adapter, with both ports connected to

the same switch. A fourth (“client”) had the same

hardware configuration except that it had two quad-

core AMD Opteron 2350 processors running at 2.0

GHz. The remaining two (“new servers”) had 2

quad-core AMD Opteron 2382 2.6 GHz processors,

16 GB of DRAM, four Western Digital

WS1002FBYS 7200 RPM 1 TB disk drives, and two

dual port Intel gigabit Ethernet adapters. All of the

machines ran Windows Server 2008 R2, Enterprise

Edition. We ran the servers with a 128 MB memory

cache and a dirty memory limit of 512 MB. We used

such artificially low limits so that we could hit full-

cache more quickly so that our tests didn’t take as

long to run, and so that read-cache hits didn’t have a

large effect on our microbenchmarks.

4.2 Simulating Primary-Backup
In order to compare Gaios to a primary-backup (P-B)

replication system, we modified SMARTER in three

ways:

1. Reads are dispatched without the quorum

check in the SMARTER read protocol, on

the assumption that a leasing mechanism

would accomplish the same thing without

the messages.

2. Read/Write operation quorums must include

the leader, so for example in a 3-node con-

figuration if the two non-leader nodes finish

their logging first the system will still wait

for the leader.

3. All read/write replies come only from the

leader.

Because we didn’t implement a leasing mechanism,

the modified SMARTER might serve stale reads after

a view change. We simply ignored this possibility

for performance testing.

Because P-B systems read only from the primary,

they cannot take advantage of the random read per-

formance of their backup nodes. The consequences

of this may be limited by having many replication

groups that spread primary duties (and thus read

load) over all of the nodes. In the best case, they will

uniformly spread their reads over all of the nodes as

SMARTER does.

To capture the range of possible read spreading in P-

B systems we implemented two versions: worst and

best cases. The worst case version is called PB1 be-

cause it reads from only one node. It assumes that

spreading is completely ineffective and sends all

reads to the primary. The best case is called PBN

and simulates perfect spreading by sending reads to

all N nodes. Rather than implementing multiple

groups, we simply used SMARTER’s existing read

distribution algorithm, but without the quorum check

and without the check to avoid sending reads to

nodes that are checkpointing.

The latter point is the crucial difference between the

two systems. While PBN is able to use all of the disk

arms for reads, it can’t dynamically select which arm

to use for a particular read because it must send reads

to the primary, and it achieves spreading only by dis-

tributing the work of the primaries for many groups.

Moving a primary is far too heavy-weight to do on

each read. SMARTER, on the other hand, tries to

move reads away from checkpointing replicas so that

writes don’t interfere with reads. It also adds some

randomness into the decision about when to check-

point to avoid having replicas checkpoint in lockstep.

In the mixed read/write transaction processing load

measured in section 4.4 Gaios achieves 12% better

performance tan PBN because of this ability (and is

68% faster than PB1).

4.3 Microbenchmarks
We ran microbenchmarks on Gaios and P-B replica-

tion as well as directly on an instance of each of the

two types of disks used in our servers, varying the

number of servers from 1 to 5. We expect that most

applications would want to run with a group size of 3,

though a requirement for greater fault tolerance or

improved read performance argues for more replicas.

In all of the experiments where we varied the degree

of replication, we used the three old servers first fol-

lowed by the two new servers, so for instance the 4

replica data point has three old and one new server.

We used the sqlio [33] tool running on NTFS over

the Gaios disk driver (or directly on the local drive,

as appropriate). Gaios exported a 20 GB drive to

NTFS and sqlio used a 10GB file. Gaios used two

identical drives on each replica, one for log and one

for the data store. Each data point is the mean of 10

measurements and was taken over a five minute peri-

od, other than the burst writes shown in Figure 4,

which ran for 10 seconds. We ran all tests with the

disks set to write through their cache, so all writes are

durable. We ran the P-B variants only on two or

more nodes because they’re identical to Gaios on one

node, and we ran only one P-B variant on the write

tests, since PB1 and PBN differ only for reads.

Figure 3: Random IO Performance

Figure 3 shows the performance of 8 kilobyte random

reads and writes. In this and the other microbench-

mark figures, we show the results for the new server

disks at the 4 replica position both to provide visual

separation from the old replica disks and to help point

out that at 4 replicas we started adding new servers to

the mix.

