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ABSTRACT

When deploying and administering systems infrastructures it is still common to think in
terms of individual machines rather than view an entire infrastructure as a combined whole. This
standard practice creates many problems, including labor-intensive administration, high cost of
ownership, and limited generally available knowledge or code usable for administering large
infrastructures.

The model we describe treats an infrastructure as a single large distributed virtual machine.
We found that this model allowed us to approach the problems of large infrastructures more
effectively. This model was developed during the course of four years of mission-critical
rollouts and administration of global financial trading floors. The typical infrastructure size was
300-1000 machines, but the principles apply equally as well to much smaller environments.
Added together these infrastructures totaled about 15,000 hosts. Further refinements have been
added since then, based on experiences at NASA Ames.

The methodologies described here use UNIX and its variants as the example operating
system. We have found that the principles apply equally well, and are as sorely needed, in
managing infrastructures based on other operating systems.

This paper is a living document: Revisions and additions are expected and are available at
www.infrastructures.org. We also maintain a mailing list for discussion of infrastructure design
and implementation issues – details are available on the web site.

Introduction

There is relatively little prior art in print which
addresses the problems of large infrastructures in any
holistic sense. Thanks to the work of many dedicated
people we now see extensive coverage of individual
tools, techniques, and policies [nemeth] [frisch] [stern]
[dns] [evard] [limoncelli] [anderson]. But it is difficult
in practice to find a ‘‘how to put it all together’’ treat-
ment which addresses groups of machines larger than
a few dozen.

Since we could find little prior art, we set out to
create it. Over the course of four years of deploying,
reworking, and administering large mission-critical
infrastructures, we developed a certain methodology
and toolset. This development enabled thinking of an
entire infrastructure as one large ‘‘virtual machine,’’
rather than as a collection of individual hosts. This
change of perspective, and the decisions it invoked,
made a world of difference in cost and ease of admin-
istration.

If an infrastructure is a virtual machine, then cre-
ating or reworking an infrastructure can be thought of
as booting or rebooting that virtual machine. The con-
cept of a boot sequence is a familiar thought pattern
for sysadmins, and we found it to be a relatively easy
one to adapt for this purpose.

We recognize that there really is no ‘‘standard’’
way to assemble or manage large infrastructures of
UNIX machines. While the components that make up

a typical infrastructure are generally well-known, pro-
fessional infrastructure architects tend to use those
components in radically different ways to accomplish
the same ends. In the process, we usually write a great
deal of code to glue those components together, dupli-
cating each others’ work in incompatible ways.

Because infrastructures are usually ad hoc, set-
ting up a new infrastructure or attempting to harness
an existing unruly infrastructure can be bewildering
for new sysadmins. The sequence of steps needed to
develop a comprehensive infrastructure is relatively
straightforward, but the discovery of that sequence can
be time-consuming and fraught with error. Moreover,
mistakes made in the early stages of setup or migra-
tion can be difficult to remove for the lifetime of the
infrastructure.

We will discuss the sequence that we developed
and offer a brief glimpse into a few of the many tools
and techniques this perspective generated. If nothing
else, we hope to provide a lightning rod for future dis-
cussion. We operate a web site (www.infrastruc-
tures.org) and mailing list for collaborative evolution
of infrastructure designs. Many of the details missing
from this paper should show up on the web site.

In our search for answers, we were heavily influ-
enced by the MIT Athena project [athena], the OSF
Distributed Computing Environment [dce], and by
work done at Carnegie Mellon University [sup] [afs]
and the National Institute of Standards and Technol-
ogy [depot].
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Infrastructure Thinking

We found that the single most useful thing a
would-be infrastructure architect can do is develop a
certain mindset: A good infrastructure, whether
departmental, divisional, or enterprise-wide, is a single
loosely-coupled virtual machine, with hundreds or
thousands of hard drives and CPU’s. It is there to pro-
vide a substrate for the enterprise to do its job. If it
doesn’t do that, then it costs the enterprise unneces-
sary resources compared to the benefit it provides.
This extra cost is often reflected in the attitude the
enterprise holds towards its systems administration
staff. Providing capable, reliable infrastructures which
grant easy access to applications makes users happier
and tends to raise the sysadmin’s quality of life. See
the Cost of Ownership section.

