
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

D E C O N S T R U C T I N G U S E R R E Q U E S T S
A N D T H E N I N E S T E P M O D E L

Thomas A. Limoncelli

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Deconstructing User Requests
and the Nine Step Model

Thomas A. Limoncelli – Lucent Technologies/Bell Labs

ABSTRACT

How can we improve the process by which System Administrators (SAs) help users? SAs
spend much of their time responding to requests from users. Better system administrators use a
similar, structured, process. I present the structured process as I have seen and practiced it,
examples of each step in the process, and the pitfalls of eliminating various steps. Finally I look
at the paper in the larger context of a step towards improving the science of System
Administration.

Introduction

In this paper I document and analyze the process
for resolving trouble reports that is used by the best
system administrators (SAs) I have known and
observed. The goal is to improve the process by which
SAs repair problems that are reported by users (e.g.,
‘‘helpdesk requests’’). This paper also establishes a
base model for use in future studies.

A large part of a SAs workload comes from users
that report problems, request improvement, ask ques-
tions, and so on. This paper is focused on resolving
these requests as efficiently as possible given the
resources available. Thus, retain user happiness. The
model will identify requests that are out of scope
(request for new features, questions, etc.) and offer
appropriate responses.

The method to process these ‘‘trouble reports’’
has nine steps, which can be grouped into four phases:

• Phase A: The Greeting (‘‘Hello’’)
• Step 1: The Greeting

• Phase B: Problem Identification (‘‘What’s
wrong?’’)

• Step 2: Problem Classification
• Step 3: Problem Statement
• Step 4: Problem Verification

• Phase C: Planning and Execution (‘‘Fix it’’)
• Step 5: Solution Proposals
• Step 6: Solution Selection
• Step 7: Execution

• Phase D: Verification (‘‘Verify it’’)
• Step 8: Craft verification
• Step 9: User Verification/Closing.

In addition to being useful to SAs, I have found
that if users understand this model they assist the pro-
cess. They become more skilled in getting the help
they desire. They will be prepared with the right infor-
mation and they can nudge the SA along through the
process if necessary.

I should point out that I don’t feel this process is
a panacea, nor do I think this process is a replacement
for a creative mind or technical experience. However,

this gives SAs a common set of terminology and a
well tested, effective process, to use when interacting
with users. SAs will not magically all become equally
productive. Creativity, experience, resources, tools,
personal and external management are other influ-
ences that contribute to productivity.

Historical Comparison

At the close of World War II, the United States
found itself with a huge excess of manufacturing
capacity. As a result, companies started producing
hundreds of new products that households and busi-
nesses never had access to previously. The thousands
of returning G.I.’s found jobs selling these new prod-
ucts. The new manufacturing capacity, the new prod-
ucts, and the large number of returning G.I.’s looking
for work combined to produce a new era for the U.S.
economy. In short, the large manufacturing capacity
met the large demand which met the large sales force.

As time went on competition grew. Companies
found that it was no longer sufficient to have a large
sales force, a good sales force was needed. They
started to ask, ‘‘What makes the high performing
salesmen different from the others?’’ At the request of
industry, business schools began studying salespeople.

Industry encouraged business schools to increase
their study of the sales process. They discovered that
the better salesmen, whether or not they realized it,
had a specific, structured method they employed. It
involved specific phases or steps. Mediocre salespeo-
ple deviated from these phases in varying ways or per-
formed certain phases badly. The low performers had
little or no consistency in their methods.

The method, once identified, could be taught.
Thus sales skills went from an intuitive function to a
formal function with well-defined parts. Previous sales
training mostly consisted of explaining the product’s
features and qualities. Subsequently, training included
exploration of the selling process.

This deconstruction permitted further examina-
tion and therefore further improvement. Each step

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 35

Deconstructing User Requests and the Nine Step Model Thomas A. Limoncelli

could be studied, measured, taught, practiced, and so
on. Focus is improved because a single step can be
studied in isolation. Also the entire flow of steps could
be studied (a holistic approach).

I imagine that if anyone explained the structured
process to the high performing salespeople it would
sound strange. To them it comes naturally. It would be
like explaining to Picasso how to paint. However, to
the beginner, this framework gives structure to a pro-
cess they are learning.

In recent years, system administration has begun
a similar journey. SA previously was a craft or an art
practiced by few people. With the recent, explosive
growth of corporate computing and intranet/internet
applications, the demand for SAs has been similarly
explosive. A flood of new system administrators has
arrived to meet the need. Quality of their work varies.
Training often takes the form of teaching particular
product features, similar to when a salesperson’s train-
ing consisted mostly of learning the product line.
Other training methods include exploring manuals and
documentation, trial by fire, training by social institu-
tions (IRC, mailing lists, etc.) and professional institu-
tions (SAGE, SANS, etc.).

SA also needs to have its processes understood.
Recently there has been a rise in in-school curricula
being taught on the topic of system administration.
However, most of it has been specific to particular
technologies and vendors rather than being non-
vendor-specific and theoretical. I hope that more theo-
retical models will be introduced and popularized in
the coming years and this will result in large improve-
ments similar to the improvements made in the sales
profession.

