
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Design and Implementation of an Administration System
for Distributed Web Server

C. S. Yang and M. Y. Luo
National Sun Yat-Sen University, Taiwan, R.O.C.

Design and Implementation of an
Administration System for

Distributed Web Server
C. S. Yang and M. Y. Luo – National Sun Yat-Sen University, Taiwan, R.O.C.

ABSTRACT

The explosive growth of the World Wide Web has raised great concerns regarding many
challenges – performance, scalability and availability of the Web system. Consequently, Web
site builders are increasingly to construct their Web servers as distributed system for solving
these problems, and this trend is likely to accelerate. In such systems, a group of loosely-
coupled hosts will work together to serve as a single virtual server. Although the distributed
server can provide compelling performance and accommodate the growth of web traffic, it
inevitably increases the complexity of system administration. In this paper, we exploit the
advantages of Java to design and implement an administration system for addressing this
challenging problem.

Introduction

The explosive growth of the World Wide Web
(WWW for short) [1] has raised great concerns
regarding many challenges – performance, scalability
and availability of the Web system. Due to the expo-
nential growth of the World Wide Web, many popular
Web sites are being overwhelmed by huge requests
and suffer from server overload. In order to cope with
the continued increasing demand on their Web servers,
Web site managers must continually increase the
server ’s capacity for providing the desired levels of
quality of service. Upgrading the server to a more
powerful machine may only solve the problem in the
short term and might not be cost-effective in the long
term. An increasingly popular solution for these prob-
lems is to deploy a set of computers, and enable them
to work together as a single virtual server. A Web
server based on such approach can provide the scala-
bility necessary to keep up with growing client
demand at popular Web sites. It could allow additional
processing power to be dynamically added to increase
the total capacity of the server as demand grows. The
other key advantage of such approach is that one can
more easily build a server that can tolerate hardware
or software failures.

However, although such distributed server can
provide compelling performance and accommodate
the growth of web traffic, it inevitably increases the
complexity of system administration. Failures, perfor-
mance inefficiencies, content management, resource
allocation, security compromises, and accounting are
some of the problems associated with the operation of
traditional server. When the server is composed of a
group of loosely-coupled machines, the administrative
burden will be larger. Reliable operational status of
such distributed server, unless made in an automated
way, requires significant human effort for propagating

one administrative function to all nodes. In particular,
such distributed servers tend to be more heteroge-
neous, and this heterogeneity will come at the cost of
greatly increased management costs. As a result,
effective management mechanisms and tools are
required to mask the complexity and heterogeneity of
internal composition of such distributed server, and
manage the server composed of several nodes as easy
as manage a single node. In this paper, we describe the
work we are pursuing in exploiting the advantages of
Java [2] to design and implement an administration
system for addressing these problems. With the inno-
vative administration system, the Web site manager
can manage and maintain the distributed server as a
single large system. In addition, the administration
system running in the background can also make the
clustered server a better place to work.

The rest of this paper is organized as follows.
The next gives an overview of distributed Web server.
Subsequently, we describe the management problems
raised by such an environment, and then present an
overview of the architecture of proposed system. The
details of implementation are given in the next section.
Then, we discuss some related issues and compare our
system with other related works, before presenting the
conclusion and future work.

Overview of Distributed Web Server

With the rapid growth of the Internet, and the
Web in particular, it is difficult for organizations and
people running web sites to predict future demands
that clients will place on their servers. Consequently,
the Web server should be designed to be capable of
meeting the evolving demand constantly and easily.
That is, if the offered load begins to exceed the
server ’s capabilities, there should be an easy way to
scale up the system when the hardware or software of

1998 LISA XII – December 6-11, 1998 – Boston, MA 131

Design and Implementation of an Administration System . . . Yang and Luo

the existing server does not need to be replaced. In
addition, as more and more commercial applications
appear on the WWW, it has become apparent that the
function performed by these servers is critical. Conse-
quently, making these servers highly available is
another problem that is gradually getting attention.

Figure 1: Overview of Distributed Web Server.

