
Towards a Declarative Language and System for

Secure Networking

Mart́ın Abadi∗† and Boon Thau Loo‡∗

∗Microsoft Research †UC Santa Cruz ‡University of Pennsylvania

Abstract

In this paper, we present a declarative language and
system for describing and implementing secure net-
works. Our proposed language, SeNDlog, is an at-
tempt at unifying Binder, a logic-based language
for access control in distributed systems, and Net-
work Datalog (NDlog), a database query language
for declarative networks. The contributions of this
paper are as follows. First, we highlight the sim-
ilarities and differences between Binder and NDlog
with regards to their notion of location, trust model,
and evaluation strategies. Second, we motivate and
propose the SeNDlog language that combines features
from Binder and NDlog. Third, we demonstrate the
use of SeNDlog for specifying secure networks and
present directions for future work.

1 Introduction

Designing secure network protocols is a difficult pro-
cess. We believe that this process has been made
more tedious and error-prone by the use of conven-
tional, imperative programming languages. In this
paper, we present a declarative language and sys-
tem for secure networking. Our work has largely
been inspired by recent efforts at using declarative
languages that are aimed at simplifying the process
of specifying and implementing security policies and
networks. Our proposed language, SeNDlog, builds
upon and unifies two languages: (1) Binder [8],
a logic-based language for expressing access con-
trol decisions in distributed systems, and (2) Net-
work Datalog (NDlog), a database query language
for declarative networks [17, 16, 15].

Access control is central to security and it is per-
vasive in computer system. Over the years, logi-
cal ideas and tools have been used to explain and
improve access control. Several logic-based lan-
guages [2] such as Binder, SD3 [11], D1LP [14] and
SecPAL [18] have been proposed to ease the process
of expressing and encoding access control policies. In
this paper, we focus on Binder since it has a simple
design, and is most similar to NDlog.

Like Binder, the NDlog language also has its

roots in Datalog and logic programming. Because
of its support for recursive queries over network
graphs [22], NDlog allows compact, clear formula-
tions of a variety of routing protocols and overlay
networks which themselves exhibit recursive proper-
ties.

Despite being developed by two different commu-
nities and used for different purposes, Binder and
NDlog are both based on logic, and extend tradi-
tional Datalog in surprisingly similar ways: by sup-
porting the notion of context (location) to identify
components (nodes) in distributed systems. This
suggests the possibility of unifying these languages
to create an integrated system, exploiting good lan-
guage features, execution engine, and optimizations.
From a practical standpoint, this integration has
several benefits, ranging from ease of management,
one fewer language to learn, one fewer set of op-
timizations, finer-grain control over the interaction
between security and network protocol, and the pos-
sibility of doing analysis and optimizations across
levels.

This coincidence further suggests that we may be
able to dispense with much of the special machin-
ery proposed for access control, and instead rely on
distributed database engines to process these poli-
cies, leveraging well-studied query processing and
optimization techniques. Interestingly, it has been
shown previously [3] that Binder is similar to data
integration languages such as Tsimmis [7] proposed
by the database community, further indicating that
ideas and methods from the database community are
directly applicable to secure networking.

The contribution and organization of the paper
are as follows. In Section 2, we present a back-
ground review of the Datalog language. Based on
Datalog, we introduce in Section 3 the NDlog and
Binder languages. We highlight the similarities be-
tween the Binder and NDlog languages in terms of
their use of context and location, and differences in
terms of their trust model and evaluation strategies.
In Section 4, we motivate and present the SeND-
log language. In order to demonstrate the flexibil-

1



ity of SeNDlog, we present two motivating exam-
ples in Section 5: (1) an authenticated version of
the path vector routing protocol as presented in the
declarative routing paper [17], and (2) generating
certified node identifiers [6] in Distributed Hash Ta-
bles (DHTs) [4]. We further discuss other possible
use cases, such as implementing a secure version of
DNS, and supporting programmable network envi-
ronments [9, 23]. Last, we conclude in Section 6 with
a discussion of future research directions.

