T10 Data Integrity Feature (Logical Block Guarding)

Martin K. Petersen
Software Developer, Linux Engineering
Topics

- Common Data Integrity Errors
- T10 Data Integrity Feature
- SCSI Layer Changes
- Block Layer Changes
- Performance Implications
- Discussion
Common Data Integrity Errors

- Misdirected writes
- Writing incorrect data
- On-the-wire corruption
- This actually happens in the field! Really!
- Allowing the storage device to verify data integrity before clobbering potentially good sectors
- Oracle's HARD
T10 Data Integrity Feature (DIF)

- Originally proposed by IBM
- Logical Block Guarding is one component of DIF
- SBC-3 / SPC-4
- 520 byte sectors with a twist
- 8 bytes of protection data per sector
- GUARD tag : CRC
- REFERENCE tag : Typically LBA
- APPLICATION tag: User defined content
T10 DIF – Tags

- **GUARD tag (Logical Block Guarding):**
 - 16-bit CRC covering the hardware sector
 - Regardless of sector size
 - 4096 KB sectors appear only to gain momentum in lower end (SATA)

- **REFERENCE tag (Misdirected writes):**
 - 4 bytes – depend on protection type
 - For Type 1 protection, REF tag contains lower 32 bits of LBA
 - For Type 2 protection, REF tag has to match LBA in CDB + N
 - Wraps at 2TB with 512 byte sectors, 16TB with 4KB
T10 DIF – Tags continued

• APPLICATION tag (Up for grabs):
 • 2 bytes per sector
 • Ownership negotiated with target
 • How do we provide this in a sensible way?
 • Per sector or per I/O?
 • Use it to flag metadata vs. data?
 • Ideas?
T10 DIF – Device Protection Types

- **Type 0:**
 - No checking but target device must generate on WRITE
- **Type 1:**
 - GUARD + REF checking (LBA)
- **Type 2:**
 - GUARD + REF checking (Extended Indirect LBA)
 - READ(32)/WRITE(32) only
- **Type 3:**
 - GUARD tag
T10 DIF – Device Capabilities

- Device can support one or more protection types
- Target can only be formatted with one protection type at a time
- RDPROTTECT/WRPROTECT/VRPROTECT must match target format somewhat
- READ(32)/WRITE(32) feature special DIF knobs
- APP tag ownership/verification
T10 DIF – Host Board Adapters

- DIF is a standard for communication between initiator and target
- Some HBAs will use DIF transparently to OS:
 - INQUIRY/READ_CAPACITY(16) mangling
- Some allow getting protection data from OS:
 - Allowing OS to submit a buffer with protection data included
 - Tag validity mask
- Some allow DMA of protection data to OS:
 - Allowing OS to retrieve tags, including APP tag
T10 DIF – Protection Capabilities

- Protect all the way from filesystem to disk
- Which tags to supply are optional:
 - `mount -o reference_tag`
 - `mount -o guard_tag`
- If HBA is capable we can even protect path between OS and HBA with legacy storage devices
- Maybe even support DIF on legacy disks as long as they have 520 byte sector support (Academic Exercise)
SCSI Layer Changes

- Not very intrusive, except for sd.c CDB creation
- Error handling adapted to handle DIF-specific Additional Sense Codes + Qualifiers
- Distinguishes between HBA and target verification failures
- scsi_host mask to set HBA capabilities
- scsi_disk field to identify protection format
Block Layer Changes

• Propose a callback function which will calculate CRC and set APP + REF tags on a bio according to a tag mask
• bio_prot is a list of bio_vecs, mirroring the data vector
• “Protect this BIO if you can”
• Not SCSI-specific
• Filesystem doesn't have to be device capability aware
Block Layer Changes

• Will even work in case of RAID1 consisting of DIF and legacy disks
• But not with different sector sizes
• Merging of requests with mismatched bio_prot
• Ideas:
 • Need a way to communicate APP tag storage capability
 • Add a BH_Protect (BH_Integrity?) flag to buffer_head?
• Virtualization
Performance Implications

- CRC is somewhat expensive. 200-300 MB/s on a modern CPU
- Looking into ways to optimize
- SSE4 will have a CRC instruction (any poly)
- Protection data: 4KB page of protection data per 256KB of I/O