The Process

The process described in this paper contains nine
steps grouped into four phases. As seen in Figure 1,
the phases deal with:

A. how the user reports the problem,
B. identifying the problem,
C. planning and executing a solution, and
D. verifying that the problem resolution is com-

plete.

Hello!
What's
wrong?

Fix it! Verify It!START END

Figure 1: General flow of problem solving.

Readers should be forewarned that sometimes
certain steps are iterated as required. For example,

during Step 4 (Problem Verification) the SA may real-
ize the issue has been misclassified and one must
return to Step 2 (Problem Classification). This can
happen at any step and require returning to any previ-
ous step.

A description of the steps follows.

Phase A: The Greeting (‘‘Hello!’’)

The first phase only has one deceptively simple
step. The user reports the problem.

How may I
help you?

1

Figure 2: Greeting phase.

Step 1: The Greeting – ‘‘The Greeter ’’

This step is where someone or some thing asks,
‘‘How may I help you?’’ This step includes every-
thing related to how the user’s request is submitted.
Commonly users can report a problem by calling a
customer care center, by walk-up ‘‘help desk,’’ or
electronic submission. These methods are called
‘‘Greeters.’’ Multiple greeters are needed for easy and
reliable access. If the user’s problem is that they can’t
send email, reporting this via email is not possible.
Having multiple greeters is valuable.

Sometimes problems are reported by automated
means rather than by humans. For example, network
monitoring tools such as ‘‘mon’’ [Trocki], HP Open-
View, and Tivoli can notify SAs that a problem is
occurring. This is still the same process, although
some of the steps may be expedited by the tool.

Every site and every user is different. Greetings
become more or less appropriate based on many fac-
tors. Is the user local or remote? Is the user experi-
enced or new? Is the technology complicated or sim-
ple? These questions can help a site select which
greeters should be used.

How do users know how to find help? There are
various ways to advertise the available greeters.
Examples include: signs in hallways, newsletters,

36 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Thomas A. Limoncelli Deconstructing User Requests and the Nine Step Model

stickers on computers or phones, and even banner
advertisements on internal web pages.

Summary of common methods used to report
problems (certainly this is an incomplete list):

• Phone
• Email
• Walk-up helpdesk
• Visiting SAs office
• Submission via web
• Submission via custom application
• Report by automated monitoring system

Phase B: Problem Identification (‘‘What’s wro n g ? ’’)
The second phase is focused on classifying the

problem, recording it, and verifying the problem.

Problem
Classification

Problem
Statement

Problem
Verification

3 42

Figure 3: What’s wrong?

Step 2: Problem Classification – ‘‘The Classifier’’

In this phase, the request is classified to deter-
mine who should handle the request. This role is
called ‘‘The Classifier.’’ The classifier may be a
human or automated. For example, at a walk-up help
desk, staff might listen to the problem description to
determine its classification. A phone response system
may ask the user to press 1 for PC problems, 2 for net-
work problems, etc. If certain customer groups are
helped by certain SAs, their requests may be automati-
cally forwarded based on the requester’s email address
or employee id number.

When the process is manual, a human must have
the responsibility to surmise the classification from the
description or to ask the user more questions. A for-
mal decision tree may be used to determine the right
classification.

No matter how the classification is done, the user
should be told how the request is classified. This cre-
ates a feedback loop that can detect mistakes. For
example, if a classifier tells a customer, ‘‘This sounds
like a printing problem. I’m assigning this issue to
someone from our Printer Support Group.’’ the user
retains greater participation in the process. The user
may point out that their problem is more pervasive
than just printing, leading to a classification such as a
network problem.

If a phone response system is used, the user has
classified the request already. However, they may not
be the best person to make this decision. The next
human that speaks with the user should be prepared to
validate the user’s choice in a way that is not insulting.

Also, the choices given to the user must be carefully
constructed and revised over time.

Many requests may be transferred or eliminated
at this stage. For example, if the user is requesting a
new feature they should be transferred to the appropri-
ate group that handles requests for features. That role
is often called ‘‘service management.’’ Or if the
request is outside the domain of work that the support
structure does, they might be referred to another
department. Or if the request is against policy and
therefore it must be denied. The issue may be esca-
lated to management if the user disagrees with the
decision. For this reason, it is important to have a
well-defined scope of service and process for request-
ing new services.

Step 3: Problem Statement – ‘‘The Recorder ’’

This is where the user states the problem with
full details and this information is recorded. This per-
son performing this role is called ‘‘The Recorder’’ and
is often the same person as the classifier. The skill
required by the recorder in this phase is the ability to
listen and ask the right questions to draw out the
needed information from the user. The recorder
extracts the problem statement and records it.

A problem statement describes the problem
being reported and enough clues to reproduce and fix
the problem. A bad problem statement is vague or
incomplete. A good problem statement is complete
and identifies all hardware and software involved as
well as their location, the last time it worked, and so
on. Some times not all of that information is appropri-
ate or available.

An example good problem statement is ‘‘PC
talpc.example.com (a PC running Windows NT 4
SP4) located in room 301 can not print from MS-
Word97 to printer ‘rainbow’, the color PostScript
printer which is located in room 314. It worked fine
yesterday. It can print to other printers. The user does
not know if other computers are having this problem.’’