2 Review of Datalog

Datalog is a recursive query language primarily used
in the database community for querying graph struc-
tures. We provide a short review of Datalog, follow-
ing the conventions in Ramakrishnan and Ullman’s
survey [22]. A Datalog program consists of a set
of declarative rules and a query. Since these pro-
grams are commonly called “recursive queries” in
the database literature, we will use the term “query”
and “program” interchangeably when we refer to a
Datalog program.

A Datalog rule has the form p :- q1, q2, ...,
qn., which can be read informally as q1 and q2 and
... and qn implies p”. Here, p is the head of the
rule, and q1, q2,...,qn is a list of literals that consti-
tutes the body of the rule. Literals are either predi-
cates applied to fields (variables and constants), or
boolean expressions that involve function symbols
(including arithmetic) applied to fields. We some-
times refer to these fields as attributes. The rules
can refer to each other in a cyclic fashion to express
recursion. The order in which the rules are presented
in a program is semantically immaterial. The com-
mas that separate the predicates in a rule are logical
conjunctions (AND); the order in which predicates
appear in a rule body also has no semantic signif-
icance (though implementations typically employ a
left-to-right execution strategy). The query specifies
the output of interest.

The predicates in the body and head of traditional
Datalog rules are relations, and we will refer to them
interchangeably as predicates, relations, or tables.
Each relation has a primary key, which consists of a
set of fields that uniquely identifies each tuple within
the relation. In the absence of other information, the
primary key is the full set of fields in the relation.

The names of predicates, function symbols, and
constants begin with a lower-case letter, while vari-
able names begin with an upper-case letter. Most
implementations of Datalog enhance it with a lim-
ited set of function calls (which start with “f ”
in our syntax), including boolean predicates, arith-
metic computations, and simple list operations. Ag-
gregate constructs are represented as functions with

field variables within angle brackets (<>). We will
not consider negated predicates since they are not
supported by Binder or NDlog.

3 Binder and NDlog

In this section, we introduce and compare the Binder
and NDlog languages.

3.1 Binder

Binder is a language for expressing the logics of ac-
cess control. Basically, a Binder program is a set of
Datalog-style logical rules. Unlike Datalog, Binder
has a notion of context that represents a component
in a distributed environment and a distinguished op-
erator says. For instance, in Binder we can write:

b1 may-access(P,O,read) :- good(P).
b2 may-access(P,O,read) :-

bob says may-access(P,O,read).

The says operator implements one of the common
logical constructs in authentication [13], where we
assert p says s if the principal p supports the
statement s. The above rules b1 and b2 can be read
as “any principal P may access any object O in read
mode if P is good or if bob says that P may do so”.

A principal in Binder refers to a component in
a distributed environment. Each principal has its
own local context where its rules resides. Binder as-
sumes an untrusted network, where different compo-
nents can serve different roles running distinct sets
of rules. Because of the lack of trust among nodes,
a component does not have control over rule execu-
tion and message generation at other nodes. Instead,
Binder allows separate programs to interoperate cor-
rectly and securely via the export and import of rules
and derived tuples across contexts. For example,
rule b2 can be a local rule that is executing in the
context of principal alice, which imports derived
may-access tuples from the principal bob into its
local context via bob says may-access(p,o,read)
in its rule body.

The says operator abstracts from the details
of authentication. In one specific implementa-
tion, communication happens via signed certificates,
where derived tuples and rules signed using the pri-
vate key of the exporting context can be imported
into another context and checked using the corre-
sponding public key.

3.2 NDlog

NDlog is a database query language for expressing
declarative networks. We illustrate NDlog using a
simple example of two rules that computes all-pairs
of reachable nodes:

r1 reachable(@S,D) :- link(@S,D).
r2 reachable(@S,D) :- link(@S,Z), reachable(@Z,D).