This philosophy overlaps but differs from the
‘‘dataless client’’ philosophy in a subtle but important
way: It discourages but does not preclude putting
unique data on client hard disks, and provides ways to
manage it if you do. See the Network File Servers,
Client File Access, and Client Application Manage-
ment sections.

The ‘‘virtual machine’’ concept simplified how
we maintained individual hosts. Upon adopting this
mindset, it immediately became clear that all nodes in
a ‘‘virtual machine’’ infrastructure needed to be
generic, each providing a commodity resource to the
infrastructure. It became a relatively simple operation
to add, delete, or replace any node. See the Host
Install Tools section.

Likewise, catastrophic loss of any single node
caused trivial impact to users. Catastrophic loss of an
entire infrastructure was as easy to recover from as the
loss of a single traditionally-maintained machine. See
the Disaster Recovery section.

When we logged into a ‘‘virtual machine,’’ we
expected to use the same userid and password no mat-
ter which node we logged into. Once authenticated,
we were able to travel with impunity throughout the
‘‘machine’’ across other nodes without obstruction.
This was true whether those nodes sat on a desktop or
in a server room. In practice, this idea can be modified
to include the idea of ‘‘realms’’ of security which
define who can access certain protected areas of the
virtual machine. You might want to implement a pol-
icy that disallows ordinary user logins on nodes of
class ‘‘NFS server,’’ for instance. Note that this
approach is markedly different from explicitly giving
users logins on each individual machine. By classing
machines, you ensure that when a new machine is
added to a class, the correct users will already be able
to log into it. See the Authentication Servers section.

Adds, moves, and changes consume a great deal
of time in a traditional infrastructure because people’s
workstations have to be physically moved when the
people move. Computing itself is enabling

organizations to become more dynamic – meaning
reorgs are becoming more prevalent. This makes free
seating critical in modern infrastructures.

In a ‘‘virtual machine’’ infrastructure made up of
commodity nodes, only the people need to move; they
log off of their old workstation, walk over to their new
desk, sit down, log in, and keep working. They see the
same data and binaries, accessed via the same path-
names and directory structure, no matter which node
they log into. This is well within the capabilities of
modern automounters and NFS, particularly if you are
willing to add some Perl glue and symbolic link farms.
See the Client File Access and Client Application
Management sections.

Traditionally, installing an application or patch
means visiting each machine physically or over the net
to install that package. In a ‘‘virtual machine’’ infras-
tructure, you ‘‘install’’ the package once by dropping
it into a central repository and letting it propagate out
from there to all of the hard disks. See the File Repli-
cation Servers and Client OS Update Methods sec-
tions.

The Infrastructure Bootstrap Sequence

A certain sequence of events needs to occur
while creating a virtual machine infrastructure. Most
of these events are dependent on earlier events in the
sequence. Mistakes in the sequence can cause non-
obvious problems, and delaying an event usually
causes a great deal of extra work to compensate for
the missing functionality. These relationships are often
not readily apparent in the ‘‘heat of the moment’’ of a
rollout.

We found that keeping this sequence in mind was
invaluable whether creating a new infrastructure from
vanilla machines fresh out of the box, or migrating
existing machines already in place into a more coher-
ent infrastructure.

If you are creating a new infrastructure from
scratch and do not have to migrate existing machines
into it, then you can pretty much follow the bootstrap
sequence as outlined below. If you have existing
machines which need to be migrated, see the Migrat-
ing From an Existing Infrastructure section.

As mentioned earlier, the following model was
developed during the course of four years of mission-
critical rollouts and administration of global financial
trading floors. The typical infrastructure size was
300-1000 machines, totaling about 15,000 hosts.
Nothing precludes you from using this model in much
smaller environments – we’ve used it for as few as
three machines. This list was our bible and roadmap –
while incomplete and possibly not in optimum order,
it served its purpose. See Figure 1 for an idea of how
these steps fit together.