It is unreasonable to expect problem statements
directly from users to be so complete. They require
assistance. The above problem statement comes from
a real example where a customer sent email to a SA
that simply stated, ‘‘Help! I can’t print.’’ That is about
as ambiguous and incomplete as a request can be. A
reply was sent asking, ‘‘To which printer? Which PC?
What application?’’

The reply included a statement of frustration. ‘‘I
need to print these slides by 3 pm, I’m flying to a con-
ference!’’ At that point, email was abandoned and the
telephone was used. This permitted a faster ‘‘back and
forth’’ between the user and classifier. No matter the
medium, it is important that this dialog take place and
that the final result be reported to the customer.

Sometimes the recorder can perform a fast loop
through the next couple steps to accelerate the process.
The recorder might ask the typical ‘‘just in case’’

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 37

Deconstructing User Requests and the Nine Step Model Thomas A. Limoncelli

questions such as ‘‘Is it plugged in?’’ and ‘‘Have you
check the manual or on-line help?’’ or ‘‘Did you
receive the memo that said printer ‘rainbow’ would be
decommissioned last week?’’ In our example the user
indicated that there was an urgent need to have the
slides printed. Here it might be appropriate to suggest
using a different printer that is known to be working.

Certain classes of problems can be completely
stated in a simple way. I have found that internet rout-
ing problems can best be reported by listing two IP
addresses that can not ping each other, but which can
both communicate to other hosts and including a
traceroute from both (if possible) host to the other.

Large sites often have different people recording
requests and executing the requests. This added
‘‘hand-off’’ introduces a challenge as the recorder may
not have the direct experience required to know
exactly what to record. In that case, it is prudent to
have pre-planned sets of data to gather for various sit-
uations. For example, if the user is reporting a network
problem, the problem statement must include an IP
address, the room number of the machine that is not
working, etc. If the problem relates to printing one
might be required to record the name of the printer,
the computer generating the print job, the application
generating the print job, etc.

Most sites use some kind of ‘‘trouble ticket’’
software to record the user’s report. It can be useful if
the software requests different information depending
on how the problem has been classified.

Step 4: Problem Verification – ‘‘The Reproducer ’’

This is where the SA tries to reproduce the prob-
lem. This role is called ‘‘The Reproducer.’’ If the
problem can not be reproduced, often the problem
being reported is not being properly communicated
and one must return to Step 3 (Problem Statement). If
the problem is intermittent, then this process becomes
more complicated but not impossible.

It is critical that the method used to reproduce
the problem is recorded for later repetition in Step 8
(Craft Verification). Encapsulating the test in a script
will make verification easier. One of the benefits of
command-driven systems like UNIX is the ease in
which such a sequence of steps can be automated.
Graphical user interfaces make this phase more diffi-
cult since there is no way to automate or encapsulate
the test.

The scope of the verification procedure must not
be too narrowly focused nor too wide, nor mis-aimed.
If the tests are too narrow, the entire problem may not
be fixed. If the tests are too wide, the SA may waste
time chasing non-issues.

It is possible that the focus may be mis-aimed.
There may be another, unrelated problem in the envi-
ronment that is discovered while trying to repeat the
user ’s reported problem. Some problems can exist in
an environment without being reported or without

affecting users. It can be frustrating for both the SA
and the user if many unrelated problems are discov-
ered and fixed along the way to resolving an issue. If
an unrelated problem is discovered that is not in the
critical path, it should be recorded so that it can be
fixed in the future. On the other hand, determining if it
is in the critical path is difficult, so fixing it may be
valuable. Alternatively, it may be a distraction or may
change the system enough to make debugging diffi-
cult.

Sometimes direct verification is not possible or
even required. If a user reports that a printer is broken
the verifier may not have to reproduce the problem by
attempting to print something herself. It may be good
enough to verify that new print jobs are queuing and
not being printed. Such superficial verification is fine
in that situation.

However, other times exact duplication is
required. The verifier might fail to reproduce the prob-
lem on her own desktop PC, and may need to dupli-
cate the problem on the user’s PC. Once the problem
is duplicated in the user’s environment, it can be use-
ful to try to duplicate it elsewhere to determine if the
problem is local or global. A lab of equipment for the
purpose of reproducing reported problems may make
supporting remote users or complicated products eas-
ier.

Phase C: Planning and Execution (‘‘Fix it’’)
In the previous phase the problem was identified.

In this phase it is fixed. This involves planning possi-
ble solutions, selecting one, and executing it.

Solution
Proposals

Solution
Selection

Execution

5 6 7

Figure 4: Flow of repair.

Step 5: Solution Proposals – ‘‘Subject Matter Expert’’

This is the point where the possible solutions are
enumerated. This role is performed by the ‘‘Subject
Matter Expert’’ or SME. Depending on the problem,
this list may be large or small. For some problems the
solution may be obvious and there is only a single pro-
posed solution. Other times there are many possible
solutions. Often verifying the problem in the previous
step helps finding possible solutions.