0

100

200

300

400

500

600

1 2 3 4 5

I

O

/

s

Replicas

Gaios Read Gaios Write

PB1 Read PB Write

Old Local Read Old Local Write

New Local Read New Local Write

PBN Read

The writes were measured with a dirty cache. Write

performance does not vary much with degree of rep-

lication or Gaios vs. P-B and is roughly 500 IO/s, a

little more than twice the local disk’s. This is be-

cause the server is able to reorder the writes in a disk-

efficient manner over its 512MB of write buffer

without the possibility of loss because the data is

already logged, while the raw disks can reorder only

over the simultaneously outstanding operations. The

overhead of replication and checkpoints is negligible

compared to disk latency, and performance is in-

creased by SMARTER’s batching.

A simple back-of-the-envelope computation shows

how fast we expect the disk to be able to retire ran-

dom writes, and demonstrates that SMARTER

achieves that bound, meaning that (at least for ran-

dom writes) the bottleneck is at the disk, not else-

where. The disks we used have tracks about ¾ of a

megabyte in size, so the 10GB sqlio file was around

14K tracks. SMARTER is using 512MB of cache,

which is 64K 8KB-sized individual writes, or about

4.7 writes/track. The 7200 RPM disk takes 8.3ms for

a complete rotation. 4.7 writes per each 8.3ms rota-

tion is about 570 writes/s, which is just a little more

than Gaios’ performance.

The random read test used 35 simultaneous outstand-

ing reads. Gaios’ and PBN’s random reads (also

shown in Figure 3) scale slightly sub-linearly with

the number of replicas. They improve with the num-

ber of replicas because SMARTER is able to employ

the disk arms on the replicas separately, but the im-

provement is less than linear because as it scales each

replica has fewer simultaneous reads over which to

reorder. Single replica Gaios has a read rate about

14% lower than the local disk. PB1 didn’t vary in the

count of replicas since it only reads from one node.

Figure 4: Burst Write Performance

Figure 4 shows the write rates for 10 second bursts of

8K random writes with 200 writes outstanding at a

time. In this test, Gaios and PB logged and executed

the writes and returned the replies to the client, but

because the volume of data written was smaller than

the 512MB dirty cache limit, it was bounded only by

logging not by the seek rate of the data disk. Because

SMARTER answers writes when they’re written to

the log, it does random write bursts at the rate of se-

quential writes, while the local disk does them at the

rate of random writes.

Figure 5: Sequential Bandwidth

Figure 5 shows Gaios’ performance for sequential

IO. This test used megabyte size requests with 40

simultaneously outstanding for writes and 10 eight

megabyte requests for reads. It’s difficult to see on

the graph, but the (old) local disk writes at about 88

MB/s, while Gaios is at 67 MB/s. The difference is

due to a difficulty in getting the data through the

network transport. Writes for both Gaios and PB

slow down marginally as they’re distributed across

more nodes (and as they need to write the slower new

disks at 4 and 5 replicas). PBN and Gaios’ reads are

more interesting: unlike random IO, sequential IO is

harder to parallelize because distributing sequential

IO requests adds seeks, which reduces efficiency,

sometimes more than the increase in bandwidth that’s

achieved by adding extra hardware. This shows up in

the PBN and Gaios lines, which perform at the local

disk rate on a single replica, peak at 2 replicas (but at

only 1.3 times the rate of a local disk) and drop off

roughly linearly after. SMARTER probably would

benefit from getting hints from the RSM about how

to distribute reads.

Figure 6 shows the operation latency for 8K reads

and writes. Unlike the other microbenchmarks, this

test only allowed a single operation to be outstanding

at a time. For reads, Gaios is about 8% slower than a

1

10

100

1000

10000

1 2 3 4 5

I

O

/

s

Replicas

Gaios Old Local

PB New Local

40

60

80

100

120

140

160

1 2 3 4 5

M

B

/

s

Replicas

Gaios Read Gaios Write

PB1 Read PB Write

Old Local Read Old Local Write

New Local Read New Local Write

PBN Read

local disk in the single replica case and 20% slower

for 2-3 replicas. The difference in going from one to

two replicas is that there is extra network traffic in

the server to execute the read-only algorithm (see

Section 3.3.2). Both versions of PB are about 2%

faster than Gaios at 2 nodes, and 10-15% faster at 5

(where Gaios has to touch three nodes for its quorum

check).

