Connection Conditioning:
Architecture-Independent Support for Simple, Robust Servers

KyoungSoo Park and Vivek S. Pai
Department of Computer Science
Princeton University

Abstract

For many network server applications, extracting the max-
imum performance or scalability from the hardware may
no longer be much of a concern, given today’s pricing
— a $300 system can easily handle 100 Mbps of Web
server traffic, which would cost nearly $30,000 per month
in most areas. Freed from worrying about absolute per-
formance, we re-examine the design space for simplicity
and security, and show that a design approach inspired by
Unix pipes, Connection Conditioning (CC), can provide
architecture-neutral support for these goals.

By moving security and connection management into
separate filters outside the server program, CC supports
multi-process, multi-threaded, and event-driven servers,
with no changes to programming style. These filters are
customizable and reusable, making it easy to add security
to any Web-based service. We show that CC-aided servers
can support a range of security policies, and that offload-
ing connection management allows even simple servers to
perform comparably to much more complicated systems.

1 Introduction

Web server performance has greatly improved due to
a number of factors, including raw hardware perfor-
mance, operating systems improvements (zero copy, tim-
ing wheels [29], hashed PCBs), and parallel scale-out
via load balancers [9, 11] and content distribution net-
works [2, 14]. Coupled with the slower improvements in
network price/performance, extracting the maximum per-
formance from hardware may not be a high priority for
most Web sites. Hardware costs can be dwarfed by band-
width costs — a $300 system can easily handle 100 Mbps
of Web traffic, which would cost $30,000 per month for
wide-area bandwidth in the USA. For most sites, the per-
formance and scalability of the server software itself may
not be major issues — if the site can afford bandwidth, it
can likely afford the required hardware.

These factors may partly explain why the Apache Web
server’s market share has increased to 69% [17] despite
a decade of server architecture research [8, 12, 13, 18,
30, 32] that has often produced much faster servers —
with all of the other advances, Apache’s simple process
pool performs well enough for most sites. The benefits
of cost, flexibility, and community support compensate
for any loss in maximum performance. Some Web sites

may want higher performance per machine, but even the
event-driven Zeus Web server, often the best performer in
benchmarks, garners less than 2% of the market [17]

Given these observations and future hardware trends,
we believe designers are better served by improving server
simplicity and security. Deployed servers are still simple
to attack in many ways, and while some server security
research [6, 21] has addressed these problems, it implic-
itly assumes the use of event-driven programming styles,
making its adoption by existing systems much harder.
Even when the research can be generalized, it often re-
quires modifying the code of each application to be se-
cured, which can be time-consuming and error-prone.

To address these problems, we revisit the lessons of
Unix pipes to decompose server processing in a sys-
tem called Connection Conditioning (CC). Requests are
bundled with their sockets and passed through a series
of general-purpose user-level filters that provide connec-
tion management and security benefits without invasive
changes to the main server. These filters allow common
security and connection management policies to be shared
across servers, resulting in simpler design for server writ-
ers, and more tested and stable code for filter writers.
This design is also architecture-neutral — it can be used
in multi-process, threaded, and event-driven servers.

We demonstrate Connection Conditioning in two ways:
by demonstrating its design and security benefits for new
servers, and by providing security benefits to existing
servers. We build an extremely simple CC-aware Web
server that handles only one request at a time by mov-
ing all connection management to filters. This approach
allows this simple design to efficiently serve thousands
of simultaneous connections, without explicitly worrying
about unpredictable/unbounded delays and blocking. This
server is ideal for environments that require some robust-
ness, such as sensors, and is so small and simple that it
can be understood within a few minutes.

Despite its size, this server handles a broad range of
workloads while resisting DoS attacks that affect other
servers, both commercial and experimental. Its perfor-
mance is sufficient for many sites — it generally outper-
forms Apache as well as some research Web servers. Us-
ing the filters developed for this server, we can improve
the security of the Apache Web server as well as a re-
search server, Flash, with a tolerable performance impact.

USENIX Association

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

183

2 Background

All server software architectures ultimately address how
to handle multiple connections that can block in several
places, sometimes for arbitrarily long periods. Using
some form of multiplexing (in the OS, the thread library,
or at application level), these schemes try to keep the CPU
utilized even when requests block or clients download
data at different speeds. Blocking stems from two sources,
network and disk, with disk being the more predictable
source. Since the client is not under the server’s con-
trol, any communication with it can cause network block-
ing. Typical delays include gaps between connecting to
the server and sending its request, reading data from the
server’s response, or sending subsequent requests in a per-
sistent connection. Disk-related blocking occurs when lo-
cating files on disk, or when reading file data before send-
ing it to the client. Of the two, network blocking is more
problematic, because client may delay indefinitely, while
modern disk access typically takes less than 10ms.

The multi-process servers are conceptually the sim-
plest, and are the oldest architectures for Web servers.
One process opens the socket used to accept incoming
requests, and then creates multiple copies of itself using
the fork () system call. The earliest servers would fork
a new process that exited after each request, but this ap-
proach quickly changed to a pool of pre-forked processes
that serve multiple requests before exiting. On Unix-like
systems, this model is the only option for Apache ver-
sion 1, and the default for version 2.

Multi-threaded and event-driven servers use a single
address space to improve performance and scalability, but
also increase programming complexity. Sharing data in
one address space simplifies bookkeeping, cross-request
policy implementations, and application-level caching.
The trade-off is programmer effort — multi-threaded pro-
grams require proper synchronization, and event-driven
programs require breaking code into non-blocking por-
tions. Both activities require more programmer effort and
skill than simply forking processes.

While these architectures differ in memory consump-
tion, scalability, and performance, well-written systems
using any of these architectures can handle large volumes
of traffic, enough for the vast majority of sites. A site’s
choice of web server likely depends on factors other than
raw capacity, such as specific features, flexibility, operat-
ing system support, administrator familiarity, etc.

3 Design

Using a pipe-like mechanism and a simple API, Connec-
tion Conditioning performs application-level interposition
on connection-related system calls, with all policy deci-
sions made in user-level processes called filters. Applying
the pipe design philosophy, these filters each perform sim-

“«—>
- Filter @{9 Filter <:@:> Filter <:>S
Clients Tcp TNy Server
> | 2 N

Figure 1: Typical Connection Conditioning usage — the server
process invokes a series of filters connected to each other and the
server via Unix-domain sockets. The first filter creates the actual
TCP listen socket that is exposed to the clients. Clients connec-
tions are accepted at this filter, and are passed via file-descriptor
passing through the other filters and finally to the server process.

ple tasks, but their combination yields power and flexibil-
ity. In this section, we describe the design of Connection
Conditioning and discuss its impact on applications.

3.1 General Overview

Connection Conditioning replaces the server’s code that
accepts new connections, and interposes one or more fil-
ters. This design, shown in Figure 1, connects the filters
and the server process using Unix-domain sockets. The
TCP listen socket, used to accept new connections from
clients, is moved from the server to the first filter. If we re-
placed the clients with standard input, this diagram would
look like a piped set of processes spawned by a shell.

While modeled on Unix pipes, Connection Condi-
tioning differs in several domain-specific respects. The
most important difference is that rather than passing byte
streams, the interface between filters as well as between
the filter and server process is passing an atomic, delim-
ited bundle consisting of the file descriptor (socket) and
associated request. Using Unix-domain sockets allows
open file descriptors to be passed from one process to an-
other via the sendmsg () system call. While requests
are passed between filters, the server’s reply is written di-
rectly to the client socket.