The following sections describe these steps in
more detail.
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Directory Servers

Client File Access

Client OS Update

Client Configuration Management

Network File Servers

Client Application Management

File Replication Servers

MonitoringMail Printing
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Host Install ToolsAd Hoc Change Tools

Version Control
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Figure 1: Infrastructure Bootstrap Sequence.

1. Version Control – CVS, track who made
changes, backout

2. Gold Server – only require changes in one
place

3. Host Install Tools – install hosts without
human intervention

4. Ad Hoc Change Tools – ‘expect’, to recover
from early or big problems

5. Directory Servers – DNS, NIS, LDAP

6. Authentication Servers – NIS, Kerberos

7. Time Synchronization – NTP

8. Network File Servers – NFS, AFS, SMB

9. File Replication Servers – SUP

10. Client File Access – automount, AMD,
autolink

11. Client OS Update – rc.config, configure,
make, cfengine

12. Client Configuration Management –
cfengine, SUP, CVSup

13. Client Application Management – autosup,
autolink

14. Mail – SMTP

15. Printing – Linux/SMB to serve both NT and
UNIX

16. Monitoring – syslogd, paging

Step 1: Version Control
Prerequisites: none.

Lack of version control over your infrastructure
leads to eventual confusion. We used version control
for tracking OS configuration files, OS and applica-
tion binaries and source code, and tools and adminis-
trative scripts. We managed independent evolution of
several infrastructures, and were able to do rollbacks
or rebuilds of damaged servers and other components.

It may seem strange to start with version control.
Many sysadmins go through their entire careers with-
out it. But infrastructure building is fundamentally a
development process, and a great deal of shell, Perl,
and other code tends to get generated. We found that
once we got good at ‘‘doing infrastructures,’’ and
started getting more work thrown at us, we had several
distinct infrastructures at various stages of develop-
ment at any given time. These infrastructures were
often in different countries, and always varied slightly
from each other. Managing code threatened to become
a nightmare.

We found that CVS helped immensely in manag-
ing many different versions and branches of adminis-
trative code trees [cvs]. It took some careful thought
and some tool building to be able to cram O/S config-
uration files and administrative code into a CVS
repository and make it come back out okay on all the
right machines. It was worth the effort. In later itera-
tions, we began migrating the hundreds of megabytes
of vendor-supplied O/S code itself into the CVS
repositories, with some success. The latest version of
CVS (1.10) has additional features which would have
made this much easier, such as managing symbolic
links natively.

Since all of our code was mastered from the CVS
repository, we could actually destroy entire server
farms and rebuild them with relative impunity during
the course of development, moves, or disaster recov-
ery. This also made it much easier to roll back from
undesired changes.

In short, based on our experience, we’d strongly
advise setting up and using CVS and associated tools
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as the first step in an infrastructure development pro-
gram.

We tried various vendor-supplied version control
tools – everyone had their favorites. While many of
these seemed to offer better features than CVS, none
of them turned out to be flexible, robust, or WAN-cen-
tric enough to manage operating system code in-place
on live machines scattered all over the world. Because
of its Internet heritage and optimized use on far-flung
projects [samba] [bsd], CVS was almost perfect for
this. Where it wasn’t, we were able to get under the
hood and get what we needed in a way that we would
never have been able to with a proprietary tool.

Step 2: Gold Server
Prerequisites: version control.

We used CVS to manage only one machine in
each distinct infrastructure – the ‘‘gold server.’’
Changes to any other machine in the infrastructure had
to propagate out from the gold server. This allowed us
to make our changes reproducible, recoverable, trace-
able, and able to be ported and integrated into our
other infrastructures. The results were rewarding: We
were able to make a true migration from ‘‘systems
administrators’’ to ‘‘infrastructure engineers.’’ We
learned to abhor fixing the same thing twice, and got
to spend our time working out fun, complex puzzles of
infrastructure design (and then going home earlier).