Figure 6: Single Operation Latency

Write latency is more interesting. In Gaios and P-B,

the main contributor to latency is writing into the log,

because the write rate is slow enough that the system

doesn’t throttle behind the replica checkpoint even

for a 5 minute run. Writing one item to the log, wait-

ing a little while and the writing again causes the log

disk to have to take an entire 8.3ms rotation before

being able to write the next log record, which ac-

counts for the bulk of the time in Gaios. Latency

goes down at three replicas because only 2 of three of

them need to complete their log write for the opera-

tion to complete. As the replication grows PB gets

slower than Gaios because of its requirement that the

primary always be in every quorum.

The reason for storing data in an RSM is to achieve

fault tolerance. To measure how Gaios performs

when a fault occurs we ran a 60 second version of the

3 replica sequential read test and induced the failure

of a replica half way through each of the runs. The

resultant bandwidth was 127 MB/s, roughly equiva-

lent to the 128MB/s of the non-faulty three node

case. However, the maximum operation latency in-

creased from 1500ms to 1960ms, because requests

outstanding at the time of the failure had to time out

and be retried. The large max latency in the non-

failure case was due to the disk scheduling algorithm

starving one request for a while and because of queu-

ing delay (which is substantial with 10 8MB reads

simultaneously outstanding).

4.4 Transaction Processing
In order to observe Gaios in a more realistic setting

(and with a mixed read/write load), we ran an indus-

try standard online transaction processing (OLTP)

benchmark that simulates an order-entry load. We

selected the parameters of the benchmark and config-

ured the database so that it has about a 3GB log file

and a 53GB table file. We housed the log and tables

on different disks. In Gaios (and P-B) we ran each

virtual disk as a separate instance of Gaios sharing

server nodes, but using distinct data disks on the

server. SMARTER shared a single log disk, so each

server node used three disks: the SMARTER log, the

SQL log and the SQL tables.

This benchmark does a large number of small trans-

actions of several different types, and generates a

load of about 51% reads and 49% writes to the table

file by operation count, with the average read size

about 9K and the average write about 10K. We con-

figured the benchmark to offer enough load that it

was IO bound. The CPU load on the client machine

running SQL Server was negligible.

We used 64-bit Microsoft SQL Server 2008 Enter-

prise Edition for the database engine. For each data

point, we started by restoring the database from a

backup, which resulted in identical in-file layout. We

then ran the benchmark for three hours, discarded the

result from the first hour in order to avoid ramp-up

effects and used the transaction rate for the second

two hours. This benchmark is sensitive to two

things: write latency to the SQL Server log, and read

latency to the table file. The writes are offered nearly

continuously as SQL Server writes out its check-

points and are mixed with the reads.

Even though the load is half writes, the replicas spent

significantly less than half of their time writing. This

is because the writes were more sequential than the

reads because they came from SQL’s database clean-

er which tries to generate sequential writes, and they

were further grouped by SMARTER’s checkpoint

mechanism. Because of this, Gaios usually had one

or more replicas that were not in checkpoint to which

to send reads. Even though the load at the client was

about half reads and half writes, at the server nodes it

was ¾ writes because each write ran on all three

nodes, while reads ran only on one. This limited the

effect of the increased random read performance of

Gaios and PBN.

6

8

10

12

1 2 3 4 5

m

s

Replicas

Gaios Read Gaios Write

PB1 Read PB Write

Old Local Read Old Local Write

New Local Read New Local Write

PBN Read

Figure 7 shows the performance of Gaios and the two

PB versions running on a three node system in trans-

actions per second normalized to the local-machine

performance. Each bar is the mean of ten runs. Gai-

os runs a little faster than the local node because its

increased random read performance more than com-

pensates for the added network latency and checksum

IO. Because PBN is unable to direct its reads away

from checkpointing nodes it is somewhat slower,

while PB1 suffers even more due to its inability to

extract read parallelism.