Passing the client’s TCP connection, rather than proxy-
ing the data, provides several benefits. First, the standard
networking calls behave as expected since any calls that
manipulate socket behavior or query socket information
operate on the actual client socket instead of a loopback
socket. Second, latency is also lower than a proxy-based
solution, since data copying is reduced and the chance of
any filter blocking does not affect data sent from the server
to the client. Third, performance is also less impaired,
since no extra context switches or system calls are needed
for the response path, which transfer more data than the
request path. Finally, the effort for using CC with exist-
ing server software is minimized, since all of the places
where the server writes data back to the client are unaf-
fected. Also unmodified are systems like external CGI ap-
plications, to which the server can freely pass the client’s
socket, just as it would without CC.

184

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

USENIX Association

This approach allows filters to be much simpler than
servers, and to be written in different styles — all of
the parsing and concurrency management normally as-
sociated with accepting requests can be isolated into a
single protocol-specific filter that is usable across many
servers. Removing this complexity allows each filter and
the server to use whatever architecture is appropriate. Pro-
grammers can use threads, processes, or events as they
see fit, both in the server and in the filters. For simple
servers and filters, it is even plausible to not even have
any concurrency and handle only one request at a time, as
we demonstrate later in the paper. This approach is feasi-
ble with Connection Conditioning because all connection
management can be moved into the filters.

Note that the filters are tied to the number of features,
not the number of requests, so a server will have a small
number of filters even if it has many simultaneous con-
nections. In practice, we expect that most servers will
use 4 filters. Filter 1 will manage connections and take
steps to reduce the possibility of denial-of-service attacks
based on exhausting the number of connections. Filter 2
will separate multiple requests on a single connection, and
present them as multiple separate connections, in order
to eliminate idle connections from using server resources.
Filter 3 will perform protocol-specific checks to stop mal-
formed requests, buffer overflows, and other security at-
tacks. Filter 4 can perform whatever request prioritization
policy the server desires.

Filters are generally tied to the protocol, not the
application, allowing filters to be used across servers,
and encouraging “best practices” filters that consolidate
protocol-related handling so that many servers benefit
from historical information. For example, the “beck”
denial-of-service attack [26] exploits a quadratic algo-
rithm in URL parsing, and was discovered and fixed on
Apache in 1998. The exact same attack is still effective
against the thttpd server [1], despite being demonstrated
in a thttpd-derived server in 2002 [21]. The beck attack
is worse for thttpd than Apache, since thttpd is event-
driven, and the attack will delay all simultaneous connec-
tions, instead of just one process. Thttpd is used at a num-
ber of high-profile sites, including Kmart, Napster, MTYV,
Drudge Report, and Paypal. Using CC, a single security
filter could be used to protect a range of servers from at-
tacks, giving server developers more time to respond.

CC filters are best suited to environments that consist
of request/response pairs, where no hidden state is main-
tained across requests, and where each transaction is a
single request and response. In this scenario, all request-
related blocking is isolated in the first (client-facing) filter,
which only passes it once the full request has arrived. In-
termediate filters see only complete requests, and do not
have to be designed to handle blocking. If the server’s re-
sponses can fit into the outbound socket buffer, then any

remaining blocking in the server may be entirely bounded
and predictable. In these cases, the server can even handle
just a single request at a time, without any parallelism. All
of the normal sources of unpredictable blocking (waiting
on the request, sending the reply) are handled either by
CC filters or by the kernel. This situation may be very
common in sensor-style servers with small replies.

To handle other models of connection operation, like
persistent connections, the semantics of filters can be ex-
tended in protocol-specific ways. Since persistent connec-
tions allow multiple requests and responses over a single
connection, simply passing the initial request to the server
does not prevent all future blocking. After the first re-
quest is handled, the server may have to wait for further
requests. Even if the server is designed to tolerate block-
ing, it may cause resources, such as processes or threads,
to be devoted to the connection. In this case, the server
can indicate to the filter that it wants the file descriptor
passed to it again on future requests. Since the filter also
has the file descriptor open, the server can safely close it
without disconnecting the client. In this manner, the client
sees the benefits of persistent connections, but the server
does not have to waste resources managing the connection
during the times between requests.

3.2 Connection Conditioning Library

To implement Connection Conditioning, we provide a li-
brary, shown in Figure 2. One function replaces the three
system calls needed to create a standard TCP listen socket,
and the rest are one-to-one analogues of standard Unix
system calls. The parameters for most calls are identical
to their standard counterparts, and the remaining param-
eters are instantly recognizable to server developers. We
believe that modifying existing servers to use Connection
Conditioning is straightforward, and that using them for
new servers is simple. Any of these calls can be used
in process-based, threaded, or event-driven systems, so
this library is portable across programming styles. This
library also depends on only standard Unix system calls,
and does not use any kernel modifications, so is portable
across many operating systems. The library contains 244
lines of code and 89 semicolons. Its functions are:

cc_createlsock — instantiates all of the Connection
Conditioning filters used by this server. Each filter in
the NULL-terminated array £ilters [] is spawned as
a separate process, using any arguments provided by the
server. Each filter shares a Unix-domain socket with its
parent. The list of remaining filters to spawn is passed
to the newly-created filter. The final filter in the list cre-
ates the listen socket that accepts connections and re-
quests from the client. The server specifies all of the
filters, as well as the parameters (address, port num-
ber, backlog) for the listen socket, in the cc_createlsock
call. The server process no longer needs to call the

USENIX Association

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

185

int cc_createlsock(struct in_addr sin_addr,
in_port_t sin_port,
int backlog,
char *filtersl(]);
int cc_accept(int s, struct sockaddr *addr,
socklen_t *addrlen) ;
ssize_t cc_read(int fd, void *buf,
size_t count);
cc_close(int fd, int closeAllFilters);
cc_select (int n, fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout) ;
cc_poll (struct pollfd fdsl|],
nfds_t nfds, int timeout) ;
int cc_dup (int oldfd) ;
int cc_dup2 (int oldfd,
pid_t cc_fork(void) ;

int
int

int

int newfd) ;

Figure 2: Connection Conditioning Library API

socket/bind/listen system calls itself. The return
value of cc_createlsock is a socket, suitable for use with
cc_accept. Our filter instantiation differs from Unix pipes,
since the server instantiates them, instead of having the
shell perform the setup. This approach requires much less
modification for existing servers, and it also avoids con-
flicts with stdin/stdout.

cc_accept — this call replaces the accept system call,
and behaves similarly. However, instead of receiving the
file descriptor from the networking layer, it is received
from the filter closest to the server. The file descrip-
tor still connects to the client and is passed using the
sendmsg () system call, which also allows passing the
request itself. The request is read and buffered, but not
presented yet.

cc_read — when cc_read is first called on a socket from
cc_accept, it returns the buffered request, and behaves as
a standard read system call on subsequent calls. The
reason for this behavior is because the socket is actually
terminated at the client. If any filter were to write data
into the socket, it would be sent to the client. So, the
filters send the (possibly updated) request via sendmsg
when the client socket is being passed.

In multi-process servers, with many processes sharing
the same listen socket, the atomicity of sendmsg and
recvmsg ensures that the same process gets both the
file descriptor and the request. If requests will be larger
than the Unix-domain atomicity limit, each process has
its own Unix-domain socket to the upstream filter, and
calling cc_accept sends a sentinel byte upstream. The up-
stream filter sends ready requests to any willing down-
stream filter on its own socket.

cc_close — since the same client socket is passed to all
of the filters and the actual server, some mechanism is
needed to determine when the socket is no longer use-
ful. Some filters may want to keep the connection open
longer than the server, while other filters may not care
about the connection after passing it on. The cc_close call
provides for this behavior — the server indicates whether
only it is done with the connection or whether it and all
filters should abandon the connection. The former case
is useful for presenting multiple requests on a persistent
connection as multiple separate connections. The latter
case handles all other scenarios, as well as error condi-
tions where a persistent connection needs to be forcibly
closed by the server.

cc_select, cc_poll — these functions are needed by
event-driven servers, and stem from transferring the re-
quest during cc_accept. Since the request is read and
buffered by the CC library, the actual client socket will
have no data waiting to be read. Some event-driven
servers optimistically read from the socket after accept,
but others use poll/select to determine when the re-
quest is ready. In this case, the standard system calls
will not know about the buffered request. So, we provide
cc_select and cc_poll that check the CC library’s buffers
first, and return immediately if buffered requests exist.
Otherwise, they simply call the appropriate system calls.

cc_dup, cc_dup2, cc_fork — These functions replace the
Unix system calls dup, dup2, and fork. All of these
functions affect file descriptors, some of which may have
been created via cc_accept. As such, the library needs to
know when multiple copies of these descriptors exist, in
order to adjust reference counts and close them only when
the descriptor is closed by all readers.