The ‘‘best’’ solution varies depending on con-
text. At a bank, the Help Desk’s solution to a client-
side NFS problem was to reboot. It was faster than try-
ing to fix it and it got the customer up and running
quickly. However, in a research environment, it would
make sense to try to find the source of the problem,
perhaps unmounting and re-mounting the NFS mount
that reported the problem. In our printing example,

38 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Thomas A. Limoncelli Deconstructing User Requests and the Nine Step Model

since the user indicated that they needed to leave for
the airport soon, it might be appropriate to suggest
alternative solutions such as recommending a different
printer that is known to be working. If the user is an
executive flying from New Jersey to Japan with a
stop-over in San Jose, it might be reasonable to trans-
fer the file to an office in San Jose where it can be
printed. A clerk could hand the printout to the execu-
tive while he waits for his connecting flight at the San
Jose airport.1

Some solutions are more expensive than others.
Any solution that requires a desk-side visit is gener-
ally going to be more expensive that one that can be
handled without such a visit. This kind of feedback
can be useful in making purchasing decisions. Lack of
remote support capability affects the total cost of own-
ership of a product. There are tools (commercial and
non-commercial) that add remote support to such
products.

If the SA does not know any possible solutions
the issue is escalated to other, usually more experi-
enced, SAs.
Step 6: Solution Selection

Once the possible solutions are enumerated, one
of them is selected to be attempted first (or next, if we
are looping through these steps). This role is also per-
formed by the ‘‘Subject Matter Expert’’ or SME.

Selecting the best solution tends to be either
extremely easy or extremely difficult. However, solu-
tions often can not be done simultaneously so possible
solutions must be prioritized, usually with the help of
the user.

The user should be included in this decision. The
user has a better understanding of their own time pres-
sures. If the user is a commodities trader, she or he
will be much more sensitive to downtime during the
trading day than, say, a technical writer or even a
developer (provided they’re not on deadline). If solu-
tion A fixes the problem forever but requires down-
time, and solution B is a short-term fix, the user has to
be consulted as to whether A or B is ‘‘right’’ for his or
her situation. It is the responsibility of the SME to
explain the possibilities. Some of this the SA should
know based on his or her environment. There may be
predetermined service goals for downtime during the
day. SAs on Wall Street know that downtime during
the day can cost millions, so sort-term fixes may be
selected and a long-term solution may be scheduled
for the next maintenance window. In a research envi-
ronment, the rules about downtime are more relaxed
and the long-term solution may be selected
immediately.2

When dealing with more experienced users, it
can be useful to let them participate in this phase.

1This is a true story which happened at a previous employ-
er. The printer was a very expensive plotter. Only one such
plotter was at each company location.

2Personal communication with Josh Simon.

They may have useful feedback. In the case of inexpe-
rienced users, it can be intimidating or confusing to
hear all these details. It may even unnecessarily scare
them. For example, listing every possibility from a
simple configuration error to a dead hard disk may
cause the user to panic and is a generally bad idea.
(Especially when the problem turns out to be a typo in
CONFIG.SYS)

Even though the user may be inexperienced they
should be encouraged to participate in determining
and choosing the solution. This can help educate the
user so future problem reports can flow more
smoothly or even help them solve their own problems
in the future. It can also give the user a sense of own-
ership, the warm fuzzy feeling of being part of the
team/company, not a ‘‘user.’’ That can help break
down the ‘‘us vs. them’’ mentality that is common in
industry today.

Step 7: Execution – ‘‘The Craft Worker ’’

This is where the solution is attempted. The skill,
accuracy, and speed at which this step is completed is
dependent on the skill and experience of the person
executing the solution.

The term ‘‘craft worker’’ refers to the SA, opera-
tor, or laborer that performs the technical tasks
involved. This term comes from other industries. For
example, the foreman at a construction site plans what
is done when, the craft workers (carpenters, plumbers,
etc.) do the physical work. In the telecommunications
industry, while others have received the order and
planned the provisioning of the service, the craft
workers run the cables, connect circuits, etc. In a com-
puter network environment, the Network Architect
might be responsible for planning the products and
procedures used to give service to customers, but
when a new ethernet interface needs to be added to a
router, the craft worker installs the card and configures
it.

Even the user might become the craft worker.
This is particularly common when the user is remote
and is using a system with little or no remote control.
In that case, the success or failure of this step is in the
hands of this user.

A dialog is required between the SA and the user
to make the solution work. Has the user executed the
solution properly? If not, are they causing more harm
than good?

The dialog has to be adjusted based on the skill
of the user. It can be insulting to spell out each com-
mand, space, and special character to an expert user. It
can be intimidating to a novice user if the SA rattles
off a complex sequence of commands. Asking, ‘‘What
did it say when you typed that?’’ is better than ‘‘Did it
work?’’ in these situations. Bi-directional communica-
tion is critical and the skills related to this can be a
unique specialty in our industry. Training is available.
Workshops that focus on this area often have titles that

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 39

Deconstructing User Requests and the Nine Step Model Thomas A. Limoncelli

include the buzzwords ‘‘Active Listening,’’ ‘‘Interper-
sonal Communication,’’ ‘‘Interpersonal Effective-
ness,’’ or simply ‘‘Advanced Communication.’’