2



The rules r1 and r2 specify distributed transi-
tive closure computation, where rule r1 computes
all pairs of nodes reachable within a single hop from
all input links, and rule r2 expresses that “if there
is a link from S to Z, and Z can reach D, then S can
reach D.” By modifying this simple example, we can
construct more complex routing protocols, such as
the distance vector and path vector routing proto-
cols. See [17] for more details.

NDlog has a notion of location that is similar to
Binder’s context, through the use of a location spec-
ifier attribute in each predicate, prepended with an
@ symbol. This attribute is used to denote the loca-
tion of each corresponding tuple. For example, all
reachable and link tuples are stored based on the
@S address field.

3.3 Comparing Binder and NDlog

Having introduced Binder and NDlog, we now elabo-
rate on the differences between these two languages:
Trusted vs Untrusted Networks: One of the im-
portant requirements of both Binder and NDlog is
the ability to support rules that express distributed
computations, where nodes can communicate with
each other. Hence, NDlog supports the notion of lo-
cation that is similar to Binder’s notion of context.
NDlog is designed for a fully trusted environment,
where the location relates to data placement. Each
NDlog rule takes as input predicates with different
location specifiers, and derived tuples that when sent
to another node are blindly accepted by the recip-
ient. On the other hand, Binder assumes an un-
trusted network, where rules are executed with their
own context, and communication happens via the
use of “says”; unlike in NDlog, reliable authentica-
tion is required.
Export of Derived Tuples: In Binder, there
is no integration of the security policy with the
policy for exporting data. To illustrate, we con-
sider the rule b2 from Section 3.1. The principal
alice that runs these rules may wish only to ex-
port may-access(P,O,read) to the principal P, and
not all nodes. It is not possible to express this re-
striction in Binder. Hence, any principal can import
the may-access(P,O,read) tuple derived by alice.
Being able to restrict the sending of messages to se-
lected recipients is an important requirement in se-
cure network protocols, both from performance and
secrecy standpoints. NDlog achieves that with the
use of location specifiers at the rule head.
Bottom-up vs Top-down Evaluation: Most ac-
cess control languages including a practical imple-
mentation of Binder [19] and SD3 utilize a goal-
oriented top-down evaluation (backward-chaining
from head to body) strategy. Specific requests are

made as goals, which are then resolved against the
security policies. On the other hand, network pro-
tocols are long-running processes, and incrementally
recompute and repair routes based on changes to the
underlying network. Hence, NDlog programs are ex-
ecuted in a bottom-up (or forward-chaining) evalu-
ation [21] where the bodies of the rules are evalu-
ated to derive the heads. This has the advantage of
permitting set-oriented optimizations while avoiding
infinite recursive loops, and at the same time, is a
better fit for the incremental continuous execution
model of network protocols.

4 SeNDlog Language

In this section, we present the SeNDlog language,
which unifies Binder and NDlog with the following
goals. First, we require that SeNDlog be as expres-
sive as Binder and NDlog in order to support the
security policies and network protocols that have
been previously supported by both languages. Sec-
ond, the language constructs of SeNDlog should sup-
port authenticated communication and also enable
the differentiation of nodes according to their roles.
Third, SeNDlog should flexibly support both trusted
and untrusted environments. Fourth, to leverage
existing execution engines and fit the incremental
continuous execution model of network protocols,
SeNDlog must be amenable to efficient execution and
optimizations by a distributed query engine using a
bottom-up evaluation strategy.

4.1 Rules within a Context

In the SeNDlog language, we allow a set of rules
(including tuples) to reside at a particular node. We
do this at the top level for each rule (or set of rules),
for example by specifying:

At N,
r1 p :- p1,p2,...,pn.
r2 p1 :- p2,p3,...,pn.