While the CC Library functions are easily mapped to
standard system calls, transparently converting applica-
tions by replacing dynamically-linked libraries is not en-
tirely straightforward. The cc_createlsock call replaces
socket, bind, and 1isten, but these calls are also
used in other contexts. Determining future intent at the
time of the socket call may be difficult in general.

4 Evaluation

Our evaluation of Connection Conditioning explores three
issues: writing servers, CC performance, and CC security.
We also examine filter writing, but this issue is secondary
to developers if the filters are reusable and easily extensi-
ble. We first present a simple server designed with Con-
nection Conditioning in mind, and then discuss the effort
involved in writing filters. We compare its performance to
other servers, and then compare the performance effects
of other filters. Finally, we examine various security sce-
narios, and show that Connection Conditioning can im-
prove server security.

186

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

USENIX Association

4.1 A Simple Server

To demonstrate the simplicity of writing a Web server us-
ing Connection Conditioning, we build an extremely sim-
ple Web server, called CCServer. Using this server, we
test whether the performance of such a simple system
would be sufficient for most sites. The pseudo-code for
the main loop, almost half the server, is shown in Figure 3.
This listing, only marginally simplified from the actual
source code, demonstrates how simple it can be to build
servers using Connection Conditioning. The total source
for this server is 236 lines, of which 80 are semicolon-
containing lines. In comparison, Flash’s static content
handling and Haboob (not including NBIO) require over
2500 semicolon-lines and Apache’s core alone (no mod-
ules) contains over 6000. Note that we are not advocating
replacing other servers with CCServer, since we believe it
makes sense to simply modify servers to use CC.

CCServer’s design sacrifices some performance for
simplicity, and achieves fairly good performance without
much effort. Its simplicity stems from using CC filters,
and avoiding performance techniques like application-
level caching. CCServer radically departs from current
server architectures by handling only one request at a
time. The only exception is when the response exceeds
the size of the socket buffer, in which case CCServer
forks a copy of itself to handle that request. Within lim-
its, the socket buffer size can be increased if very popular
files are larger than the default, in which case one time
cache miss in the main process is also justified — with the
use of the zero-copy sendfile call, multiple requests for
a file consume very little additional memory beyond the
file’s data in the filesystem cache. Parallelism is implicitly
achieved inside the network layer, which handles sending
the buffered responses to all clients.

CCServer ignores disk blocking for two reasons: de-
creasing memory costs means that even a cheap system
can cache a reasonably large working set, and consumer-
grade disk drives now have sub-10ms access times, so
even a disk-bound workload with small files can still gen-
erate a fair amount of throughput. To really exceed the
size of main memory, the clients must request fairly large
files, which can be read from disk with high bandwidth. It
is possible to build degenerate workloads with thousands
of small-file accesses, but using a filter that gives low pri-
ority to heavy requestors (described in Section 4.2) will
limit the performance degradation that other clients see.

The only obvious denial-of-service attack we can see
in this approach is that an attacker could request many
large files, causing a large number of processes to exist,
and could make the situation worse by reading the re-
sponse data very slowly. This situation is not unique to
CCServer — any server, particularly threaded or process-
oriented servers, are vulnerable to these attacks. All

char *filters[] = {"flt_prior", "flt_persist",
"flt_request", NULL};

char request [MAXREQUEST] ;

int s, c;

s = cc_createlsock (INADDR_ANY, SERV_PORT,
BACKLOG, filters);

while ((c = cc_accept(s, NULL, NULL)) >= 0) {

bool is_child = false, send_body =
off_t offset = 0;
fileinfo file;

true;

cc_read(c, request, sizeof (request));
file = parse_and openfile(request) ;
send_header (c, file.size);

set_sendbufsize(c, SENDBUFSIZE) ;

if (file.size > SENDBUFSIZE) {
/* let a child process send the body */
if (cc_fork() != 0) send_body = false;

else is_child = true;
}
if

(send_body) /* send the body */

sendfile(c, file.fd, &offset, file.size);
cc_close(c);
close(file.fd);
if (is_child) return 0;

Figure 3: Pseudo code of the really simple CCServer

of these techniques can be handled similar to how they
would be handled in other servers. We could set process
limits in the shell before launching the server, in order to
ensure that too many processes are not created. To handle
the “slow reading” attack, we could split the sendfile into
many small pieces, and exit if any piece is received too
slowly. With CC filters, we could use a filter that places
low priority on heavy requestors, which would reduce the
priority of any attacker.

All of the other concerns that one would expect, such as
how long to wait between a connection establishment and
the request arrival, how long to keep persistent connec-
tions open, etc., are handled by filters outside the server.
Normally, all of these issues would cause a server that
handled only one request at a time to block for unbounded
amounts of time, and would necessitate some parallelism
in the server’s architecture, even for simple/short requests.

4.2 Filters

We have developed filters that implement different con-
nection management and security policies. We find filter
development relatively straightforward, and that the basic
filter framework is easy to modify for different purposes.
Common idioms also emerge in this approach, leading us
to believe that filter development will be manageable for
the programmers who need to write their own.

USENIX Association

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

187

Total (Semicolons)
Packaging 687 (248)
Persistence +76 (+26)
Priority 531 (211)
Slow Read 587 (212)

Table 1: Line counts for filters — the persistence filter is
conditionally-compiled support in the packaging filter, so its
counts are shown as the extra code for this feature. The other
filter line counts include the basic framework, which is 413 lines
of source, and 152 semicolons.

We have found two common behavioral styles for fil-
ters, and these shape their design. Those that implement
some action on individual requests, such as stripping path-
name components or checking for various errors, can be
designed as a simple loop that accepts one request, pro-
cesses it, and passes it to the next filter. Those that make
policy decisions across multiple requests are conceptually
small servers themselves.

These filters are an important aspect of the system,
since they are key to preserving programming style while
enhancing security. In traditional multi-process servers
without Connection Conditioning, making a policy de-
cision across all active requests is difficult enough, but
it is virtually impossible to consider those requests that
are still waiting in the accept queue. Since the number
of those requests may exceed the number of processes in
the server, certain security-related policy decisions are un-
available to these servers.

The filters, in contrast, can use a different programming
style, like event-driven programming, so that each request
consumes only a file descriptor instead of an entire pro-
cess. In this manner, the filters can examine many more
requests, and can more cheaply make policy decisions.
We use a very simple event-driven framework for the pol-
icy filters, since we are particularly interested in trying
to implement policies that can effectively handle various
DoS attacks. To gain cross-platform portability and ef-
ficiency, we use the libevent library [19], which supports
platform-specific event-delivery approaches (kqueue [15],
epoll, /dev/poll) in addition to standard select and
poll. Our filters include:

Request packaging — this filter is often the first filter in
any server. It accepts connections, reads the requests, and
hands complete requests to the next filter. By making the
filter event-driven, it can handle attacks that try to starve
the server by opening thousands of connections without
sending requests. The filter is only limited by the number
of file descriptors available to it, and we implement some
simple policies to prevent starvation. Any connection that
is incomplete (has not sent a full request) before a con-
figurable timeout is terminated, and if the filter is running

out of sockets, incomplete connections are terminated by
network address. This filter maintains a 16-ary tree orga-
nized by network address, where each node has a count
of all open connections in its children. The filter follows
the path with the heaviest weights, ensuring that the con-
nection it terminates is coming from the range of network
addresses with the most incomplete connections.