For addressing these problems, we [3,4,5]
designed and implemented a scalable and highly avail-
able Web server. Figure 1 illustrates the overview of
our system. The entire server is composed of a group
of interconnected machines. For providing the illu-
sion of single virtual server across these machines, the
entire severs cluster should be presented to the outside
world by single addressing interface (e.g., single
Domain name). Consequently, we designed and imple-
mented a distributing mechanism to spread all incom-
ing Web requests destined for this addressing inter-
face. Such a mechanism contains the following three
functions: load balancing, failure detection, and direct-
ing. That is, when a new HTTP request arrives, some
load balancing mechanisms are invoked for selecting a
suitable node to serve the request, and such a mecha-
nism could ensure that the workload is evenly spread

among these server nodes. If one server node goes
down, or during periods of maintenance, the distribut-
ing mechanism could discover it and respond by
directing new requests to the other available nodes.
Finally, a directing mechanism is required for direct-
ing the request to the selected node, in a manner that is
transparently to the outside user. We [3,4] analyzed the
TCP/IP [6,7] and HTTP [8,9] protocols that the web is
based on, and we found out a number of ways in
which one could direct requests to a selected node.
After evaluating the tradeoff among these methods, we
[4,5] choose reroute TCP connection as the directing
method in our system. We extend the Linux kernel to
build in all mechanisms mentioned above for fulfilling
the distributor, which performs the distributing mecha-
nism in the distributed server.

One node in the system will run the modified
kernel to serve as distributor for distributing incoming
web requests; the other nodes will execute Web server
software responding the incoming HTTP request.
Each host participating in the clustered server has a
unique IP address, but only the distributor’s IP address
is associated with the domain name representing this

132 1998 LISA XII – December 6-11, 1998 – Boston, MA

Yang and Luo Design and Implementation of an Administration System . . .

web site. As a result, only the distributor’s IP address
is advertised to the outside world, so that all HTTP
requests destined for this web site will be delivered to
distributor. The distributor will forward these incom-
ing requests to the selected nodes via distributing
mechanism.

In addition, as the incoming requests may be dis-
tributed to any node in the system, we also must pro-
vide a mechanism to ensure that each server node
would look and feel identical to the requesting clients.
In other words, we must make each node with the
same capability of responding to requests for any por-
tion of resource that the web site provides. For solving
this problem, all content provided by the web site can
be served from a centralized network file system.
However, accessing data over the network file system
can be very slow due to the overhead of LAN conges-
tion. Furthermore, such a design will suffer from the
single-point-failure problem, which will make the
entire system more vulnerable. As a result, we choose
an alternative approach as the content sharing method
in our system: replicating all content on the local file
system of each server nodes.

With these mechanisms, although all machines
participating in the servers cluster are autonomous,
they will seamlessly work together to serve the
requests and provide the illusion of a single server.
The new machine can be dynamically added to
increase the total capacity of the server as demand
grows. We expect that this approach should be attrac-
tive, because it can preserve the previous financial
investment and reduce the costs of scaling the server.
The other key advantage of this architecture is that we
can more easily build a server that can tolerate hard-
ware or software failures.

Although the foregoing system can provide a
degree of high availability, the failure of distributor
will still bring down the entire web server. We
designed a primary-backup mechanism for addressing
such a problem. One backup distributor can be setup
to prevent the problem of single point failure. The pri-
mary distributor will broadcast a message periodically
in addition to perform the distributing mechanism.
The backup distributor threats the message as ‘‘heart-
beat’’ of the primary distributor. It performs the same
mechanism as just mentioned for detecting the failure
of primary distributor, and takes over the responsibil-
ity of distributing request when the primary distributor
fails.

Proposed System

Design Consideration
Although this system can accommodate growth

of web traffic, it inevitably increases the complexity of
system administration. Unlike traditional single-server
configuration in which the web site manager can has
full control on the whole system easily. When the
entire Web server is composed by a group of loosely-

coupled machines, the administrative burden of man-
aging and maintaining the entire system will be con-
siderable. Consequently, we intend to provide an
administrative mechanism for web site manager to
mask the complexity and heterogeneity of internal
composition of the distributed server, and manage the
server composed of several nodes as easy as managing
a single node. Such a mechanism should address the
following problems to which an administrator of dis-
tributed Web server would like to have answers:

• Content management. To guarantee that any
request could access any resource regardless of
the server to which that it is directed, we repli-
cate all content on the local file system of each
server nodes. However, the content of a Web
site may change over time. When a change
occurs, the system must propagate that change
throughout the entire Web site. Usually, such
changes need to be updated by manager manu-
ally. To address the problem, the proposed
administrative mechanism should enable the
web site manager to be capable of performing
functions on all nodes at once.