At this point it is tempting to think that we are
done. However, we aren’t done until the work has
been checked and the user is satisfied. That brings us
to the final phase.

Phase D: Verification (‘‘Verify it’’)

At this point the problem should be remedied but
we need to verify that it really has been. This phase
isn’t done until the customer agrees the problem is
fixed.

Craft
Verification

User
Verification

END

98

Figure 5: Verification flow.

Step 8: Craft Verification

This is the step where the craft worker that exe-
cuted Step 7 (Execution) verifies that the actions taken
to fix the problem were successful. If the process used
to reproduce the problem in Step 4 (Problem Verifica-
tion) is not recorded properly, or not repeated exactly,
the verification will not properly happen. There is
potential that the problem still exists, but verification
fails to demonstrate this, or the problem may have
gone away but the SA does not know this.

If the problem still exists, return to Step 5 (Solu-
tion Proposals) or possibly an earlier step.

One tool that is useful in this step is ‘‘diff.’’ Cap-
ture the output generated when the problem is repro-
duced. During craft verification first one may ‘‘diff’’
the captured output against the new output. Alterna-
tively, one might copy the output that demonstrates the
problem and edit it to be the way it should be on a
working system. Or one might have a working system
to generate a sample ‘‘good’’ output. Either way,
‘‘diff’’ can then be used to compare the current output
with the corrected output.

Variations on this theme are many. Once a user
was able to provide me with a sample TeX file that
processed fine in his previous department’s TeX
installation but not on ours. Since I had an account on
the computers of his previous department, I could
establish a basis for comparison. This was extremely
useful. Eventually I was able to fix our TeX instal-
lation through successive refinement of the problem
and comparison on both systems.

Some problems do not generate output that is
well suited to ‘‘diff,’’ but perl and other tools can pare
down the output to make it more palatable to diff.

Once we were tracking reports of high latency on an
ISDN link. The problem happened only occasionally.
We set up a continuous (once per second) ‘‘ping’’
between two machines that should demonstrate the
problem. We recorded this output for a number of
hours and observed consistently good (low) latency
except occasionally there seemed to be trouble. We
built a filter in awk that would extract pings with high
latency (where latency was more than three times the
average of the first 20 pings) and would reveal missed
pings. We noticed that no pings were being missed,
but every so often a series of pings took much longer
to arrive. We used a spreadsheet to graph the latency
over time. Visualizing the results helped us notice that
the problem occurred every five minutes within a sec-
ond or two. It also happened at other times, but every
five minutes we were assured of seeing the problem.
We realized that there are protocols that do certain
operations every five minutes. Could a route table
refresh be overloading the CPU of a router? Maybe
there was a protocol that overloaded a link? By repeat-
ing the ping test between smaller and smaller portions
of the path, we were able to isolate which router was
introducing the latency. Its CPU was being overloaded
by routing table calculations, which happened every
time there was a real change to the network or every
five minutes. This agreed with our previously col-
lected data. The fact that it was an overloaded CPU,
not an overloaded network link explains why latency
increased but no packets were lost. Once we fixed the
problem with the one router we used our ping test and
filter to demonstrate that the problem had been fixed.

Step 9: User Verification/Closing – ‘‘The User’’

The final step is for the user to verify that the
issue has been resolved. If they aren’t satisfied, the job
isn’t done. This role is performed by the user them-
selves.

Presumably if the craft worker positively verified
that the solution worked (Step 8, Craft Verification)
this should not be needed. However, often users
report at this point that the problem still exists. This is
such a critical problem at some sites that the author
chose to emphasize it by making it a separate step.

User verification can reveal mistakes made in
previous phases. Communication problems include
the user not properly expressing the problem, the SA
not understanding the user, or the SA not properly
recording the problem. Errors may have crept into the
planning phase. The problem that was verified in Step
4 (Problem Verification) may have been a different
problem that also exists or the method that verified the
problem may have been incomplete. The solution may
not have fixed the entire problem or may have turned
the problem into an intermittent one.

In either case, if the user does not feel the prob-
lem is fixed, there are many possible actions. Obvi-
ously, Step 4 (Problem verification) should be
repeated to find a more accurate method to reproduce

40 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Thomas A. Limoncelli Deconstructing User Requests and the Nine Step Model

the problem. However, at this point it may be appro-
priate to return to other steps. For example, the prob-
lem could be re-classified (Step 2, Problem Classifica-
tion) or re-stated (Step 3, Problem Statement), or esca-
lated to more experienced SAs (Step 5, Solution Pro-
posals). If all else fails, one may have to resort to esca-
lating the problem to management.

It is important to note that ‘‘verification’’ isn’t to
verify that the user is happy, but that the user’s request
is satisfied. Some users are never happy. In a perfect
world, this step would be where the customer thanks
the SA, but we know we can not always expect grati-
tude. Sometimes gratitude takes odd forms because
users may not understand what is ‘‘hard’’ and what is
‘‘easy.’’ The typical example is the user that hardly
blinks when SAs work overtime to resolve a major
network issue but send compliments to the SA’s man-
agement after being so impressed that the SA fixed a
problem where the user couldn’t log in (the caps lock
key had been pressed).