In the example above, the rules r1 and r2 are in
the context of N, where N is either a variable or a
constant representing the principal where the rules
reside. If N is a variable, it will be instantiated with
local information upon rule installation. In a trusted
world, N can simply be the address of a node. In
general, N might be the address/public-key pair of
a node. In a multi-user environment, N can further
include the user name.

We can attach additional conditions
c1,c2,...,cn that are used to determine at
runtime whether a node serves a certain role:

At N, c1,c2,...,cn
r1 p :- p1,p2,...,pn.
r2 p1 :- p2,p3,...,pn.

3



In the above example, a principal N can exe-
cute the rules r1 and r2 only if all the conditions
c1,c2,...,cn are satisfied at runtime. This allows
the role of a principal to be defined based on runtime
conditions.

4.2 Communicating Contexts

Much as in Binder, the SeNDlog language allow dif-
ferent principals or contexts to communicate via im-
port and export of tuples. The movement of tuples
serves two purposes: (1) maintenance messages as
part of a network protocol’s updates on routing ta-
bles, and (2) distributed derivation of security de-
cisions. Imported tuples from a principal N are au-
tomatically quoted using “N says”, to differentiate
them from local tuples. During the evaluation of
SeNDlog rules, we allow derived tuples to be commu-
nicated among contexts via the use of import predi-
cates and export predicates:

Definition 1 An import predicate is of the form “N
says p” in a rule body, where N is the principal that
is asserting the predicate p.

Definition 2 An export predicate is of the form ”N
says p@X” in a rule head, where principal N exports
the predicate p to the context of principal X. Here,
X can be a constant or a variable. If X is a variable,
in order to make bottom-up evaluation efficient, we
further require that the variable X occur in the rule
body. As a shorthand, we can omit “N says” if N is
the principal where the rule resides.

With the definitions above, a SeNDlog rule is a
Datalog rule where the rule body can include im-
port predicates, and the rule head can be an export
predicate. We provide a concrete example with the
following four SeNDlog rules e1-e4:

At N,
e1 p(X,Y) :- p1(X), p2(Y).
e2 p(X,Y,W) :- Y says p1(X), Z says p2(W),

Z!=N.
e3 p(Y,Z)@X :- p1(X), Y says p2(Z).
e4 Z says p(Y)@X :- Z says p(Y), p1(X).

Rule e1 is a traditional Datalog rule. Rule e2 con-
tains two predicates p1 and p2 imported from Y and
Z respectively. Rules e3 and e4 contain an import
predicate each, and export their derived heads to X.

Note that, in rule e4, the export principal Z dif-
fers from the principal N. To ensure that p is indeed
asserted by Z, we introduce the honesty constraint
in all SeNDlog rules:

Definition 3 A SeNDlog rule in the context of prin-
cipal N is honest if the following condition is satis-
fied: if the rule head is “X says p”, where X is a

constant or a variable, either X is N, or “X says p”
occurs in the body of the rule.

The honesty constraint enables a simple, secure
implementation. Specifically, for security, whenever
a principal other than N exports N says p, it should
provide a proof that this is the case; the proof is
a signature by N. With the honesty constraint, the
principal may simply forward the signature that cor-
responds to the occurrence of N says p in the rule
body.

Like NDlog, SeNDlog allows derived tuples to be
exported to specific nodes via the export predicates.
This is done as a way of enforcing secrecy and also
performance (avoiding broadcast of tuples).

4.3 Different Levels of “says”

Like Binder, SeNDlog utilizes “says” as an abstrac-
tion for the details of authentication. In a state-
ment Z says advertise(X,Y)@W, both Z and W can
be treated as extra arguments of advertise and the
usual rules of logic applies locally.