We can’t stress enough the fact that our gold
server was passive. Understanding this concept is key
to understanding our model. The gold server served
files via NFS, SUP [sup], and CVS [cvs], and that’s
all. Client machines were responsible for periodically
contacting the gold server to obtain updates. Neither
the gold server nor any other mechanism ever
‘‘pushed’’ changes to clients asynchronously. See the
Push vs. Pull section.

The gold server was an interesting machine; it
usually was not part of the infrastructure, was usually
the only one-off in the whole infrastructure, was not
mission-critical in the sense that work stopped if it
went down, but nevertheless the entire infrastructure
grew from and was maintained by that one machine. It
was the network install server, the patch server, the
management and monitoring server, and was often the
most protected machine from a security standpoint.

We developed a rule that worked very well in
practice and saved us a lot of heartache: ‘‘Never log
into a machine to change anything on it. Always make
the change on the gold server and let the change prop-
agate out.’’

We managed the gold server by maintaining it as
an ordinary CVS sandbox, and then used SUP to repli-
cate changes to client disks. It might make more sense
today to use CVSup [polstra]. (See the File Replica-
tion section.)

We used one gold server for an entire infrastruc-
ture; this meant binaries had to be built on other

platforms and transferred to the gold server’s NFS or
replication server trees. Other infrastructures we’ve
seen use a different gold server for every hardware/OS
combination.

Step 3: Host Install Tools
Prerequisites: Gold Server.

We managed all of our desktop machines identi-
cally, and we managed our server machines the same
way we managed our desktop machines. We usually
used the vendor-supplied OS install tool to place the
initial disk image on new machines. The install meth-
ods we used, whether vendor-supplied or homebuilt,
were usually automatic and unattended. Install images,
patches, management scripts, and configuration files
were always served from the gold server.

We managed desktops and servers together
because it’s much simpler that way. We generally
found no need for separate install images, manage-
ment methodologies, or backup paradigms for the two.
Likewise, we had no need nor desire for separate
‘‘workstation’’ and ‘‘server ’’ sysadmin groups, and the
one instance this was thrust upon us for political rea-
sons was an unqualified disaster.

The only difference between an NFS server and a
user ’s desktop machine usually lay in whether it had
external disks attached and had anything listed in
/etc/exports. If more NFS daemons were needed, or a
kernel tunable needed to be tweaked, then that was the
job of our configuration scripts to provide for at
reboot, after the machine was installed. This boot-time
configuration was done on a reproducible basis, keyed
by host name or class. (See the Client OS Update and
Client Configuration Management sections.)

We did not want to be in the business of manu-
ally editing /etc/* on every NFS server, let alone every
machine – it’s boring and there are better things for
humans to do. Besides, nobody ever remembers all of
those custom tweaks when the boot disk dies on a
major NFS server. Database, NIS, DNS, and other
servers are all only variations on this theme.

Ideally, the install server is the same machine as
the gold server. For very large infrastructures, we had
to set up distinct install servers to handle the load of a
few hundred clients all requesting new installs at or
near the same time.

We usually used the most vanilla O/S image we
could, often straight off the vendor CD, with no
patches installed and only two or three executables
added. We then added a hook in /etc/rc.local or similar
to contact the gold server on first boot.

The method we used to get the image onto the
target hard disk was always via the network, and we
preferred the vendor-supplied network install tool, if
any. For SunOS we wrote our own. For one of our
infrastructures we had a huge debate over whether to
use an existing in-house tool for Solaris, or whether to
use Jumpstart. We ended up using both, plus a simple
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‘dd’ via ‘rsh’ when neither was available. This was
not a satisfactory outcome. The various tools
inevitably generated slightly different images and
made subsequent management more difficult. We also
got too aggressive and forgot our rule about ‘‘no
patches,’’ and allowed not only patches but entire
applications and massive configuration changes to be
applied during install on a per-host basis, using our in-
house tool. This, too, was unsatisfactory from a man-
agement standpoint; the variations in configuration
required a guru to sort out.