• Configuration. We should provide a mecha-
nism for administrator to know which node is
operating as a part of the system. In addition,
adding or removing a node should be an easy
way and not require the extensive reconfigura-
tion of all other nodes.

• Self-diagnose. If any failure or specific condi-
tion occurs in the system, the system should
automatically inform the administrator by E-
mail or other ways. Otherwise, the trouble-
shooting will become administrator’s nightmare
when they face such a complex system.

• Performance and health monitoring. We
should provide a mechanism for administrator
to monitor the status (e.g., resource utilization)
of each node, ensure the resources provided by
the web site are operational, and specified con-
tent can be delivered.

• Security Concerns. We should provide a
mechanism (i.e., watch the log files created by
each server node) to identify security problems
or other situations.

System Architecture
To fulfill the administration system, we intended

to construct a group of daemons running on each node
and enable them to cooperate for performing the
administrative functions. However, many problems
arose when we tried to implement such an idea. The
first major problem is platform heterogeneity, which
arises from the fact that we hope the proposed system
is flexible enough that each server node can use any
kind of hardware, operating system, and Web server
software. This means that these daemons that make up
the administration system must be capable of running
on different platforms. The second considerable prob-
lem is extensibility (or versioning and distribution

1998 LISA XII – December 6-11, 1998 – Boston, MA 133

Design and Implementation of an Administration System . . . Yang and Luo

problem). That is, the functionality of this administra-
tion system cannot be extended or modified without
rewriting, recompilation, reinstallation, and re-instan-
tiation of all existing daemons.

Figure 2: Overall Architecture of the Proposed System.

For tackling these problems, we decided to con-
struct the administration system by Java [2,10]. Java is
developed to support applications in a heterogeneous
environment, which requires that applications be capa-
ble of executing on a variety of hardware architectures
and operating system. This is achieved by generating
an intermediate code called bytecode, which is an
architecturally neutral format designed to be trans-
ported easily to multiple hardware and software plat-
form. Such a design can relieve both the developer
and user of concerns related to heterogeneity of the
target platforms. Thus it is the primary reason that we
choose Java to implement the administration system.
In addition, the another attractive feature of Java is the
notion of downloaded executable content (data that
contain programs that are executed upon receipt).
Base on this, we can implement each administration
function in the form of Java class instead of imple-
menting it in the daemon. All daemons distributed on
each node will download the appropriate classes from
a central location to perform the management task.
Such a design will avoid the software distribution

problem. If a new capability needs to be added, all we
have to do is to implement a new Java class. We
expect that using the capability of downloadable code
from Java should provide unlimited possibility to
enhance the function of the administration system.

The Java-based administration system is com-
posed of the following four key components: con-
troller, broker, agent, and remote console. Figure 2
illustrates the overall architecture of the proposed sys-
tem. The broker will run on each Web server node to
perform the administrative function, and monitor the
status of the managed node. The administrative func-
tions will be implement in agent, which is in the form
of Java class. One special daemon called controller
will be responsible for receiving request from admin-
istrator, and then invokes brokers to perform the dele-
gated tasks by dispatching the corresponding agent.
The remote console is a Java applet, which can be run
on any Java-enabled Web browser. The administrator
can download the remote console and interact with it
to perform management operations.

Implementation

In this section we describe the implementation
details and the current status of the proposed system.

134 1998 LISA XII – December 6-11, 1998 – Boston, MA

Yang and Luo Design and Implementation of an Administration System . . .

Control Interface
Because we made the distributor the control cen-

ter of system administration, as well as distributing
requests, we provided several administrative functions
for the system administrator to control the system such
as the following:

• Turn on/off the distributing mechanism.
• Join/remove a server node into/from the sys-

tem.
• Read the related statistical data, such as out-

standing request of each server nodes.
These functions are user-level programs written in C
language. Because all related data are located in the
kernel, we also implemented several new system calls
that provide an interface for these user-level routines
to access kernel-level data.