Persistent connection management — while persistent
connections help clients, they present connection manage-
ment problems for servers, so this filter takes multiple re-
quests from a persistent connection and separates them
into individual requests. When the server is done with
the current request, it closes the connection, and this filter
re-sends the next request as a new connection. Since the
filters keeps a socket open, the server closing a persistent
connection is only a local operation, and is not visible to
the client. We expect that this filter would be the second
filter after the request packaging filter.

Recency-based prioritization — this filter acts as a
holding area after the full request has arrived. It provides
a default policy that makes high-rate attacks less effective,
without requiring any feedback or throttling information
from the server. As a side-effect, it also provides sim-
ple fairness among different users. This would be the last
filter before the server. This filter basically accepts all re-
quests coming from the previous filter, and then picks the
highest-priority request when the server asks for one. The
details of this approach are described in Section 4.2.1.

Slow read prevention — this filter limits the damage
caused by “slow read” clients, who request a large file and
then keep the connection open by reading the data slowly.
In a DoS scenario, if a client could keep the connections
open arbitrarily long, the prioritization filter alone would
not prevent it from having too many connections. This
filter explicitly checks how many concurrent connections
each client has, and delays or rejects requests from any
client range that is too high. We currently set the defaults
to allowing no more than 25% of all connections from a /8
network range, 15% from a /16, and 10% from a /24. This
approach limits slow-read DoS, but can not fully protect
against DDoS. Still, any security improvement is a benefit
for a wide range of servers.

We have also developed other more specialized filters,
such as ones that look for oddly-formatted requests, detect
and strip the beck attack, etc. Line count information for
the filters described above are presented in Table 1.

4.2.1 The Recency Algorithm

To handle rate-based attacks coming from sets of ad-
dresses, we use an algorithm that aggregates traffic statis-
tics automatically at multiple granularities, but does not
lose preciseness. We break the network address into 8
pieces of 4 bits each. We use an 8 deep 16-ary tree, with

188

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

USENIX Association

10000

o Flash
9000 Hilthrg, CC-Flash q
CCsServer
8000 Apache j
Haboob
3 7000 CC-Apache e]
& 6000
2 s %
§ 5000
g 4000 |
o
3000
2000 poueSig
1000
[0}

10 100
Single File Size(KB)

1000

Figure 4: Single File Requests/sec

an LRU list maintained across the 16 elements of each
parent. Each node also contains a count to indicate how
many requests are stored in its subtrees. The tree is lazily
allocated — any levels are allocated only when distinct ad-
dresses exist in the subtree. When a new request arrives,
it is stored in the tree, creating any nodes that are needed,
and updating all counts of requests. When it is time to pro-
vide the next request to be serviced, we descend each level
of the tree, using the LRU child with a nonzero request
count at each level. The request chosen by this process is
removed, all counts are updated, and all children along the
path are moved to the ends of their respective LRU lists.
Subtrees without requests can be pruned if needed.

If an attacker owns an entire range of network ad-
dresses, a low-frequency client from another address
range will always take priority in having its requests ser-
viced or its incomplete connections kept alive. Even if the
low-frequency client is more active than any individual
compromised machine, this algorithm will still give it pri-
ority due to the traffic aggregation behavior. At the same
time, the aggregation does not lose precision — if even a
single machine in the attacker’s range remains uncompro-
mised, when it does send requests, they will receive prior-
ity over the rest of the machines in that range.

4.3 Performance Evaluation

Though performance is not a goal of Connection Condi-
tioning, we evaluate it so that designers and implementors
have some idea of what to expect. While we believe it is
true that performance is generally not a significant factor
in these decisions, it would become worrying if the per-
formance impact caused any significant number of sites to
reject such an approach. As we show in this section, we
believe that the performance impact of Connection Con-
ditioning is acceptable.

4.3.1 Testbed and Servers

Our testbed servers consist of a low-end, single proces-
sor desktop machine, as well as an entry-level dual-core
server machine. Most of our tests are run on a $200 Mi-
crotel PC from Wal-Mart, which comes with a 1.5 GHz
AMD Sempron processor, 40 GB IDE hard drive, and a

600

500

400

300

200

Flash
CCsServe
CC-Flash "

Apache =——s—
CC-Apache =
Haboob

60 80 100 120 140 160 180 200
Single File Size(KB)

Throughput(Mbps)

100 &

40

Figure 5: Single File Throughput

built-in 100 Mbps Ethernet card. We add 1 GB of mem-
ory and an Intel Pro/1000 MT Server Gigabit Ethernet
network adapter, bringing the total cost to $396. Using
a Gigabit adapter allows us to break the 100 Mbps barrier,
just for the sake of measurement. The dual-core server is
an HP DL320 with a 2.8 GHz Intel Pentium D 820, 2 GB
of memory, and a 160GB IDE hard drive. This machine is
still modestly priced, with a list price of less than $3000.
Both machines run the Linux 2.6.9 kernel using the Fe-
dora Core 3 installation. Our test harness consists of four
1.5 GHz Sempron machines, connected to the server via a
Netgear Gigabit Ethernet switch.

In various places in the evaluation, we compare differ-
ent servers, so we briefly describe them here. We run
the Apache server [3] version 1.3.31, tuned for perfor-
mance. Where specified, we run it with either the default
number of processes or with higher values, up to both
the “soft limit,” which does not require recompiling the
server, and above the soft limit. The Flash server [18] is
an event-driven research server that uses select to multi-
plex client connections. We use the standard version of it,
rather than the more recent version [23] that uses sendfile
and epoll. The Haboob server [32] uses a combination of
events and threads with the SEDA framework in Java. We
tune it for higher performance by increasing the filesys-
tem cache size from 200MB to 400MB. CCServer is our
simple single-request server using Connection Condition-
ing. CC-Apache and CC-Flash are the Apache and Flash
servers modified to use Connection Conditioning. In all
of the servers using Connection Conditioning, we employ
a single filter unless otherwise specified. Since the CC
Library currently only supports C and C++, we do not
modify Haboob. All servers have logging disabled since
their logging overheads vary significantly.

4.3.2 Single-File Tests

The simplest test we can perform is a file transfer mi-
crobenchmark, where all of the clients request the same
file repeatedly in a tight loop. This test is designed to give
an upper bound on performance for each file size, rather
than being representative of standard traffic. The results of

USENIX Association

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

189

400

Flash =—=

350 CC-Flash |
CCServer
300 Apache
Haboob

250
200

150

Throughput(Mbps)

100

50

500MB 1500MB 3000MB

Workload Data Set Size

100MB

Figure 6: SpecWeb99-like workloads on the Microtel machine

this test on the Microtel machine are shown in Figures 4
and 5 for request rate and throughput, respectively. The
relative positions of Flash, Apache, and Haboob are not
surprising given other published studies on their perfor-
mance. Performance on the HP server is higher, but qual-
itatively similar, and is omitted for space.

The performance of CCServer is encouraging, since
this would mean that it should have acceptable perfor-
mance for any site using Apache. Any performance loss
due to forking overhead once the response size exceeds
the socket buffer size is not particularly visible. This
server is clearly not functionally comparable to Apache,
but given the use of multiple processes in request han-
dling, we are pleased with the results.

Using Connection Conditioning filters with other
servers also seems promising, as seen in the results for
CC-Apache and CC-Flash. Both show performance loss
when compared to their native counterparts, but the loss is
more than likely tolerable for most sites. We investigate
this further on a more realistic workload mix next.