Using absolutely identical images for all
machines of a given hardware architecture works bet-
ter for some O/S’s than for others; it worked mar-
velously for AIX, for instance, since the AIX kernel is
never rebuilt and all RS/6000 hardware variants use
the same kernel. On SunOS and Solaris we simply had
to take the different processor architectures into
account when classing machines, and the image install
tool had to include kernel rebuilds if tunables were
mandatory.

It’s important to note that our install tools gener-
ally required only that a new client be plugged in,
turned on, and left unattended. The result was that a
couple of people were able to power up an entire floor
of hundreds of machines at the same time and then go
to dinner while the machines installed themselves.
This magic was usually courtesy of bootp entries on
the install server pointing to diskless boot images
which had an ‘‘install me’’ command of some sort in
the NFS-mounted /etc/rc.local. This would format the
client hard drive, ‘dd’ or ‘cpio’ the correct filesystems
onto it, set the hostname, domain name, and any other
unique attributes, and then reboot from the hard disk.

Step 4: Ad Hoc Change Tools
Prerequisites: installed hosts in broken state running
rshd, sshd, or telnetd.

Push-based ad hoc change tools such as r-com-
mands and expect scripts are detrimental to use on a
regular basis. They generally cause the machines in
your infrastructure to drift relative to each other. This
makes your infrastructure more expensive to maintain
and makes large-scale disaster recovery infeasible.
There are few instances where these tools are appro-
priate to use at all.

Most sysadmins are far too familiar with ad hoc
change, using rsh, rcp, and rdist. We briefly debated
naming this paper ‘‘rdist is not your friend.’’ If we
ever write a book about enterprise infrastructures, that
will be the title of one of the chapters. Many will
argue that using ad hoc tools to administer a small
number of machines is still the cheapest and most effi-
cient method. We disagree. Few small infrastructures
stay small. Ad hoc tools don’t scale. The habits and
scripts you develop based on ad hoc tools will work
against you every time you are presented with a larger
problem to solve.

We found that the routine use of ad hoc change
tools on a functioning infrastructure was the strongest
contributor towards high total cost of ownership
(TCO). This seemed to be true of every operating sys-
tem we encountered, including non-UNIX operating
systems such as Windows NT and MacOS.

Most of the cost of desktop ownership is labor
[gartner], and using ad hoc change tools increases
entropy in an infrastructure, requiring proportionally
increased labor. If the increased labor is applied using
ad hoc tools, this increases entropy further, and so on
– it’s a positive-feedback cycle. Carry on like this for a
short time and all of your machines will soon be
unique even if they started out identical. This makes
development, deployment, and maintenance of appli-
cations and administrative code extremely difficult
(and expensive).

Ordinarily, any use that we did make of ad hoc
tools was simply to force a machine to contact the
gold server, so any changes which did take place were
still under the gold server’s control.

After you have done the initial image install on
300 clients and they reboot, you often find they all
have some critical piece missing that prevents them
from contacting the gold server. You can fix the prob-
lem on the install image and re-install the machines
again, but time constraints may prevent you from
doing that. In this case, you may need to apply ad hoc
tools.

For instance, we usually used entries in our
machines’ rc.local or crontab, calling one or two exe-
cutables in /usr/local/bin, to trigger a contact with the
gold server (via NFS or SUP) on every boot. If any of
this was broken we had to have an ad hoc way to fix it
or the machine would never get updates.

Since the ‘‘critical piece missing’’ on newly
installed hosts could be something like /.rhosts or
hosts.equiv, that means rcp, rsh, or ssh can’t be
counted on. For us, that meant ‘expect’ [libes] was the
best tool.

We developed an expect script called ‘rabbit’
[rabbit] which allowed us to execute arbitrary com-
mands on an ad hoc basis on a large number of
machines. It worked by logging into each of them as
an appropriate user, ftp’ing a small script into /tmp,
and executing it automatically.