Controller
The controller is a standalone [11] Java applica-

tion, which runs as a background process on distribu-
tor as the control center of system administration. The
main function of controller is to respond the request
from system administrator. When the controller starts
as a process under the kernel, it forks a main thread to
register a socket on a pre-assigned TCP port and block
itself on listening mode for any incoming request.
Upon a request arriving, the main thread will create a
new working thread to carry out the requests so that it
can handle other requests waiting in queue or wait for
new requests. We expect such multithreaded imple-
mentation will allow controller to be capable of serv-
ing multiple requests simultaneously with improved
response time and throughput.

The request issued by an administrator may be
mainly classified into two categories: (1) configuring
the system (e.g., add/remove a node into/from the sys-
tem), or (2) performing a management function (e.g.,
the web site manager intend to delete or add a file) on
all nodes. For condition (1), the working thread will
invoke the administrative functions described in the
control interface. These administrative functions per-
form in the form of native method. The native method
is a mechanism in Java, which is used to call function
that is written in languages other than Java. The
administrative function will look up the kernel and
setup the related data via the corresponding system
call, which is defined in the control interface. In the
condition (2), the controller will dispatch the corre-
sponding agent to each server node for performing
delegated task. The working thread will keep on lis-
tening for the execution result of the agent and report
it to the administrator.

Broker
The broker is also a standalone Java application

program, which performs as a daemon process on each
server node in the system. The broker is composed of
two operating threads: agent thread and monitor
thread.

Agent Thread

The agent thread is responsible for accepting the
dispatched agent from controller, and executing it for
performing the delegated task. As a result, it should be
capable of loading code from a variety of resources
and provide an environment for executing it. For
addressing this, we implemented the following com-
ponents:

• Class Loader. To load code from other
sources, the Java runtime system calls a sub-
class of the ClassLoader (an abstract class in
Java), which defines an interface for the run-
time system to ask a Java program to provide a
class [12]. As a result, we implemented a spe-
cialized version of the ClassLoader as the
skeleton of the agent thread, which can load
Java class files from a variety of resources and
convert the raw data of a class into an internal
data structure representing that class.

• Agent Context. We defined and implemented
an interface called agent Context, which is
responsible for providing an environment in
which the downloaded codes executes and
interacts with broker.

• Security Manager. The capability of down-
loadable code is powerful, but it is also a poten-
tial security threat to a system and raises many
concerns. The essence of the problem is that
running programs on a computer typically
needs to access certain resources on the host.
However, if downloaded code is not careful to
restrict the access of some critical system
resources, it can also provide a malicious code
with the same ability to do mischief on the host.
In Java, the SecurityManager class is meant to
define an interface for access control [13,14].
The SecurityManager class itself is not
intended to be used directly, instead it is
intended to be subclassed and installed as the
system security manager. The Java platform is
designed in such a way that all system calls
made by a Java program must be routed
through a security manager, which can decide
whether or not certain sensitive operations
should be allowed. Consequently, we defined a
security policy and implemented a specific
security manager to support runtime security on
host environment. For example, the down-
loaded code can only access the given directory
and file on the local file system.

Monitor Thread

The primary role of the monitor thread is to mon-
itor the status of the managed node. Periodically it will
wake up and initiate a request to web server running
on the managed node. For minimizing the additional
workload added on the managed node, such a request
is designed for retrieving a small file (e.g., Home page
in our implementation)

1998 LISA XII – December 6-11, 1998 – Boston, MA 135

Design and Implementation of an Administration System . . . Yang and Luo

If the server responds normally, then the broker
will send a message to distributor. Such a message
will be treated as ‘‘heartbeat’’ of this managed node.
The distributor keeps a counter for each server node,
and such a counter will be incremented periodically.
When the distributor receives a heartbeat from one
server node, it resets the counter associated with that
server node. On selecting a server for a new arriving
request, distributor checks the counter associated with
the candidate server, which is selected by load balanc-
ing module. If the counter exceeds a ‘‘warning value,’’
which means that the server node may be either
unreachable or overburdened. Such a node will be
skipped, and the request will automatically be allo-
cated to the next most available server. If the counter
exceeds a ‘‘dead value’’ (which is a higher threshold
than warning value), the node will be declared dead
and be removed from the server cluster. The adminis-
tration system will automatically record such an event
in a log file and inform administrator by E-mail. As a
result, any failure in the clustered server can be
masked by such a mechanism, and the user from the
outside world will be unaware of it.