4.3.3 More Realistic Workloads

While the single-file tests show relative request process-
ing costs, they do not have the variety of files, with dif-
ferent sizes and frequency distributions, that might be ex-
pected in normal Web traffic. For this, we also evaluate
these servers using a more realistic workload. In particu-
lar, we use a distribution modeled on the static file portion
of SpecWeb99 [28], which has also been used by other re-
searchers [23, 30, 32]. The SpecWeb99 benchmark scales
data set size with throughput, and reports a single met-
ric, the number of simultaneous connections supported at
a specified quality of service.

We instead use fixed data set sizes and report the max-
imum throughput achieved, which provides a broader
range of results for each server. We maintain the general
access patterns — a data set contains a specified number of
files per directory, with a specified access frequency for
files within each directory. The access frequency of the
directories follows a Zipf distribution, so the first direc-
tory is accessed N times more than the N*”* directory.

Flash —=——
900 - CC-Flash 4
] CCServer mmm
800 ! |
— C-Apache
é 700 [Haboob s
= 600 7
g. 500
=
S 400
e
£ 300
200
100

1000MB 2500MB 4000MB

Workload Data Set Size

Figure 7: SpecWeb99-like workloads on the HP server

500MB

The results of these capacity tests, shown in Figures 6
and 7, show some expected trends, as well as some sub-
tler results. The most obvious trend is that once the data
set size exceeds the physical memory of the machine, the
overall performance drops due to disk accesses. For most
servers, the performance prior to this point is roughly sim-
ilar across different working set sizes, indicating very lit-
tle additional work is generated for handling more files, as
long as the files fit in memory. CCServer performs almost
three times as well on the HP server as the Microtel box,
demonstrating good scalability with faster hardware.

The performance drop at 3 or 4 GB instead of 1.5/2.5
GB can be understood by taking into account SpecWeb’s
Zipf behavior. Even though a 1.5 and 2.5 GB data sets
exceed the physical memories of the machines, the Zipf-
distributed file access causes the more heavily-used por-
tion to fit in main memory, so this size has a mix of in-
memory and disk-bound requests. At 3GB, more requests
are disk-bound, causing the drop in performance across
all servers. The HP machine, with a larger gap between
CPU speed and disk speed, shows relatively faster degra-
dation with the 4GB data set. Though CCServer makes
no attempt to avoid disk blocking, its performance is still
good on this workload.

In general, the results for the CC-enabled servers are
quite positive, since their absolute performance is quite
good, and they show less overhead than the single file mi-
crobenchmarks would have suggested. The main reason
for this is that the microbenchmarks show a very opti-
mistic view of server performance, so any additional over-
heads appear to be much larger. On real workloads, the
additional data makes the overall workload less amenable
to caching in the processor, so the overheads of Connec-
tion Conditioning are less noticeable.

4.3.4 Chained CC Filters

Inter-process communication using sockets has tradition-
ally been viewed as heavyweight, which may raise con-
cerns about the practicality of using smaller, single-
purpose filters chained together to compose behavior.

To test the latency effects, we vary the number of filters

190

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

USENIX Association

1200

‘ "Microte| ——
HP Single-core === o
1000 | HP Dual-core /4
800 /
B d
2 /
>
2 600 A
=4 /
& _— e
— 400 _— S
|- — spnee
et
200 o Rt e
(o]
1 2 3 4 5 6 7 8 9 10

of filters in the chain

Figure 8: Latency versus Number of Filters

used in CCServer, and have a single client issue one re-
quest at a time for a single 100-byte file. All of the filters
except the first are dummy filters, simply passing along
the request to the next filter. These results, shown in Fig-
ure 8, show that latency is nearly linear in the number of
filters, and that each filter only adds 34 useconds (HP) or
94 pseconds (Microtel) of overhead. Compared to wide-
area delays of 100ms or more, the overhead of chained
filters should not be significant for most sites.

The performance effects of chained filters are shown in
Figure 9, where an in-memory Spec Web-like workload is
used to drive the test. Given the near-linear effect of mul-
tiple filters on latency, the shape of the throughput curve is
not surprising. For small numbers of filters, the decrease
is close to linear, but the degradation slows down as more
filters are added. Even with what we would consider to be
far more filters than most sites would use, the throughput
is still well above what most sites need.

CCServer performs better on the HP server than the
Microtel box on both tests, presumably due to the faster
processor coupled with its IMB L3 cache. The dual-core
throughputs scale well versus the single-core, indicating
the ability of the various filters in the CC chain to take
advantage of the parallel resources. While enabling both
cores improves the throughput in this test, it does not im-
prove the latency benchmark, because only one request
progresses through the system at a time. The sawtooth
pattern stems from several factors: some exploitable par-
allelism between the clean-up actions of one stage and the
start-up actions of the next, SMP kernel overhead, and
dirty cache lines ping-ponging between the two indepen-
dent caches as filters run on different cores.

4.4 Security Evaluation

Here we evaluate the security effects of Connection Con-
ditioning, particularly the policy filters we described in
Section 4.2. Note that some of these tests have been used
in previous research [21] — our contribution is the mecha-
nism of defending against them, rather than the attacks.
Our primary reason for selecting these tests is that they
are simple but effective — they could disrupt or deny ser-

800

"Microte| =———
L HP Single-core - -
...... - HP Dual-core "

600 Pt

700

500

400

300

Throughput(Mbps)

200

100

1 2 3 4 5 6 7 8 9
of filters in the chain

Figure 9: Throughput versus Number of Filters

vice to a large fraction of Web sites, and they do not re-
quire any significant skill. Each attacking script requires
less than 200 lines of code and only a cursory knowledge
of network programming and HTTP protocol mechanics.
Some of these attacks would also be hard to detect from
a traffic viewpoint — they either require very little band-
width, or their request behavior can be made to look like
normal traffic. We focus on the Apache server both be-
cause its popularity makes it an attractive target, and be-
cause its architecture would normally make some security
policies harder to implement. All results are shown for
only the Microtel box because these tests focus primarily
on qualitative behavior.

4.4.1 Starvation Test — Incomplete Connections

To measure the effect of incomplete connections on the
various servers, we have one client machine send a stream
of requests for small files, while others open connections
without sending requests. We measure the traffic that can
be generated by the regular client in the presence of var-
ious numbers of incomplete connections. These results
are shown in Figure 10, and show various behavior for the
different servers. For the process-based Apache server,
each connection consumes one process for its life. We
see that a default Apache configuration takes only 150
connections, at which point performance drops. Apache
employs a policy of waiting 300 seconds before termi-
nating a connection, so at this limit, throughput drops to
0.5 requests/second. Though Flash and Haboob are event-
driven, neither have support for detecting or handling this
condition. Flash’s performance slowly degrades with the
number of incomplete connections, and becomes unus-
able at 32K connections, while Haboob’s performance
sharply drops after 100 incomplete connections. Flash’s
performance degradation stems from the overheads of the
select system call [4].

With the CC Filters, all of these servers remain oper-
ational under this load, even with 32K incomplete con-
nections. Since the filter terminates the oldest incom-
plete connection when new traffic arrives, it can still han-
dle workloads of 1800 requests/sec for CC-Apache, and

USENIX Association

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

191

8000

H CCServer
7000 |- S
6000 CC-Apache

Haboob]
Apache =——e—

5000
4000

Requests/sec

3000

2000

1000

- v st
o 5000 10000 15000 20000 25000 30000
Number of Incomplete Requests

Figure 10: Number of Incomplete Connections Handled

3700 requests/sec for CCServer and CC-Flash. This test
demonstrates the architecture-neutral security enhance-
ment that Connection Conditioning can provide — both
a multi-process server and an event-driven server handle
this attack better with Connection Conditioning than their
own implementation provides.