Rabbit was also useful for triggering a pull from
the gold server when we needed to propagate a change
right away to hundreds of machines. Without this, we
might have to wait up to an hour for a crontab entry on
all the client machines to trigger the pull instead.

Step 5: Directory Servers
Prerequisites: Host Install Tools.

You’ll need to provide your client machines with
hostname resolution, UID and GID mappings, auto-
mount maps, and possibly other items of data that are
generally read-only (this does not include
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authentication – see the Authentication Servers sec-
tion). The servers you use for these functions should
be part of your infrastructure rather than standalone.
The master copies of the data they serve will need to
be backed up somewhere easily accessible.

You’ll probably want to use DNS for hostnames,
and either use NIS or file replication for UID, GID,
and automounter mapping.

Here are some things to consider while choosing
directory services:

• Is the protocol available on every machine you
are likely to use? Some protocols, most notably
NIS+, have very limited availability.

• Does it work on every machine you are likely
to use? A poor implementation of NIS often
forced us to use file replication instead.

• Is it unnecessarily complicated? A full-featured
database with roll-back and checkpoints to per-
form IP service name to number mapping is
probably overkill.

• How much will you have to pay to train new
administrators? An esoteric, in-house system
may solve the problem, but what happens when
the admin who wrote and understands it leaves?

• Is it ready for prime-time? We used one product
for a while for authentication services that we
wanted to abandon because we kept hearing
‘‘Oh, that is available in the next release.’’

DNS, NIS and the file replication tools described
in the following sections eventually all became neces-
sary components of most of our infrastructures. DNS
provided hostname to IP address mapping, as it was
easy to implement and allowed subdomain admins to
maintain their hosts without appealing to a corporate
registry. DNS is also the standard for the Internet – a
fact often lost in the depths of some corporate environ-
ments. NIS provided only the authentication mecha-
nism, as described in the next section. NIS may not be
the best choice, and we often wanted to replace it
because of the adverse affects NIS has on a host when
the NIS servers are all unreachable.

We wanted our machines to be able to boot with
no network present. This dictated that each of our
clients be a NIS slave. Pulling the maps down on an
hourly or six-minute cycle and keeping hundreds of
‘ypserv’ daemons sane required writing a good deal of
management code which ran on each client. Other
infrastructures we’ve seen also make all clients
caching DNS servers.

We recommend that directory server hosts not be
unique, standalone, hand-built machines. Use your
host install tools to build and configure them in a
repeatable way, so they can be easily maintained and
your most junior sysadmin can quickly replace them
when they fail. We found that it’s easy to go overboard
with this though: It’s important to recognize the differ-
ence between mastering the server and mastering the
data it’s serving. Mastering the directory database

contents from the gold server generally guarantees
problems unless you always use the gold server (and
the same mastering mechanism) to make modifica-
tions to the database, or if you enforce periodic and
frequent dumps to the gold server from the live
database. Other methods of managing native directory
data we’ve seen include cases such as mastering DNS
data from a SQL database.

We used hostname aliases in DNS, and in our
scripts and configuration files, to denote which hosts
were offering which services. This way, we wouldn’t
have to edit scripts when a service moved from one
host to another. For example, we had CNAMEs of
‘sup’ for the SUP server, ‘gold’ for the gold server,
and ‘cvs’ for the CVS repository server, even though
these might all be the same machine.

Step 6: Authentication Servers
Prerequisites: Directory Servers, so clients can find
user info and authentication servers.

We wanted a single point of authentication for
our users. We used NIS. The NIS domain name was
always the same as the DNS domain name. It’s possi-
ble we could have treed out NIS domains which were
subsets of the DNS domain, but we didn’t think we
needed to.

We’d like to clarify how we differentiate
between a simple directory service and an authentica-
tion service: A directory service supplies information
through a one-way trust relationship – the client trusts
the server to give accurate information. This trust typi-
cally comes from the fact that a local configuration
file (resolv.conf, ypservers) tells the client which
server to contact. This is part of an authentication ser-
vice, but there is a fine distinction.