Note that the implementation of ”says” may de-
pend on the system and its context. In a hostile
world, ”says” may require digital signatures. For
example, in rule e3 from the previous section, N
should check that p2 indeed came from Y by checking
the signature of the imported tuple against Y’s pub-
lic key. In a more benign world, ”says” may simply
append a cleartext principal header to a message—
and this will of course be cheaper. Somewhere in be-
tween, the use of digital signatures may be applied
only to certain important messages: there is a trade-
off between security and efficiency, and the language
does not provide any leverage in deciding how that
trade-off should be made. Note however that the
policy writer could easily provide hints along with
rules, indicating that some “says” are more impor-
tant than others. Going further, one could have mul-
tiple operators with different security levels.

5 SeNDlog Examples

Having presented the SeNDlog language, we provide
two examples of secure network programming writ-
ten using SeNDlog: an authenticated version of the
basic path vector routing protocol and secure as-
signment of DHT node identifiers. Through these
examples, we demonstrate the flexibility of NDlog
and present several of its language features.

In addition to these examples, we have also ex-
plored using SeNDlog to specify DNSSec, which is a
secure version of DNS as presented in SD3 [11]. In
an extensible shared testbed environment [23, 20],
SeNDlog can be used concurrently as a language for
implementing declarative networks and trust man-
agement [5], for example, ensuring that the users

4



who are executing these networks have sufficient au-
thorization for code loading, communication, and
the utilization of shared resources.

5.1 Authenticated Path Vector Protocol

At Z,
z1 route(Z,X,P) :- neighbor(Z,X),

P=f_initPath(Z,X).
z2 route(Z,Y,P) :- X says advertise(Y,P),

acceptRoute(Z,X,Y).
z3 advertise(Y,P1)@X :- neighbor(Z,X),

route(Z,Y,P),
carryTraffic(Z,X,Y),
P1=f_concat(X,P).

Our first example shows the basic path vector
protocol as presented in the declarative routing[17]
paper, with the additional use of the “says” op-
erator. At every node Z, this program takes
as input neighbor(Z,X) tuples that contain all
neighbors X for Z. The input carryTraffic and
acceptRoute tables are used to represent the ex-
port and import policies of node Z respectively. Each
carryTraffic(Z,X,Y) tuple represents the fact that
node Z is willing to serve all network traffic on behalf
of node X to node Y, and each acceptRoute(Z,Y,X)
tuple represents the fact that node Z will accept a
route from node X to node Y.

At every node Z that runs the above program, the
Z says advertise(Y,P) tuples containing the path
to destination node Y is communicated among neigh-
boring nodes. As noted in Section 4.2, we omit “Z
says” for brevity in rule z3. The use of “says”
ensures that all advertise tuples are verified by
the recipient for authenticity. The eventual out-
come of executing the program is the generation of
route(Z,X,P) tuples, each of which stores the path
P from source Z to destination X

Rule z1 takes as input neighbor(Z,X) tuples, and
computes all the single hop route(Z,X,P) contain-
ing the path [Z,X] from node Z to X. Rules z2-z3
are used to compute routes of increasing hop count.
Upon receiving an advertise(Y,P) tuple from X, Z
uses rule z2 to decide whether to accept the route
advertisement based on its local acceptRoute ta-
ble. If the route is accepted, a route tuple is de-
rived locally, and this results in the generation of an
advertise tuple which is further exported by node Z
via rule z3 to selected neighbors X based on the poli-
cies of the local carryTraffic table. Each exported
advertise tuple has a new path P1 which is com-
puted by prepending neighbor X to the input path P
using the f concat function. A more complex ver-
sion of this protocol will have additional rules that
derive carryTraffic and acceptRoute, avoid path
cycles and also derive shortest paths with the fewest
hop count.