Figure 7: OLTP Performance

5. Related Work
Google [8] used a Paxos replicated state machine to

re-implement the Chubby [5] lock service. They

found that it provided adequate performance for their

load of small updates to a state that was small enough

to fit in memory (100MB). It serviced all reads from

the leader (there being no need to take advantage of

parallel disk access because of in-memory state), and

used a time-based leasing protocol to prevent stale

reads, similar to primary-backup. Their highest re-

ported update rate was 640 small operations per se-

cond and 949 KB/s on a five node configuration,

about one fifth and one sixtieth respectively of Gaios’

comparable performance on 5 nodes, though because

the hardware used was different it’s not clear how

meaningful this comparison is.

Petal [24] was a distributed disk system from DEC

SRC that used two-copy primary-backup replication

to implement reliability. It used a Paxos-based RSM

to determine group membership, but not for data.

Data writes happened in two phases, first taking a

lock on the data and then writing to both copies. On-

ly when the writes to both copies completed was the

lock released and the operation completed to the user.

Much like Gaios, Petal used write-ahead logging and

group commit to achieve good random write perfor-

mance. Castro and Liskov [7] implemented a version

of NFS that stored all of its data in a BFT replicated

state machine. However, their only performance

evaluation was with the Andrew Benchmark [16],

which has been shown [38] to be largely insensitive

to underlying file system performance. BFT replica-

tion differs from Paxos in that it tolerates arbitrary,

potentially malicious failures of less than a third of its

replicas. It uses many more messages and a number

of cryptographic operations to achieve this property.

Several BFT agreement protocols [1, 9, 18] have

much lower latency than Gaios. They achieve this by

not logging operations before executing them and

returning results to the client. Because of this, these

systems cannot tolerate simultaneous crashes of too

many nodes (such as would be caused by a datacenter

power failure) without permanently failing or rolling

back state. As such, they do not provide sufficiently

tight semantics to implement tasks that require write

through such as the store for a traditional database.

They also are not evaluated on state that is larger than

memory. Furthermore, because they tolerate general

Byzantine faults, they need at least 3f+1 (and some-

times more) replicas to tolerate f faults (though f of

these replicas can be witnesses that do not hold exe-

cution state [40]). Gaios tolerates many non-

malicious (hardware or programming-error caused)

Byzantine faults without the extra complexity of

dealing with peers that are trying to corrupt the sys-

tem.

The Federated Array of Bricks (FAB) [34] built a

store out of a set of industry-standard computers and

disks, much like Gaios. It used a pair of custom rep-

lication algorithms, one for mirrored data and one for

erasure-coded. Unlike Paxos, it did not have a leader

function or views; rather (in the mirroring case), it

took a write lock over a range of bytes using a major-

ity algorithm. Once the write lock was taken, it sent

the write data to all nodes, and updated both the data

and a timestamp. After a majority of the nodes com-

pleted the write, it completed the operation back to

the caller. To read data, it sent the read to all repli-

cas, with one designated to return the data. The other

nodes returned only timestamps; if the returned data

did not have the latest timestamp, it retried the read.

This scheme achieves serializability without needing

to achieve a total order of operations as happens in an

RSM. However, because its read algorithm requires

accessing a per-block timestamp, it employed

NVRAM to avoid the need to move the disk arms to

read the timestamps; SMARTER’s algorithm simply

asks for a copy of in-memory state from all of the

replicas, and does the disk IO on only one and so

does not need NVRAM.

50%

60%

70%

80%

90%

100%

110%

Gaios PBN PB1

N
o

r
m

a
li

z
e
d

 T
r
a

n
sa

c
ti

o
n

s/
s

Oceanstore [19] was designed to store the entire

world’s data. It modified objects by generating up-

dates locally and then running conflict resolution in

the background, in the style of Bayou [11].

Oceanstore used a Byzantine-agreement protocol to

serialize and run conflict resolution, but stored the

data using simple lazy replication (or replication of

erasure coded data).

The Google File System [13] is designed to hold very

large files that are mostly written via appends and

accessed sequentially via reads. It relaxes traditional

file system consistency guarantees in order to im-

prove performance. In particular, write operations

that fail because of system problems can leave files in

an “inconsistent” state, meaning that the values re-

turned by reads depend on which replica services the

read. Furthermore, concurrent writes can leave file

regions in an “undefined” state, where the result is

not consistent with any serialization of the writes, but

rather is a mixture of parts of different writes. After

a period of time, the system will correct these prob-

lems. GFS uses write-to-all, so faults require the

system to reconfigure before writes can proceed.