4.4.2 Prioritization Test

Though the request packaging filter closes connections in
a fair manner, the previous test does not demonstrate fair-
ness for valid requests, so we devise another test to mea-
sure this effect. The test consists of a number of clients re-
questing large files from a default Apache, which can han-
dle 150 simultaneous requests. The remaining requests
are queued for delivery, so an infrequent client may often
find itself waiting behind 150 or more requests. The in-
frequent client in our tests requests a small file, to observe
the impact on latency.

The results of this test, in Figure 11, show the effect
on latency of the infrequently-accessing client. The la-
tency of the small file fetch is shown as a function of the
number of clients requesting large files. Without the pri-
oritization filter, Apache treats the request in roughly first-
come, first-served order. When the total number of clients
is less than the number of processes, the infrequent client
can still get service reasonably quickly. However, once
the number of clients exceeds the number of server pro-
cesses, the latency for the infrequent client also increases
as more clients request files.

With CC-Apache and the prioritization filter, though,
the behavior is quite different. The increase in the num-
ber of large-file clients leads to a slight increase in latency
once all of the processes are busy. After that point, the
latency levels again. This small step is caused by the in-
frequent client being blocked behind the next request to
finish. Once any request finishes, it gets to run, so the
latency stays low.

Performing this kind of prioritization in a multiple-
process server would be difficult, since each connection
would be tied to a process. As aresult, it would be hard for
the server to determine what request to handle next. With

@ 2500 ‘ ‘

% CC-Apache ——

G Apache - e

3 2000 s

o) ,

o

ES 1500 r ,"/ B

[g

=

% 1000 - 1

[}

£ p

[

@ 500 e B

7] S

2 ,

o «

[=% s

L ~

4 o - ‘

[0} 50 100 150 200 250 300

of Clients

Figure 11: Latency versus Number of Other Clients

Connection Conditioning, the filter’s policy can view all
outstanding requests, and make decisions before the re-
quests reach the server.

4.4.3 Persistence Test

Persistent connections present another avenue for
connection-based starvation, similar to the incomplete
connection attack. In this scenario, an attacker requests
a persistent connection, requests a small file, and keeps
the connection open. To avoid complete starvation, any
reasonable production-class server will have some mech-
anism to shut down such connections either after some
timeout or under file descriptor pressure.

Implementing a self-managing solution is tied to server
architecture, complicating matters. While detecting file
descriptor pressure is cheap in event-driven servers, they
are also less vulnerable, since they can utilize tens of thou-
sands of file descriptors. In contrast, multi-process servers
are designed to handle far fewer simultaneous connec-
tions, and determining that persistent connection pressure
exists requires more synchronization and inter-process
communication, reducing performance. The simplest op-
tion in these circumstances is to provide administrator-
controlled configuration options regarding persistent con-
nection behavior as Apache does. However, the trade-off
is that if these timeouts are too short, they make persis-
tent connections less useful, while if they are too long, the
possibility of running out of server processes increases.

Figure 12 shows the effect of an attacker trying to starve
the server via persistent connections. We use Apache’s
default persistent connection timeouts of 15 seconds and
150 server processes. An attacker opens multiple connec-
tions, requests small files, and holds the connection open
until the server closes it. For any closed connection, the
attacker opens a new connection and repeats the process.
We vary the number of connections used by the attacker.
We also have 16 clients on one machine requesting the
SpecWeb99-like workload with a 500 MB data set size.
We show the throughput received by the regular clients as
a function of the number of slow persistent connections.
On Apache, the throughput drops beyond 150 persistent

192

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

USENIX Association

180 |
160
140 | .
120 f .
100 | .
80 | .

Throughput(Mbps)

60 :
40 1

20 | cC-Apache —— B

AP{:!Che weeen i
° 50 100 150 200 250
Number of Idle Persistent Connections

300

Figure 12: Throughput under Persistent Connection Limits

connections, but CC-Apache shows virtually no perfor-
mance loss. Its maximum performance is lower than stan-
dard Apache due to the CC filters, but it supports more
open connections. Apache’s server processes never see
the waiting periods between requests. This support only
required modifying 8 lines in Apache.

5 Discussion

In this section, we discuss some alternatives to Connec-
tion Conditioning, some of the objections that may be
raised to our claims, and possible deployment questions.

5.1 Novelty and Simplicity

Our contribution in Connection Conditioning is the obser-
vation that Unix pipes can be applied to servers, providing
all of the benefits associated with text processing (simplic-
ity, composability, and separation of concerns) while still
providing adequate performance. In retrospect, this may
seem obvious, but we believe that Connection Condition-
ing’s design and focus on adoptability are directly respon-
sible for its other benefits. Our approach allows vastly
simpler servers with performance that approaches or even
exceeds the designs introduced in the past few years. Par-
ticularly for small servers, such as sensors, our approach
provides easy development with a broad range of protec-
tion, something not available in other approaches. We
make no apologies for building on the idea of Unix pipes —
given the option to build on a great idea, we see no reason
to develop new approaches purely for the sake of novelty.

CC also provides the ability to incorporate best prac-
tices into existing servers, without having to start from a
clean slate. Given the state of today’s hardware, some-
one designing a server from scratch may develop a de-
sign similar to Connection Conditioning. However, even
many research servers, with no compatibility constraints,
have become increasingly complicated over time, rather
than simpler. We consider the ability to support existing
servers like Apache while still allowing new designs like
CCServer to be a contribution of this work.

5.2 Rich Web Server APIs

Several servers provide rich APIs that can be used to in-
spect and modify requests and responses — Apache has its
module format, Microsoft developed ISAPI, Netscape de-
veloped NSAPI, and Network Appliance developed ICAP.
Any of these could be used to protect their host server
from attacks like the beck attack mentioned earlier. How-
ever, we believe Connection Conditioning can provide
protection from a separate class of attacks not amenable to
protection via server APIs. These attacks, such as the “in-
complete connection” starvation attack, waste server re-
sources as soon as the connection has been accepted, and
these connections are accepted within the framework of
the server. Particularly for process-based servers, the re-
sources consumed just by accepting the connection can be
significant. By moving all of the inspection and modifica-
tion outside the server, Connection Conditioning provides
protection against this class of attack. Even event-driven
servers can expend more state than Connection Condition-
ing — in our request prioritization example, we may want
to select from tens of thousands of possible connections,
particularly when we are under attack. The richness of the
server’s internal API does no good in this kind of exam-
ple, since the server may not even be able to accept all of
the connections without succumbing to the attack.

Some of CC’s other benefits, such as relieving the
server of the work of maintaining persistent connections,
cannot be done inside all servers without architectural
changes. The persistent connection attack we have shown
is particularly effective, since regular servers would have
to have global knowledge of the state of all requests in
order to detect it. With CC, no server re-architecting is
required, since this work can be done easily in the filters.

5.3 Security

We have seen that CC protects servers against several
DoS attacks, and that it enables other types of protocol-
specific security filters. Given how little bandwidth some
of these attacks require, and given Apache’s wide deploy-
ment, we feel that CC can provide an immediate practical
security benefit. From a design standpoint, using CC with
filters can also provide other benefits — privileged opera-
tions, such as communicating with authentication servers
or databases, can be restricted to specific policy filters,
moving sensitive code out of the larger code base of the
main server. These filters, if designed for re-use, can also
be implemented using best practices, and can be more
thoroughly tested since wider deployment and use with
multiple servers is more likely to expose security holes.
We admit that some of these benefits will be hard to quan-
tify, but we also feel that some of them are self-evident —
moving code out of a large, monolithic server code base
and executing it in a separate address space is likely to
restrict the scope of any security problem.