5.2 Secure DHT Node Identifiers

In our second example, we use SeNDlog to specify
the assignment of node identifiers in DHTs [6]. Our
version of the code avoids a security weakness in
a DHT where malicious nodes can occupy a large
range of the key space. This example also demon-
strates the use of SeNDlog to specifying the differ-
ent roles for nodes. We describe this example using
Chord as our DHT. There are three sets of rules for
three types of nodes: (1) a new node NI joining the
chord ring, (2) the certificate authority CA, and (3)
the landmark node LI. Each node runs its respective
set of rules as follows:

At NI,
ni1 requestCert(NI,K)@CA :- startNetwork(NI),

publicKey(NI,K),
MyCA(NI,CA).

ni2 nodeID(NI,N) :- CA says nodeIDCert(NI,N,K)
ni3 CA says nodeIDCert(NI,N,K)@LI :-

CA says nodeIDCert(NI,N,K),
landmark(NI,LI).

At CA,
ca1 nodeIDCert(NI,N,K)@NI :-

NI says requestCert(NI,K),
S=secret(CA,NI),
N=f_generateID(K,S).

At LI,
li1 acceptJoinRequest(NI) :-

CA says nodeIDCert(NI,N,K).

In rule ni1, a node NI that wishes to join
the Chord ring first exports a requestCert tu-
ple to its CA (as indicated in the entry in
its MyCA table) to request nodeID certificates.
Upon receiving the request, the CA generates a
nodeIDCert(NI,N,K) tuple containing the nodeID
certificate, which is then exported back to node NI.
The nodeIDCert(NI,N,K) tuple contains the IP ad-
dress of node NI, the corresponding public key K,
and a generated identifier N randomly chosen from
the keyspace using the function f generateID(K,S)
that takes as input the public key of K and a previ-
ously exchanged secret S known only to the CA and
NI.

Upon importing the nodeIDCert tuple from the
CA, using rule ni2, node NI initializes its local node
identifier which stored as a nodeID(NI,N) tuple. It
also forwards the nodeIDCert to its landmark node
LI in order to join the chord ring.

At the landmark node LI, nodeIDCert is im-
ported and checked for authenticity. If nodeIDCert
is accepted, the landmark node derives an
acceptJoinRequest(NI) tuple that can further be
used to generate a lookup request to locate the suc-
cessor node on behalf of node NI. The rest of the

5



Chord rules as presented [16] can then be used by
node NI to implement the rest of the Chord protocol.

6 Related Work and Conclusion

In terms of related work, through our use of Binder,
our work is related to a large literature on access con-
trol in distributed systems (e.g., [11], [14] and [18]).
In addition, through NDlog, our work is related to
a large literature of network specification languages
(e.g., [12], [10]). Occasionally, these two bodies of
work have intersected, for instance, when Jim et al.
described DNSSec in SD3, and presented the D3log
language [12] which has similarities to NDlog. How-
ever, this intersection is remarkably small. We are
not aware of any previous efforts with the goals and
scope of ours.

In summary, we have proposed SeNDlog as a
declarative language for secure networking. Our ini-
tial language design is based on unifying the Binder
and NDlog languages, and is intended for execution
using a distributed query processor.

Our research is proceeding in several directions.
First, while we have focused on Binder, we plan to
consider language features from other access control
languages. Second, we are planning a full-fledged
system implementation via enhancements to the P2
declarative networking system [1]. This implemen-
tation will require adding the support of principals
serving different roles, introducing the “says” op-
erator, and supporting communication in untrusted
networks, where tuples are communicated via signed
certificates. We intend to explore the limitations of
our initial language design by implementing a variety
of secure networks. Third, we intend to investigate
analysis and cross-layer optimization opportunities
that arise as a result of having a single integrated
system that unifies network and security specifica-
tions.

References

[1] P2: Declarative Networking. http://p2.cs.berkeley.edu.

[2] Abadi, M. Logic in Access Control. In Symposium on
Logic in Computer Science (2003).

[3] Abadi, M. On Access Control, Data Integration and
Their Languages. Computer Systems: Theory, Tech-
nology and Applications, A Tribute to Roger Needham
Springer-Verlag (2004), 9–14.