Berkeley’s xFS [2] and Zebra [15] file systems

placed a log structured file system [32] on top of a

network RAID. They worked by doing write-to-all

on the RAID stripes, and then using a manager to

configure out failed storage nodes. The xFS proto-

type described in the paper did not “implement the

consensus algorithm needed to dynamically reconfig-

ure manager maps and stripe group maps.”

Boxwood [27] offered a set of storage primitives at a

higher level than the traditional array of blocks, such

as B-trees. It used Paxos only to “store global system

state such as the number of machines.”

Everest [29] is a system that offloads work from busy

disks to smooth out peak loads. When off-loading, it

writes multiple copies of data to any stores it can find

and keeps track of where they are in volatile memory.

After a crash and restart, the client scans all of the

stores to find the most up-to-date writes, and as long

as one copy of each write is available, it recovers.

This protocol works because there is only ever one

client for a particular set of data.

TickerTAIP [6] was a parallel RAID system that dis-

tributed the function of the RAID controller in order

to tolerate faults in the controller. It used two-phase

commit [14] to ensure atomicity of updates to the

RAID stripes.

6. Summary and Conclusion
Conventional wisdom holds that while Paxos has

theoretically desirable consistency properties, it is too

expensive to use for applications that require perfor-

mance. We argue that compared to disk access laten-

cies, the overhead required by Paxos on local net-

works is trivial and so the conventional wisdom is

incorrect. While replicated state machines’ in-order

requirement seems to be at odds with the necessity of

doing disk operation scheduling, careful engineering

can preserve both.

We presented Gaios, a system that provides a virtual

disk implemented as a Paxos RSM. Gaios achieves

performance comparable to the limits of the hardware

on which it’s implemented on various microbench-

marks and the OLTP load, while providing tolerance

of arbitrary machine restarts, a sufficiently small set

of permanent stopping failures and some types of

Byzantine failures. We compared Gaios to primary-

backup replication and found that it performs compa-

rable to or in some cases better than P-B’s best case.

We presented a novel read-only algorithm for

SMARTER, and showed that because it allows reads

to run on any node SMARTER can often avoid hav-

ing reads and writes contend for a particular disk,

giving significant performance improvements over

even the best case of primary-backup replication for

the mixed read/write workload of the OTLP bench-

mark.

Bibliography

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M.

Reiter, and J. Wylie. Fault-scalable Byzantine

fault-tolerant services. In Proc. SOSP, 2005.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson,

D. Roselli and R. Wang. Serverless network file

systems. In Proc. SOSP, 1995.

[3] L. Bairavasundaram, G. Goodson, B. Schroeder,

A. Arpaci-Dusseau and R. Arpaci-Dusseau. An

analysis of data corruption in the storage stack.

In Proc. FAST, 2008.

[4] K. Birman. Reliable Distributed Systems Tech-

nologies, Web Services and Applications.

Springer, 2005

[5] M. Burrows. The Chubby lock service for loose-

ly-coupled distributed systems. In Proc. OSDI,

2006.

[6] P. Cao, S. Lim, S. Venkataraman, and J. Wilkes.

The TickerTAIP parallel RAID architecture. In

Proc. ISCA, 1993.

[7] M. Castro and B. Liskov, Practical Byzantine

fault tolerance. In Proc. OSDI, 1999.

[8] T. Chandra, R. Griesemer and J. Redstone. Paxos

made live: an engineering perspective. In Proc.

PODC, 2007. Invited talk.

[9] J. Cowling, D. Myers, B. Liskov, R. Rodrigues,

and L. Shira. HQ replication: a hybrid quorum

protocol for Byzantine fault tolerance. In Proc.

OSDI, 2006.

[10] K. Delaney, P. Randal, K. Tripp and C. Cun-

ningham. Microsoft SQL Server 2008 Internals.

Microsoft Press, 2009.

[11] A. Demers, K. Peterson, M. Spreitzer, D. Terry,

M. Theimer and B. Welch. The Bayou architec-

ture: Support for data sharing among mobile us-

ers. In Proc. IEEE Workshop on Mobile Compu-

ting Systems & Applications, 1994.

[12] R. Eager and A. Lister. Fundamentals of Oper-

ating Systems. Springer-Verlag, 1995.

[13] S. Ghemawat, H. Gobioff and S-T. Leung. The

Google file system. In Proc. SOSP, 2003.