An authentication service supplies an interaction
that develops a two-way trust. The client uses the ser-
vice to prove itself trustworthy. The UNIX login pro-
cess provides a good example of this interaction. The
client (in this case, a person) enters a text string, the
password. This is compared to a trusted valued by the
server (the UNIX host.) If they do not match, no trust
is developed. Login is denied. If they do match, the
user is rewarded with control of a process operating
under their name and running their shell. The whole
point of an authentication service is that it allows the
client to prove itself to be trustworthy, or at least to
prove itself to be the same nefarious character it
claims.

NIS, NIS+, Kerberos, and a raft of commercial
products can be used to provide authentication ser-
vices. We went through endless gyrations trying to
find the ‘‘perfect’’ authentication service. We kept on
ending up back at NIS, not because we liked it so
much as because it was there.

It’s useful to note that there are really only four
elements to a user’s account in UNIX – the encrypted
password, the other info contained in /etc/passwd
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(such as UID), the info contained in /etc/group, and
the contents of the home directory. To make a user you
have to create all of these. Likewise, to delete a user
you have to delete all of these.

Of these four elements, the encrypted password
is the most difficult to manage. The UID and GID
mappings found in /etc/passwd and /etc/group can eas-
ily be distributed to clients via file replication (see the
File Replication section). The home directory is usu-
ally best served via NFS and automounter (see the
Client File Access section).

In shadow password implementations, the
encrypted password is located in a separate database
on the local host. In implementations such as NIS and
Kerberos, the encrypted password and the mechanisms
used to authenticate against it are moved totally off the
local host onto a server machine.

We wanted to develop a single point of authenti-
cation for our users. This meant either replicating the
same /etc/passwd, /etc/group, and /etc/shadow to all
machines and requiring users to always change their
password on a master machine, or using NIS, or
installing something like Kerberos, or putting together
an in-house solution.

It’s interesting to note that even if we had used
Kerberos we still would have needed to replicate
/etc/passwd and /etc/group; Kerberos does not provide
the information contained in these files.

What we usually ended up doing was using NIS
and replicating /etc/passwd and /etc/group with mini-
mal contents. This way we were able to overlay any
local changes made to the files; we didn’t want local
users and groups proliferating.

In keeping with the ‘‘virtual machine’’ philoso-
phy, we always retained a one-to-one mapping
between the borders of the DNS and NIS domains.
The NIS domain name was always the same as the
DNS domain name. This gave us no leeway in terms
of splitting our ‘‘virtual machines’’ up into security
realms, but we found that we didn’t want to; this kept
things simple.

If you do want to split things up, you might try
subclassing machines into different DNS subdomains,
and then either use NIS+ subdomains, hack the way
NIS generates and distributes its maps to create a sub-
domain-like behavior, or use different Kerberos realms
in these DNS subdomains. Either way, these DNS sub-
domains would be children of a single parent DNS
domain, all of which together would be the virtual
machine, with only one gold server to tie them all
together.

A note about username strings and keeping users
happy: In today’s wired world, people tend to have
many login accounts, at home, at work, and with uni-
versities and professional organizations. It’s helpful
and will gain you many points if you allow users to
pick their own login name, so they can keep all of

their worlds synchronized. You don’t have to look at
and type that name every day – they do, over and over.
They will think of you every time. You want that
thought to be a positive one.

Step 7: Time Synchronization
Prerequisites: Directory Servers, so clients can find
the time servers.

Without good file timestamps, backups don’t
work correctly and state engines such as ‘make’ get
confused. It’s important not to delay implementing
time synchronization, probably by using NTP.

Many types of applications need accurate time
too, including scientific, production control, and finan-
cial. It’s possible for a financial trader to lose hun-
dreds of thousands of dollars if he refers to a worksta-
tion clock which is set wrong. A $200 radio clock and
NTP can be a wise investment.