In addition, the monitor thread also measures the
response time that the request took from start to finish
and then performs the following algorithm:
If (RPT_NOW > RPT_LAST) then
Interval_time = RPT_NOW * Multiplier;
Else

Interval_time = RPT_LAST * Multiplier;
RPT_LAST = RPT_NOW;
Sleep(Interval_time);

RTP_NOW denote the response time of the
request issued by this ‘‘wake-up.’’ We also keep the
response time of request issued by the last ‘‘wake-up’’
in RTP_Last. Multiplier is a pre-assigned value for
calculating the Interval_time. The Interval_time is the
interval from this ‘‘wake-up’’ to next ‘‘wake-up.’’
There are two main purposes in such a design. First, it
will prevent the monitor thread from burdening the
load of web server. If the server is overloaded, the
monitor thread will decrease the frequency of probe
by discovering the longer response time. Second, fine-
grained load balancing can be achieved by such a
design. That is, if the managed server node is over-
loaded, the time of interval will be lengthened. This
means that the broker will increase the time of interval
between this heartbeat and the next. As a result, the
distributor will stop to dispatch new request to this
node, because it does not receive the heartbeat for a
long time.

Agent
The primary role of agent is to perform one dele-

gated task on all nodes according to the request of
administrator. An agent is dispatched by controller and
executes within the environment created by broker.
The agent is in the form of Java classes and is trans-
ported across the network as byte streams. It will be
reconstituted into Class objects by class loader and

runs in its own thread of execution after arriving at a
host.

We first defined an Agent class (a subclass of
Object) to be the abstract base class, and then we
implemented (inherit the Agent class) all management
functions in the form of agent. For instance, we imple-
ment an agent to visit all server nodes for updating (or
deleting) a file.

In addition, we built in a priority mechanism in
the agent system. Based on this, we can assign differ-
ent priority to different agent. For example, we imple-
mented an agent to analyze the log file of each server
node for security concern. Such an agent needs to be
executed continually in the system, but it does not
need to be executed immediately. Consequently, we
can assign a lower priority to this agent. When con-
troller receives a request for executing such agent, it
will not dispatch the agent to a server node until that
node is idle. Such a design will prevent those back-
ground jobs (i.e., housekeeping job) from burdening
the load of server node during the high-traffic periods.

Remote Console
For simplifying the system administration as

much as possible, we implement a management tool
called remote console from which an administrator
can issue management operations. The remote console
is a Graphical User Interface (GUI) in the form of
Java applet, thus it can run under any Java-enabled
browser environment. The remote console applet is
built completely on top of Java abstract window
toolkit (AWT). It will interact with the user and com-
municate with the controller over the network. At any
given time, the Web site manager can download the
remote console applet anywhere after proper authenti-
cation and then control or monitor the whole system.
The applet has a main thread for listening request from
the user. Upon receiving a request, it will create a new
working thread, and then the main thread is released
and ready for other user request. The working thread
will talk to the controller for carrying out the requests.
We implemented a prototype remote console, which
provides the following functions:

• Configuration function (e.g., join/remove a
server node, or schedules a down time for
maintenance): When one select such function,
the virtual console will inform the controller,
which will invoke the administration function
described above to accomplish the configura-
tion setup.

• Content management (e.g., add/delete or
modify a file): When one selects such a func-
tion and fills in the related variables, the remote
console will inform the controller, which will
dispatch the respective agent to each server
node for performing the job.

• Monitor the activities of the system : One can
select the monitor function to monitor the activ-
ities of each node. The controller will invoke

136 1998 LISA XII – December 6-11, 1998 – Boston, MA

Yang and Luo Design and Implementation of an Administration System . . .

the ‘‘read related data’’ function defined in the
control interface to report the related data. The
administrator also can assign some special
event auditing, and then the controller will dis-
patch an agent to each node for analyzing its
log file.

These user selectable functions are available in
the form of buttons at the bottom of the applet’s main
window. One can see the remote console and its demo
operation from our web site [15].

Discussion

In this section, we discuss some related issues
raised in our system and compare our system with
other related works.

Security
The security of our system depends fundamen-

tally on the following three layers: the Java language
itself, class loader, and the security manager. First, the
Java language has the following important features
from a security standpoint: access control for variables
and methods within classes, lack of pointers as a lan-
guage data type, and automatic garbage collection.
Second, the class loader performs further security
check to verify that the downloaded code does not vio-
late the security requirements of the Java language.
Finally, the security manager supports runtime secu-
rity on host environment.