Once user verification is complete, the issue is
‘‘closed.’’ If a tracking system is used, the ‘‘ticket is
closed.’’ Lastly, and possibly only in a perfect world,
the customer is told to have a nice day.

Perils of Skipping A Step

Each step is important. If any step in this process
is performed badly the process can break down. It is
my experience that many SAs skip a single step either
due to lack of training or honest mistake. I find many
stereotypes about bad SAs are the results of SAs that
skip a particular step. I have assigned Seinfeld-esque
names to each of them and list possible ways of
improving the SAs process. Reading this paper should
also help improve their process.

The Ogre: Grumpy, caustic SAs are trying to
scare users from Step 1. They are preventing the
Greeting from happening. Suggestion: Management
must set expectations for friendliness. Also, it is
important to set expectations with users.

The Mis-delegator: If you’ve called a large com-
pany’s technical support line and the person that
answered the phone refused to direct your call to the
proper department, you know what its like to deal with
a Mis-delegator. They skip Step 2. Suggestion: A for-
mal decision tree of what issues are delegated where.

The Assumer: I’ve never seen anyone habitually
skip Step 3, but I’ve seen SAs assume they understand
what the problem is when they really don’t. Sugges-
tion: An ‘‘Active Listening’’ class usually helps this
kind of SA.

The Non-Verifier: A SA that skips problem veri-
fication (Step 4) is usually off fixing the wrong prob-
lem. Recently I was panicked by the news that ‘‘the
network was down.’’ In reality, a non-technical user
couldn’t read their email and reported ‘‘the network is
down.’’ This claim hadn’t been verified by the newly

hired SA who hadn’t yet learned that certain novice
users report all problems as ‘‘the network is down.’’
The user’s email client was misconfigured. Sugges-
tion: Teach SA to replicate problems, especially before
escalating them.

The Wrong Fixer: Inexperienced SAs sometimes
are not creative, or are too creative, in proposing and
selecting solutions (Step 5 and 6). But skipping these
steps entirely results is a different issue. After being
taught how to use an Ethernet monitor (a network snif-
fer), an inexperienced but enthusiastic SA was found
dragging out the sniffer no matter what problem was
being reported. He was a Wrong Fixer. Suggestion:
Mentoring or training. Increase the breadth of solu-
tions with which the SA is familiar.

The De-Executioner: Incompetent SAs some-
times cause more harm than good when they execute
incorrectly. How embarrassing to apply a fix to the
wrong machine. However, it happens. Suggestion:
Train the SA to check what they have typed before
pressing RETURN or clicking ‘‘OK.’’ It can be useful
to include the hostname in one’s shell prompt.

The Hit-And-Run Sysadmin: This SA walks into
a user ’s office, types a couple keystrokes and waves as
he walks out the door saying, ‘‘That should fix it.’’
The users are frustrated to discover that the problem
was not fixed. In all fairness, what was typed really
should have fixed the problem but it didn’t. Sugges-
tion: Management needs to set expectations on verifi-
cation.

The Closer: Some SAs are obsessed with ‘‘clos-
ing the ticket.’’ Often SAs are judged on how quickly
they close tickets. In that case, they are pressured to
skip the final step. I borrow this name from the term
used to describe high-pressure salespeople who are
focused on ‘‘closing the deal.’’ Suggestion: Manage-
ment should not measure performance based on how
quickly issues are resolved but on a mixture of metrics
that drive the preferred behavior. Metrics should not
include time waiting for customers when calculating
how long it took to complete the request. Tracking
systems permit a request to be put into a ‘‘customer
wait’’ state while waiting for them to complete
actions, etc.

Improving The Process

With the process broken into specific steps, each
grouped into distinct phases, improvements can be
made by focusing on each step. Entire books could be
written on each step. This has happened in other pro-
fessions that have similar models (Nursing, Sales,
etc.).

In addition to focusing on improving each step,
one may also focus on improving the entire process.
Transitioning to each new step should be fluid. If the
user sees a staccato hand-off between each step, the
process can look amateurish or disjointed.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 41

Deconstructing User Requests and the Nine Step Model Thomas A. Limoncelli

Every hand-off is an opportunity for mistakes
and miscommunication. The fewer hand-offs, the
fewer opportunities for mistakes. A site small enough
to have a single SA has zero opportunities for this
class of error. However, as systems and networks grow
and become more complicated, it becomes impossible
for a single person to understand, maintain, and run
the entire network. As a system grows hand-offs
become a necessarily evil. This explains a common
perception that users have: larger SA groups are not as
good as smaller ones. However it shows an area for
improvement: when growing a SA group one should
focus on maintaining high quality hand-offs. Or, one
might choose to develop a ‘‘single point of contact’’
(SPOC) or user advocate for an issue. That results in
the users seeing a single face for the duration of a
problem.

In addition to improving the individual steps or
the flow, one can take a holistic view to seek improve-
ments. No man is an island, and no single trouble
report is an island either. The flow from problem
report to problem report is an area that should be stud-
ied. Does a user report the same issue over and over?
(Why is it recurring?) Always in a particular category?
(Is that system badly designed?) Are many users
reporting on the same issue? (Can they all be notified
at once? Can that problem receive additional priority?)
All of these scenarios can be identified and become
areas of improvement for a SA organization.