USENIX Association

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

193

5.4 Scope

While our evaluation of Connection Conditioning has fo-
cused mostly on Web servers, we believe CC has a fairly
broad scope — it is suitable to many request/reply environ-
ments that tend to have relatively short-duration “active”
periods of their transactions. Our focus on Web servers is
mostly due to pragmatism — Web servers are widely de-
ployed, and they provide ample opportunities for compar-
isons, so our evaluation of CC can be independently as-
sessed. In addition to the server protection offered by CC,
we also hope to use it in developing lightweight, DoS-
resistant sensors for PlanetLab. We run several sensors on
PlanetLab for providing status information — CoMon pro-
vides node-level information, such as CPU load and disk
activity, while CoTop provides account-level (slice-level)
information, such as number of processes and memory
consumption. While these tools all use HTTP as a trans-
port protocol, they are not traditional Web servers. By
using CC for these tools, we can make them much more
robust while eliminating most of their redundant code.
CC is not suitable for all environments, and any server
with very long-lived transactions may not gain simplicity
benefits from it. Video server match this profile, where
a large number of clients may be continuously stream-
ing data over long-lived connections for an hour or more.
In this case, CC is no better than other architectures at
providing connection management. In all likelihood, this
case will require some form of event-driven multiplexing
at the server level, whether it is exposed to the program-
mer or not. CC can still provide some filtering of requests
and admission control, but may not be a significant advan-
tage in these scenarios. This example is distinct from the
persistent connection example we provided earlier — the
difference is that with persistent connections, the long-
lived connections may be handling a number of short-
lived transfers. In that case, CC can reduce the number
of connections actually being handled by the server core.

6 Related Work

While this paper has argued that performance-related ad-
vances in server design are of marginal benefit to most
Web sites, some classes of servers do see benefit from
many advances. Banga and Mogul improved the select()
system call’s performance by reducing the delay of find-
ing ready sockets [S]. They subsequently proposed a more
scalable alternative system call [7], which appears to have
motivated kqueue() on BSD [15] and epoll() on Linux.
Caching Web proxy servers have directly benefited from
this work, since they are often in the path of every re-
quest from a company or ISP to the rest of the Internet.
Any mechanism that reduces server latency is desirable
in these settings. Examining the results from the most
recent Proxy Cache-off [22] suggests that vendors are in
fact interested in more aggressive server designs. In these

environments, CC may not be the best choice, but many
ISPs still use the low-performance Squid proxy, so CC’s
overhead may be quite tolerable in these environments.

The method of filters we present is very general and
allows customizable behavior. The closest approach we
have found in any other system is the “accept filter” in
FreeBSD, which provides an in-kernel filter with a hard-
coded policy for determining when HTTP requests are
complete. However, it must be specifically compiled into
the kernel or loaded by a superuser. This approach re-
sulted in opening the possibility of denial-of-service at-
tacks on the filter’s request parsing policy [10], which
would have prevented the application from processing any
requests. It would also be unable to handle some of the
other starvation attacks we have covered in this paper.
Similarly, IIS has an in-kernel component, the Software
Web Cache, to handle static content in the kernel itself.
While this approach can use kernel interfaces to improve
scalability, its desirability may depend on whether the de-
veloper is willing to accept the associated risks of putting
a full server into the kernel. For some of the cases we have
discussed, such as developing simple, custom sensors that
use HTTP as a transport protocol, in-kernel servers may
provide little benefit if the infrastructure cannot be lever-
aged outside of its associated tasks.

Some of our security policies are shaped by work on
making event-driven servers more responsive under ma-
licious workloads [21]. We have attempted, as much as
possible, to broaden these benefits to all servers, with as
little server modification as possible. We believe that our
recency-based algorithm is an elegant generalization of
the approach presented in the earlier work.

While many of our evaluations have used Apache, both
because of its popularity and because of the difficulty of
performing certain security-related operations in a multi-
process server, we believe our approach is fairly gen-
eral. We have shown that it can be applied to Flash, an
event-driven Web server. We believe that it is broadly
amenable to other designs, including hybrid thread/event
designs such as Knot [30]. While we tried to demon-
strate this feasibility, we were unable to get the stan-
dard Knot package working in the 2.6 or 2.4 Linux ker-
nel. We believe Connection Conditioning would benefit a
system like Knot most by preventing starvation-based at-
tacks. The higher-performance version of Knot, Knot-C,
uses a smaller number of threads to handle a large num-
ber of connections, possibly leaving it open to this kind
of attack. In conjunction with CC Filters, only active con-
nections would require threads in Knot.

Some work has been done on more complicated con-
trollers for overload control [25, 31], which moves request
management policy inside the server. If such an approach
were desired in Connection Conditioning, it could be done
via explicit communication between the filter and servers,

194

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

USENIX Association

using shared memory or other IPC mechanisms. How-
ever, implementing such schemes as filters has the benefit
of leaving the design style of the filter up to the developer,
instead of having to conform to the server’s architecture.
Having the filter operate in advance of the server’s ac-
cepting connections has the possibility of reducing wasted
work. Servers would still be free to enforce whatever in-
ternal mechanisms they desired.

Similarly, resource containers [6] have been used to
provide priority to classes of clients in event-driven and
process-based servers. This mechanism can be used to
provide a specified level of traffic to friendly clients even
when malicious clients are generating heavy traffic. This
approach depends on early demultiplexing in the kernel,
and forcing policy decisions into the kernel to support this
behavior. We believe that resource containers can be used
in conjunction with Connection Conditioning, such that
livelock-related policies are moved into the kernel with
resource containers, and that the CC Filters handle the re-
maining behavior at application-level.

Finally, a large body of work exists on some form of in-
terposition, often used for implementing flexible security
policies. Some examples of this approach include Sys-
trace [20], which can add policies to existing systems,
Kernel Hypervisors [16], which can generalize the sup-
port for customizable, in-kernel system call monitoring,
and Flask [27], an architecture designed to natively pro-
vide fine-grained control for a microkernel system. While
some of CC’s mechanisms could be implemented using
system call interposition, the fundamental concerns of CC
differ from these projects since filters in CC are trusted,
and are logically extending the server, rather than view-
ing the server in an adversarial context. In this vein, CC
is more similar to approaches like TESLA [24], that are
designed to extend/offload the functionality of existing
systems. Combining CC with TESLA, which provides
session-layer services, would be a logical pairing, since
their focus areas are complementary. The reason for not
using some form of system call interposition in the cur-
rent CC is that some decisions are simpler when made ex-
plicitly — for example, a purely interposition-based system
may have a difficult time detecting all uses of the common
networking idiom of socket/listen/accept,espe-
cially if other operations, such as fork () or dup (), are
interleaved. Making CC calls explicit greatly simplifies
the library.

7 Future Work

The next step for Connection Conditioning would be
to add kernel support for the interposition mechanisms,
while still keeping the server and filters in user space. We
intentionally keep the filters in user space because we be-
lieve that the flexibility of having them easily customiz-
able outweighs any performance gains of putting them in

the kernel. We also believe that by moving only the mech-
anisms into the kernel, Connection Conditioning can be
used without requiring root privilege.

The general idea is to allow the server to create its lis-
ten socket, and then have a minimal kernel mechanism
that allows another process from the same user to “steal”
any traffic to this socket. The first filter would then per-
form connection passing to other filters using the stan-
dard mechanisms. However, when the final filter wants
to pass the connection to the server, it uses another kernel
mechanism to re-inject the connection (file descriptor and
request) where it would have gone to the server. In ef-
fect, the entire filter chain is interposed between the lower
half of the kernel and the delivery to the server’s listen
socket. Such a scheme would be transparent to the server,
and could operate without any server modification if the
ability to split persistent connections into multiple con-
nections is not needed. Otherwise, all of the other CC
library functions could be eliminated, with only cc_close
exposed via the API. Some extra-server process would
have to launch all of the filters, and indicate which socket
to steal, but this infrastructure is also minimal.