Recently, the security manager has been aug-
mented with fine-grained access control mechanisms
that allow it to make decisions based on who signed
the downloaded code and where it was loaded from
[16]. In the future, we will use cryptographic tech-
niques (e.g., digital signature) to guarantee the
integrity of code transferred and to provide an identifi-
cation of the agent provider.

Load balancing
Given a clustered server, poor performance may

still exist, which is often due to uneven load distribu-
tion throughout the system. As a result, a good load
balancing mechanism is required for allocating incom-
ing requests in a way that utilizes the cluster resource
evenly and efficiently. At first, we [4,5] used a round
robin method as the load-balancing policy for the rea-
son of minimizing the cost associated with load bal-
ancing mechanism. This simple scheduling mecha-
nism suffers from the fact that the processing time of
individual request is not constant For instance, the
load imbalance still happens while one server node
receives five requests for 3KB HTML files, another
same server node receives five requests for 3MB
MPEG files. Consequently, we implemented an alter-
native scheduling mechanism to solve this problem.
The new mechanism keeps track of the number of out-
standing requests in each server node, and distributes
the request to the node with the least number of out-
standing requests. However, the both two mechanisms
do not always reflect the actual load because they do

not track the actual load condition on the server nodes.
A potentially better approach is to combine the two
mechanisms with some additional information about
the actual load. With the administration system, such a
multi-level load-balancing can be achieved by monitor
thread of broker. The distributor can dispatch the
incoming requests to one of the server nodes, using
the previous scheduling mechanism, unless the peri-
odic heartbeat of some of these nodes stops. The peri-
odic heartbeat is stopped when the monitor thread
detects the fact that the load of the managed server
exceeds a critical threshold. In such a case, the distrib-
utor temporarily excludes the overloaded servers from
scheduling consideration until it receives the heartbeat
again (when the load returns under the given thresh-
old).

Comparison
The distributed server concept has been used by

many research projects to address the scalability and
availability problems of Internet server. In this sec-
tion, we compare these works with our system (i.e.,
the distributed server coupled with Java-based admin-
istration system).

The NCSA scalable HTTP server is described in
[17,18]. Their architecture consists of a number of
server machines cooperating to provide the Web ser-
vice, that use the Andrew file system for sharing con-
tent provided by the Web site, and using the round
robin DNS server for distributing accesses. In contrast
to our scheme, this architecture has the following
problems. First, the round robin DNS approach will
inevitably suffer from the problems of DNS caching
effect [4,5]. In comparison, the load balancing
achieved using our routing TCP connection approach
is significantly better than that achieved using the
round robin DNS techniques. Second, it simply dis-
tributes incoming requests in a round robin fashion,
which does not consider the heterogeneity of each
request and existing load of respective machine. Fur-
thermore, if the configurations (e.g., CPU type, mem-
ory size, etc) of machines in the clustered server are
different, it is not considered in making a mapping.
Third, this architecture did not consider the problem of
failure detection and handling.

The Magic Router [19] provides transparent
access by placing a modified router before a set of
machines, which cooperate to provide a service. Their
approach is very similar to our distributor, which redi-
rects incoming Web requests via rerouting TCP con-
nection. In the modified router, they use a user level
process to intercept all IP packets and possibly modify
packets destined for WWW service for directing it to a
selected host. It allocates requests using round robin,
random, or incremental system load methods. The
main problem of this scheme is that using user space
approach will pay the performance cost of context
switching delay, and that multiple competing pro-
cesses will increase the scheduling delay by over an

1998 LISA XII – December 6-11, 1998 – Boston, MA 137

Design and Implementation of an Administration System . . . Yang and Luo

order of magnitude. Furthermore, it does not consider
the content sharing and management problem.

IBM proposed a prototype scalable and highly
web server [20] built on an IBM SP-2 [21] system.
The system architecture consists of a set of logical
front-end nodes and a set of back-end nodes. The
front-end nodes run the web daemons and are con-
nected to the external network. The back-end node
function as the server node for the sharing file system,
used by the frond-end to access the data [22]. They
use a TCP router approach to dispatch incoming
requests. This scheme requires dedicated hardware
(i.e., SP-2 system) and software. Consequently, it may
not be feasible for all Web sites. In contrast, our
approach can be built from commodity hardware and
software components. It also can be applied to any
existing web site in a manner that any kind of soft-
ware/hardware of the original server does not need to
be replaced.