[4] Balakrishnan, H., Kaashoek, M. F., Karger, D.,
Morris, R., and Stoica, I. Looking Up Data in P2P
Systems. Communications of the ACM, Vol. 46, No. 2
(Feb. 2003).

[5] Blaze, M., Feigenbaum, J., and Keromytis, A. D.
The role of trust management in distributed systems se-
curity. In Secure Internet Programming (1999), pp. 185–
210.

[6] Castro, M., Drushel, P., Ganesh, A., Rowstron,
A., and Wallach, D. Secure Routing for Structured

Peer-to-peer Overlay Networks. In Proceedings of Usenix
Symposium on Operating Systems Design and Imple-
mentation (2002).

[7] Chawathe, S., Garcia-Molina, H., Hammer, J., Ire-
land, K., Papakonstantinou, Y., Ullman, J. D., and
Widom, J. The TSIMMIS Project: Integration of Het-
erogeneous Information Sources. In 16th Meeting of the
Information Processing Society of Japan (Tokyo, Japan,
1994).

[8] DeTreville, J. Binder: A logic-based security lan-
guage. In IEEE Symposium on Security and Privacy
(2002).

[9] GENI. Global Environment for Network Innovations.
http://www.geni.net/.

[10] Griffin, T. G., and Sobrinho, J. L. Metarouting. In
ACM SIGCOMM (2005).

[11] Jim, T. SD3: A Trust Management System With Cer-
tified Evaluation. In IEEE Symposium on Security and
Privacy (May 2001).

[12] Jim, T., and Suciu, D. Dynamically Distributed
Query Evaluation. In ACM Symposium on Principles
of Database Systems (2001).

[13] Lampson, B., Abadi, M., Burrows, M., and Wobber,
E. Authentication in Distributed Systems: Theory and
Practice. ACM Transactions on Computer Systems 10,
4 (1992), 265–310.

[14] Li, N., Grosof, B. N., and Feigenbaum, J. Delegation
Logic: A logic-based approach to distributed authoriza-
tion. ACM Transactions on Information and System
Security (TISSEC) (Feb. 2003).

[15] Loo, B. T., Condie, T., Garofalakis, M., Gay, D. E.,
Hellerstein, J. M., Maniatis, P., Ramakrishnan, R.,
Roscoe, T., and Stoica, I. Declarative Networking:
Language, Execution and Optimization. In Proceedings
of ACM SIGMOD International Conference on Man-
agement of Data (June 2006).

[16] Loo, B. T., Condie, T., Hellerstein, J. M., Mani-
atis, P., Roscoe, T., and Stoica, I. Implementing
Declarative Overlays. In ACM Symposium on Operating
Systems Principles (2005).

[17] Loo, B. T., Hellerstein, J. M., Stoica, I., and Ra-
makrishnan, R. Declarative Routing: Extensible Rout-
ing with Declarative Queries. In Proceedings of ACM
SIGMOD International Conference on Management of
Data (2005).

[18] Moritz Y. Becker and Cedric Fournet and Andrew
D. Gordon. SecPAL: Design and Semantics of a Decen-
tralized Authorization Language. Tech. Rep. MSR-TR-
2006-120, Microsoft Research, 2006.

[19] Pimlott, A., and Kiselyov, O. A Logic-based Trust-
management System. In International Symposium on
Functional and Logic Programming (Apr. 2006).

[20] PlanetLab. Global testbed. http://www.planet-
lab.org/.

[21] Raghu Ramakrishnan and S. Sudarshan. Bottom-Up
vs Top-Down Revisited. In Proceedings of the Interna-
tional Logic Programming Symposium (1999).

[22] Ramakrishnan, R., and Ullman, J. D. A Survey of
Research on Deductive Database Systems. Journal of
Logic Programming 23, 2 (1993), 125–149.

[23] Tennenhouse, D., Smith, J., Sincoskie, W., Wether-
all, D., and Minden, G. A Survey of Active Network
Research. In IEEE Communications Magazine (1997).

6