For closed-source servers where even minimal modifi-
cations are not possible, this approach may be the only
mechanism to use Connection Conditioning. However,
since our current focus is on experimentation, the library-
based approach provides three important benefits: it is
portable across operating systems and kernel versions, it
requires less trust from a developer wanting to experiment
with it, and it is easier to change if we discover new idioms
we want to support. At some point in the future, after we
gain more experience with Connection Conditioning, we
may revisit an in-kernel mechanism specifically to support
closed-source servers.

8 Conclusions

While server software design continues to be an active
area of research, we feel it is worthwhile to assess its
chances for meaningful impact given the current state
of hardware and networking. We believe that perfor-
mance of most servers is good enough for most sites, and
that advances in simplifying server software development
and providing better security outweigh additional perfor-
mance gains. We have shown that a design inspired by
Unix pipes, called Connection Conditioning, can provide
benefits in both areas, and can even be used with exist-
ing server software of various designs. While this ap-
proach has a performance impact, we have demonstrated
that even on laughably cheap hardware, this system can
handle far more bandwidth than most sites can afford.
Connection Conditioning provides these benefits in a
simple, composable fashion without dictating program-
ming style. We have demonstrated a new server that is
radically simpler than most modern Web servers, and have

USENIX Association

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

195

shown that fairly simple, general-purpose filters can be
used with this server and others to provide good perfor-
mance and security. The current implementation runs en-
tirely in user space, which gives it more flexibility and
safety compared to a kernel-based approach. However, a
kernel-space implementation of the mechanisms is possi-
ble, allowing for improved performance while retaining
the flexibility of user-space policies.

Overall, we believe that Connection Conditioning holds
promise for simplifying server design and improving se-
curity, and should be applicable to a wide range of
network-based services in the future. We have demon-
strated it in conjunction with multi-process servers as well
as event-driven servers, and have shown that it can help
defend these servers against a range of attacks. We are
investigating its use for DNS servers, which tend to pre-
fer UDP over TCP in order to reduce connection-related
overheads, and for sensors on PlanetLab, which use an
HTTP framework for simple information services. We
expect that both environments will also prove amenable
to Connection Conditioning.

Acknowledgments

We would like to thank our shepherd, David Andersen,
and the anonymous reviewers for their useful feedback on
the paper. This work was supported in part by NSF Grant
CNS-0519829.

References
[1]

(2]
(3]

ACME Laboratories. thttpd. http://www.acme.com/thttpd.
Akamai Technologies Inc. http://www.akamai.com/.

Apache Software Foundation. Apache HTTP Server Project.
http://httpd.apache.org/.

G. Banga, P. Druschel, and J. C. Mogul. Better operating system
features for faster network servers. In Proceedings of the Workshop
on Internet Server Performance, June 1998.

G. Banga and J. C. Mogul. Scalable kernel performance for Inter-
net servers under realistic loads. In Proceedings of the USENIX
Annual Technical Conference, June 1998.

G. Banga, J. C. Mogul, and P. Druschel. Resource containers: A
new facility for resource management in server systems. In Pro-
ceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI), February 1999.

G. Banga, J. C. Mogul, and P. Druschel. A scalable and explicit
event delivery mechanism for unix. In Proceedings of the USENIX
Annual Technical Conference, Monterey, CA, 1999.

A. Chankhunthod, P. B. Danzig, C. Neerdaeles, M. F. Schwartz,
and K. Worrell. A hierarchical Internet object cache. In Proceed-
ings of the USENIX Annual Technical Conference, January 1996.
O. P. Damani, P. E. Chung, Y. Huang, C. Kintala, and Y.-M. Wang.
ONE-IP: Techniques for hosting a service on a cluster of machines.
In Sixth International World Wide Web Conference, April 1997.
FreeBSD Project. Remote denial-of-service when using accept
filters.

(41

(5]

[6

=

(71

[8

=

(91

[10]

http://www.securityfocus.com/advisories/4159.

[11] German Goldszmidt and Guerney Hunt. NetDispatcher: A TCP
Connection Router. Technical report, IBM Research, Hawthorne,
New York, July 1997. RC 20853.

J. Hu, I. Pyarali, and D. C. Schmidt. Measuring the impact of event

dispatching and concurrency models on web server performance

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

over high-speed networks. In Proceedings of the IEEE GLOBE-
COM 97, November 1997.

P. Joubert, R. King, R. Neves, M. Russinovich, and J. Tracey.
High-performance memory-based web servers: Kernel and user-
space performance. In Proceedings of the USENIX Annual Tech-
nical Conference, June 2001.

D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S.
Levine, and D. Lewin. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world wide
web. In ACM Symposium on Theory of Computing, 1997.

J. Lemon. Kqueue: A generic and scalable event notification fa-
cility. In FREENIX Track: USENIX Annual Technical Conference,
Boston, MA, June 2001.

T. Mitchem, R. Lu, and R. O’Brien. Using kernel hypervisors to
secure applications. In Proceedings of the 13th Annual Computer
Security Applications Conference (ACSAC '97), San Diego, CA,
1997.

Netcraft Ltd. Web server survey archives.
http://news.netcraft.com/archives/web_server_survey.html.

V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and
portable web server. In USENIX Annual Technical Conference,
June 1999.

N. Provos. libevent.

http://www.monkey.org/ provos/libevent/.

N. Provos. Improving host security with system call policies. In
Proceedings of the 12th USENIX Security Symposium, Washing-
ton, DC, 2003.

X. Qie, R. Pang, and L. Peterson. Defensive Programming: Using
an Annotation Toolkit to Build DoS-Resistant Software. In Pro-
ceedings of the 5th Symposium on Operating Systems Design and
Implementation, Boston, MA USA, December 2002.

A. Rousskov, M. Weaver, and D. Wessels. The fourth cache-off.
Raw data and independent analysis.
http://www.measurement-factory.com/results/.
Y. Ruan and V. Pai. Making the “Box” transparent: System call
performance as a first-class result. In USENIX Annual Technical
Conference, Boston, MA, June 2004.

J. Salz, A. C. Snoeren, and H. Balakrishnan. TESLA: A transpar-
ent, extensible session-layer architecture for end-to-end network
services. In Proceedings of the 4th USENIX Symposium on Inter-
net Technologies and Systems(USITS ’03), Seattle, WA, 2003.

B. Schroeder and M. Harchol-Balter. Web servers under over-
load: How scheduling can help. In I8th International Teletraffic
Congress (ITC 2003), August 2003.

M. Slemko. Possible security issues with Apache in some config-
urations. http://www.cert.org/vendor_bulletins/VB-98.02.apache.
R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and
J. Lepreau. The Flask security architecture: System support for di-
verse security policies. In Proceedings of the S8th USENIX Security
Symposium, Washington, DC, 1999.

Standard Performance Evaluation Corporation. SPEC Web Bench-
marks. http://www.spec.org/web99/.

G. Varghese and A. Lauck. Hashed and hierarchical timing wheels:
Data structures for the efficient implementation of a timer facility.
In Proceedings of the 11th Symposium on Operating System Prin-
ciples (SOSP-11), Austin, TX, 1987.

R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer.
Capriccio: Scalable threads for Internet services. In Proceedings
of the 19th Symposium on Operating System Principles (SOSP-19),
Lake George, New York, October 2003.

M. Welsh and D. Culler. Adaptive overload control for busy Inter-
net servers. In 4th USENIX Conference on Internet Technologies
and Systems (USITS’03), March 2003.

M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable Internet services. In Proceedings of
the 18th Symposium on Operating System Principles(SOSP-18),
Chateau Lake Louise, Banff, Canada, Oct. 2001.

196

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation

USENIX Association