In addition, several products [23,24,25] have
been announced for use as front-end nodes that per-
form distributing functions across a group of servers.
Due to space limitations, we do not describe the
details of all these products.

All these works do not address the system
administration problem. Many administration or con-
tent management operations must be done manually
on each node. It should be the nightmare of web site
manager, in particular, a number of web site cannot
afford specialized computer operations staff. In con-
trast, we think our system has advantages over other
architectures in terms of scalability, high availability,
fine-grained load balancing, and powerful and sophis-
ticated system administration functions.

Conclusion

In this paper, we demonstrate the design and
implementation of an administration system for dis-
tributed server. We exploit the advantages of Java to
construct this administration system, which provides
the solution for the automation of many tasks in sys-
tem administration and content management that usu-
ally must be done manually. We also offer an easy-to-
use GUI for web site manager to maintain and manage
the system. With the proposed system, the administra-
tor can perform functions on all nodes at once, moni-
tor the activities of Web site, and manage the entire
system as easy as facing a single host. Furthermore,
with the feature of downloaded agent, the proposed
system provides unlimited possibility to extend its
function.

In addition, the proposed system enables multi-
level control of incoming requests. The combination
of load-balancing mechanism provided by distributor
and fine-grained load balancing archived by the
administration system gives more precise control for
directing incoming requests.

The system also provides excellent high avail-
ability features, including automatically detection of
failures, and alerts in the form of log file and e-mail.
The end user will be unaware that any failure has
occurred on the server, although the aggregate capac-
ity of the server will temporarily be reduced. In addi-
tion, our approach can enable a high performance
server to be built from commodity hardware and soft-
ware components. Otherwise, it also can be applied to
any existing web site in a manner that any kind of
software/hardware of the original server does not need
to be replaced.

In the future, we will further investigate the secu-
rity issues raised by Java language and our system in
detail.

Acknowledgements

This work was supported by the National Sci-
ence Council, R.O.C., under contract no. NSC
86-2213-E-110-026 and NSC 86-2213-E-110-032.

The authors would like to thank David D. H. Lin
of IBM for his valuable suggestions and help on this
work. The authors also greatly appreciate Gretchen
Phillips for her proof reading and comments on this
paper.

Author Information

C. S. Yang received the B.S. degree in engineer-
ing science and the M.S. and Ph.D. degrees in electri-
cal engineering from National Cheng Kung Univer-
sity, Tainan, Taiwan, Republic of China, in 1976,
1984, and 1987, respectively. During 1988-1992, he
was with the Department of Electrical Engineering,
National Sun Yat-Sen University, Kaohsiung, Taiwan,
Republic of China. In 1992, he joined the faculty of
the Institute of Computer and Information Engineering
at National Sun Yat-Sen University, where he is a pro-
fessor and Chairman of the Institute now. His current
research interests include mobile computing, paral-
lel/distributed programming support environment, and
scalable architecture. Reach him at csyang@cie.
nsysu.edu.tw .

M. Y. Luo received the B.S. degree in Physics
from the National Sun Yat-Sen University, Kaohsiung,
Taiwan, Republic of China, in 1995, and the M.S.
degree in Computer Science from the Institute of
Computer and Information Engineering at National
Sun Yat-Sen University in 1997. He has been working
toward his Ph.D. degree in the Institute of Computer
and Information Engineering at National Sun Yat-Sen
University. His research interests are in the areas of
computer network, Internet technology, and parallel
and distributed system. Reach him at myluo@cie.
nsysu.edu.tw .

138 1998 LISA XII – December 6-11, 1998 – Boston, MA

Yang and Luo Design and Implementation of an Administration System . . .

References

[1] T. Berners-Lee, R. Cailliau, A. Luotonen, H.
Nielsen, A. Secret. ‘‘The World-Wide Web’’
Communications of the ACM, Aug. 1994.

[2] Java-Programming for the Internet. http://java.
sun.com .

[3] C. S. Yang, M. Y. Luo, ‘‘Design an Environment
for Scalable Web Server,’’ Proceedings of 1996
Multimedia Technology and Applications Work-
shop, pp. 107-114. Dec. 1996.