For example, during a major network outage,
many users may be trying to report problems. If users
report problems though a automatic phone response
system (‘‘Press 1 for... press 2 for...’’) usually such a
system can be programmed to announce the network
outage before listing the options. ‘‘Please note the net-
work connection to Denver is currently experiencing
trouble. Our service provider expects it to be fixed by
3 pm. Press 1 for... press 2 for....’’ This kind of
‘‘global announcement’’ can be easily provided in any
of the first three steps.

If the users talk to a different person every time
they call for support, there is less chance for the SA to
become familiar with the users’ particular needs.
There are ways of rectifying this. For example, sub-
teams of the SA staff may be designated to particular
groups of users, rather than based on which technol-
ogy they support. If the staff answering the phone is
extremely large they may be using a phone ‘‘Call Cen-
ter ’’ system where users call a single number and the
call center routes the call to an available operator.
Modern call center systems can route calls based on
caller id. They can use this functionality to, for exam-
ple, route the call to the same operator they spoke to
last time if that person is available. This means there
will be a tendency for users to be speaking to the same
person. It can be comforting to be speaking to some-
one that recognizes your voice.

A better educated user can be a better customer.
If a user understands the nine steps that will be fol-
lowed, they can be better prepared when reporting the

problem. They might have more complete information
about the problem being reported when they call
because they understand the importance of complete
information. In gathering this information, they will
have narrowed the focus of the problem report. They
might have specific suggestions on how to reproduce
the problem. They may have narrowed the problem
down to a specific machine or situation. Their addi-
tional preparation may lead them to solve the problem
on their own! Training for users should include
explaining the nine step process to facilitate interac-
tion between users and SAs.

Some things hurt the process. For example, an
ill-defined delineation of responsibilities makes it dif-
ficult for a ‘‘classifier ’’ to delegate the issue to the
right person. Inexperienced ‘‘recorders’’ don’t gather
the right information in Step 3 (Problem Statement)
which makes further steps difficult and may require
contacting the user unnecessarily. A list of standard
information to be collected for each classification will
reduce this problem.

Architectural decisions may impede the classifi-
cation process. The more complicated a system is, the
more difficult it can be to identify and duplicate the
problem. Sadly, some well accepted software design
concepts are at odds with this, such as delineating a
system into layers. For example, a printing problem in
a large UNIX network could be a problem with DNS,
lpd on the servers, lpr on the client, the wrong version
of lpr, misconfigured user environment, the network,
BOOTP, the printer’s configuration or occasionally
even the printing hardware itself. Typically many of
those layers are maintained by separate groups of peo-
ple. To diagnose the problem accurately requires the
SAs to be experts in all of those technologies, or that
the layers crosscheck each other.

Team of One

The solo SA can still benefit from using the
model to make sure that users have a well-defined way
to report problems, that problems are recorded and
verified, solutions are proposed, selected and exe-
cuted, and that both the SA and the user has verified
the problem is resolved.

Problems can be escalated to vendor support
lines. Often the solo SA’s site is part of a larger com-
pany that has a larger IT organization.

Future Work

I feel that deconstructing and analyzing the
things that SAs do is the most fruitful way to improve
our profession and turn our practice into a science. I
hope to see other processes analyzed this way. I also
look forward to competing models that describe what I
have presented here. Such an academic debate would
only help our profession. I would also like to see
extensions to the model or exploration of ways to per-
form particular stages.

42 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Thomas A. Limoncelli Deconstructing User Requests and the Nine Step Model

The System Administration Maturity Model
(SAMM) presented in [Kubi93] establishes a maturity
model for IT that is similar to CMU’s Software Matu-
rity Model. It would be fruitful to explore how SAMM
and the process described in this paper can comple-
ment each other.

This paper does not discuss metrics. A system of
metrics grounded in this model might detect areas
needing improvement. The model can be instrumented
easily to collect metrics. However, developing metrics
that drive the right behaviors is difficult. For example,
if SAs are rated by how quickly they close tickets, one
might encourage ‘‘The Closer’’ behavior described
above.

As SAs pro-actively prevent problems, reported
problems will become more serious and time consum-
ing. If average time to completion grows, does that
mean minor problems were eliminated or that SAs are
being slower at fixing all problems?

Many other questions need further research:
• What are all the ways to greet users? How do

they compare by cost, by speed (faster comple-
tion), by user preference? Is the most expensive
method the one that users prefer the most?

• How can classification be improved?
• Some problem statements can be stated con-

cisely, like the routing problem example in Step
3. Given various situations, what is the shortest
problem statement that completely describes
the issue?

• Are there times not to use these steps? For
example, if a router has lost power, there is no
need to go through the steps. One simply turns
the power back on!

• Diagnostic tools that integrate well with this
model.

• What is the best way to communicate status to
a single user? To many users?

• Which tools are good matches to this model?
What tools are missing?

• Some SAs feel that after a problem is fixed, one
should reboot the host and verify that the prob-
lem doesn’t reappear. Other operating systems
are known to have most common problems
fixed via a reboot. How do these situations fit
into the model?