[14] J. Gray and A. Reuter. Transaction Processing:

Concepts and Techniques. Morgan Kaufmann,

1993.

[15] J. Harman and J. Ousterhout. The Zebra striped

network file system. ACM Transactions on Com-

puter Systems, 13(3), 1995.

[16] J. Howard, M. Kazar, S. Menees, D. Nichols, M.

Satyanarayanan, R. Sidebotham, and M. West.

Scale and performance in a distributed file sys-

tem. ACM Transactions on Computer Systems,

6(1), 1988.

[17] IEEE 802.3 Standard, 1983-2008.

[18] R. Kotla, L. Alvisi, M. Dahlin, A. Clement and

E. Wong. Zyzzyva: speculative Byzantine fault

tolerance. In Proc. SOSP, 2007.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwin-

ski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H.

Weatherspoon, W. Weimer, C. Wells and B.

Zhao. Oceanstore: An architecture for global-

scale persistent storage. In Proc. ASPLOS, 2000.

[20] L. Lamport. The part-time parliament. ACM

Transactions on Computer Systems, 16(2), 1998.

[21] L. Lamport. Paxos made simple. ACM SIGACT

News, 32(4), 2001.

[22] L. Lamport, R. Shostak, and M. Pease. The

Byzantine generals problem. ACM Transactions

on Programming Languages and Systems. 4(3),

1982.

[23] B. Lampson. The ABCD’s of Paxos. In Proc.

PODC, 2001.

[24] E. Lee and C. Thekkath. Petal: Distributed vir-

tual disks. In Proc. ASPLOS, 1996.

[25] J. Lorch, A. Adya, W. Bolosky, R. Chaiken, J.

Douceur and J. Howell. The SMART way to mi-

grate replicated stateful services. In Proc. Eu-

rosys, 2006.

[26] N. Lynch. Distributed Algorithms. Morgan

Kauffman, 1996.

[27] J. MacCormick, N. Murphy, M. Najork, C.

Thekkath, and L. Zhou. Boxwood: Abstractions

as the foundation for storage infrastructure. In

Proc. OSDI, 2004.

[28] R. Nagar. Windows NT File System Internals.

O’Reilly, 1997.

[29] D. Narayanan, A. Donnelly, E. Thereska, S.

Elnikety, and A. Rowstron. Everest: Scaling

down peak loads through I/O off-loading. In

Proc. OSDI, December, 2008.

[30] E. Nightingale, J. Douceur and V. Orgovan.

Cycles, Cells and Platters: An empirical analysis

of hardware failures on a million commodity PCs.

To appear in Proc. EuroSys, 2011.

[31] B. Oki. Viewstamped replication for highly

available distributed systems. Ph.D. thesis.

Technical Report MIT/LCS/TR-423, MIT, 1988.

[32] M. Rosenblum and J. Ousterhout. The design

and implementation of a log-structured file sys-

tem. ACM Transactions on Computer Systems,

10(1), 1992.

[33] M. Ruthruff. SQL Server best practices article:

predeployment I/O best practices. In IEEE Com-

puter, 27(3), 1994.

[34] Y. Saito, S. Frølund, A. Veitch, A. Merchant and

S. Spence. FAB: Building distributed enterprise

disk arrays from commodity components. In

Proc. ASPLOS, 2004.

[35] F. Schneider. Implementing fault-tolerant ser-

vices using the state machine approach: a tutorial.

ACM Computing Surveys, 22(4), 1990.

[36] B. Schroeder, E. Pinheiro, and W-D. Weber.

DRAM Errors in the wild: A large-scale field

study. In Proc. SIGMETRICS/Performance, 2009.

[37] R. Tomasulo. An Efficient Algorithm for Ex-

ploiting Multiple Arithmetic Units, IBM Journal

of Research and Development, 11(1), 1967.

[38] A. Traeger, E. Zadok, N. Joukov and C. Wright.

A nine year study of file system and storage

benchmarking. ACM Transactions on Storage,

4(2), 2008.

[39] B. Worthington, G. Ganger, and Y. Patt. Sched-

uling Algorithms for Modern Disk Drives. In

Proc. SIGMETRICS, 1994.

[40] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi

and M. Dahlin. Separating agreement from exe-

cution for Byzantine fault tolerant services. In

Proc. SOSP, 2003.