[4] M. Y. Luo, Design and Implementation of a Scal-
able and Highly Available Web Server. M.Sc.
Thesis, Institute of Computer and Information
Engineering, National Sun Yat-Sen University,
June 1997.

[5] C. S. Yang, M. Y. Luo ‘‘Design and Implementa-
tion of a Environment for Building Scalable and
Highly Available Web Server.’’ Proceedings of
1998 International Symposium on Internet Tech-
nology, pp. 124-131, April 29-May 1, 1998.

[6] G. Wright and W. R. Stevens TCP/IP Illustrated,
Volume1, Addison-Wesley, Reading, May 1994.

[7] G. Wright and W. R. Stevens TCP/IP Illustrated,
Volume2, Addison-Wesley, Reading, May 1995.

[8] T. Berners-Lee, R. Fielding, and H. Frystyk.
Hypertext Transfer Protocol – HTTP/1.0, http://
www.w3.org/hypertext/WWW/Protocols/ .

[9] T. Berners-Lee, R. Fielding, H. Frystyk, J. Get-
tys, J. C. Mogul, Hypertext Transfer Protocol –
HTTP/1.1, http://www.w3.org/hypertext/WWW/
Protocols/ .

[10] J. Rodely, Writing Java Applets, The Coriolis
Group, Inc.

[11] J. Gosling and H. McGilton. The Java Language
Environment, A White Paper, May 1996. Avail-
able via ftp://ftp.javasoft.com/docs/papers/
langenviron-ps.zip .

[12] T. Lindholm and F. Yellin, ‘‘The Java Virtual
Machine Specification.’’ Addison-Wesley, 1996.

[13] Joseph A. Bank, ‘‘Java Security,’’ Available via
http://swiss-ftp.ai.mit.edu/˜jbank/javapaper.ps

[14] F. Yellin. ‘‘Low level security in Java.’’ In
Fourth International World Wide Web Confer-
ence, Boston, MA, Dec. 1995. Available via
http://www.w3.org/pub/Conferences/WWW4/Papers/
197/40.html .

[15] http://pds1.cie.nsysu.edu.tw/WebScale/Demo/
console.html .

[16] Li Gong and Roland Schemers. ‘‘Implementing
protection domains in the Java Development Kit
1.2.’’ In The Internet Society Symposium on Net-
work and Distributed System Security, San
Diego, California, March 1998.

[17] E. D. Katz, M. Butler, and R. Mcgrath. ‘‘A Scal-
able HTTP Server: The NCSA Prototype,’’ Pro-
ceedings of First International WWW Confer-
ence. May 1994.

[18] R. McGrath T. Kwan and D.Reed. ‘‘NCSA’s
World Wide Web Server: Design and Perfor-
mance.’’ IEEE Computer, November 1995.

[19] E. Anderson, D. Patterson, and E. Brewer. The
Magicrouter, an Application of Fast Packet
Interposing, http://HTTP.CS.Berkeley.EDU/̃ eanders/
projects/magicrouter/osdi96-mr-submission.ps .

[20] D. Dias, W. Kish, R. Mukherjee, and R. Tewari,
‘‘ A Scalable and Highly Available Web Server,’’
COMPCON 1996, pp.85-92, 1996.

[21] T. Agerwala, J. Martin, J. Mirza, D. Sadler and
M. Snir, ‘‘Sp2 system Architecture,’’ IBM Sys-
tem Journal, Vol. 34, no. 2, pp. 152-184, 1995.

[22] C. R. Attanasio, M. Butrico, C. A. Polyzois, S. E.
Smith, and J. L. Peterson. ‘‘Design and Imple-
mentation of a Recoverable Virtual Shared
Disk.’’ IBM Research report RC 19843, T.J Wat-
son Research Center, Yorktown Heights, New
York, 1994.

[23] IBM Corporation. The IBM Interactive Network
Dispatcher, 1998. http://www.ics.raleigh.ibm.
com/netdispatch .

[24] ‘‘Cisco LocalDirector,’’ http://www.cisco.com/warp/
public/751/lodir/index.html .

[25] Cisco System. Scaling the Internet Web Servers:
A white paper. http://www.cisco.com/warp/public/
751/lodir/scale_wp.htm, 1997.

1998 LISA XII – December 6-11, 1998 – Boston, MA 139

140 1998 LISA XII – December 6-11, 1998 – Boston, MA