Conclusion

I have presented a model that deconstructs the
process of users requesting and receiving support in
hopes of making the process repeatable, easier to
teach, and easier to improve and manage. The process
has four phases: ‘‘The Greeting,’’ ‘‘Problem Identifi-
cation,’’ ‘‘Planning and Execution,’’ ‘‘Fix and verify.’’
Each phase has distinct steps.

By following this model the process becomes
more structured and formalized. The process is some-
thing highly akin to the scientific process: observe,
hypothesize, test, repeat.

Phase Steps Role

Step 2: Problem Classification Classifier
Step 3: Problem Statement Recorder
Step 4: Problem Verification Reproducer
Step 5: Solution Proposals
Step 6: Solution Selection
Step 7: Execution Craft
Step 8: Craft Verification Craft
Step 9: User Verification / Closing Customer

Subject Matter
Expert

Greeter

Phase D
"Verify it"

Step 1: The Greeting
Phase A
"Hello!"
Phase B
"What’s
wrong?"

Phase C
"Fix it"

Figure 6: Overview of problem solution phases.

Analyzing the execution of each step as well as
viewing the entire process holistically are fruitful
sources for improving the way user requests are han-
dled in an organization. In addition, having a process
makes measurement possible.

The nine steps should be integrated into training
programs for SAs. If all SAs used the same terminol-
ogy to describe their processes it would help commu-
nication between SAs. While knowledge of the model
can improve a SA’s effectiveness by leveling the play-
ing field, it is not a panacea; nor it is a replacement for
a creativity, experience, having the right resources,
etc. Users that understand these steps can be our best
customers because they become part of the process.

Deconstructing the process has permitted a
deeper analysis of this important portion of our field.
Other parts of system administration could benefit
from similar analysis.

Acknowledgements

I would like to thank Eric Anderson, Josh Simon,
Tommy Reingold and Jay Stiles for their editing, feed-
back and suggestions.

References

[Arch93] Archer, Barrie, ‘‘Towards a POSIX Standard
for Software Administration,’’ Systems Adminis-
tration (LISA VII) Conference, Monterey, CA,
pp. 67-79, 1993.

[Bent93] Bent, Wilson, ‘‘System Administration as a
User Interface: An Extended Metaphor,’’ Sys-
tems Administration (LISA VII) Conference,
Monterey, CA, pp. 209-212, 1993.

[Hunt93] Hunter, Tim and Watanabe, Scott, ‘‘Guerrilla
System Administration,’’ Systems Administra-
tion (LISA VII) Conference, Monterey, CA, pp.
99-105, 1993.

[Kubi92] Kubicki, Kubicki, ‘‘Customer Satisfaction
Metrics and Measurement,’’ Systems Adminis-
tration (LISA VI) Conference, Long Beach, CA,
pp. 63-68, 1992.

[Kubi93] Kubicki, Carol, ‘‘The System Administra-
tion Maturity Model – SAMM,’’ Systems
Administration (LISA VII) Conference, Mon-
terey, CA, pp. 213-225, 1993.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 43

Deconstructing User Requests and the Nine Step Model Thomas A. Limoncelli

[Mani87] Maniago, Pierette, ‘‘Consulting via Mail at
Andrew,’’ Large Installation System Administra-
tors Workshop Proceedings, Philadelphia, PA,
pp. 22-23, 1997.

[McNu93a] McNutt, Dinah, ‘‘Role-based System
Administration or Who, What, Where, and
How,’’ Systems Administration (LISA VII) Con-
ference, Monterey, CA, pp. 107-112, 1993.

[Ment93] Menter, E. Scott, ‘‘Managing the Mission
Critical Environment,’’ Systems Administration
(LISA VII) Conference, Monterey, CA, pp.
81-86, 1993.

[Scha92a] Schafer, Peg, ‘‘Is Centralized System
Administration the Answer?,’’ Systems Adminis-
tration (LISA VI) Conference, Long Beach, CA,
pp. 55-61, 1992.

[Trocki] ‘‘mon’’ by Jimi Trocki, Service Monitoring
Daemon, http://ftp.kernel.org/software/mon/ .

[Zwic90] Zwicky, Elizabeth D., Steve Simmons, and
Ron Dalton, ‘‘Policy as a System Administration
Tool,’’ LISA IV Conference Proceedings, Col-
orado Springs, CO, pp. 115-124, 1990.

Author Information

Tom Limoncelli is a MTS at Bell Labs, the R&D
unit of Lucent Technologies, where he is chiefly con-
cerned with the architecture and operation of the data
network for much of Research. Tom started doing sys-
tem administration on VAX/VMS systems in 1987 and
switched to UNIX in 1991, and in 1996 decided to
focus on networks, not operating systems. He holds a
B.A. in C.S. from Drew University, Madison, New
Jersey. Reach him via U.S. Mail at Lucent Technolo-
gies, Room 2T-408, 600 Mountain Ave, PO Box 636,
Murray Hill, NJ 07974-0636. Reach him electroni-
cally at <tal@lucent.com>. His web page is http:
//www.bell-labs.com/user/tal .

44 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