Shy away from any tool which periodically pops
machines into the correct time. This is the solution
implemented on several PC based systems. They get
their time when they connect to the server and then
never update again. It works for these systems because
they do not traditionally stay up for long periods of
time. However, when designing for the infrastructure,
it helps to think that every system will be up 24x7 for
months, or even years, between reboots. Even if you
put a ‘‘time popper’’ program in crontab, bizarre
application behavior can still result if it resets the
clock backwards a few seconds every night.

Eventually, you will implement NTP [ntp]. It is
only a matter of time. NTP has become a standard for
time services in the same way that DNS has become a
standard for name services. The global NTP stratum
hierarchy is rooted at the atomic clocks at the NIST
and Woods Hole. You can’t get much more authorita-
tive. And NTP drifts clocks by slowing them down or
speeding them up – no ‘‘popping.’’

If your network is connected to the Internet, your
ISP may provide a good NTP time source.

Even if you need to run an isolated set of internal
time servers, and sync to the outside world by radio
clock or wristwatch, NTP is still the better choice
because of the tools and generic knowledge pool
available. But you may want to have only one stratum
1 server in this case; see the NTP docs for an explana-
tion. You should also prefer a radio clock over the
wristwatch method – see the trader example above.

For large infrastructures spread over many sites,
you will want to pick two or three locations for your
highest stratum NTP servers. Let these feed regional
or local servers and then broadcast to the bottom tier.

Step 8: Network File Servers
Prerequisites: Directory Servers, so clients can find
the file servers, Authentication Servers, so clients can
verify users for file access, Time Servers, so clients
agree on file timestamps.
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We kept our file servers as generic and identical
to each other as possible. There was little if any dif-
ference between a client and server install image. This
enabled simple recovery. We generally used external
hardware RAID arrays on our file servers. We often
used High-Availability NFS servers [blide]. We pre-
ferred Samba [samba] when serving the same file
shares to both UNIX and Windows NT clients. We
were never happy with any ‘‘corporate’’ backup solu-
tions – the only solution we’ve ever come close to
being satisfied with on a regular basis is Amanda
[amanda].

The networked UNIX filesystem has been rein-
vented a few times. In addition to NFS we have AFS,
DFS, and CacheFS, to name a few. Of these, only NFS
was available on all of our client platforms, so for us it
was still the best choice. We might have been able to
use AFS in most cases, but the expense, complexity,
and unusual permissions structure of AFS were obsta-
cles to its implementation. And if AFS is complex,
then DFS is even more so.

One interesting network filesystem is Coda
[coda]. Currently under development but already pub-
licly available, this non-proprietary caching filesystem
is freely available, and already ported to many operat-
ing systems, including Linux. It supports disconnected
operation, replicated servers, and Kerberos authentica-
tion. These features when added together may make it
worth the complexity of implementation.

An open-source implementation of CacheFS
would also be good.

As mentioned before, we kept the disk image dif-
ferences between a desktop client and an NFS server
to a minimum. With few exceptions, the only differ-
ences between a desktop and server machine were
whether it had external disks attached and the speed
and number of processors. This made maintenance
easy, and it also made disaster recovery simple.

Step 9: File Replication Servers
Prerequisites: Directory Servers, Time Synchroniza-
tion.

Some configuration files will always have to be
maintained on the client’s local hard drive. These
include much of /etc/*, and in our case, the entire
/usr/local tree. How much you keep on your local disk
is largely determined by how autonomous you want
your machines to be. We periodically replicated
changed files from the gold server to the local hard
disks.

We needed a fast, incremental and mature file
replication tool. We chose Carnegie Mellon’s SUP
(Software Upgrade Protocol) [sup]. We would have
preferred a flexible, portable, open-source caching file
system, but since none were available we opted for
this ‘‘poor man’s caching’’ instead. It worked very
well.

Aside from the advantage of incremental
updates, SUP offered a strict ‘‘pull’’ methodology. The
client, not the server, chose the point in time when it
would be updated. (See the Push vs. Pull section.)

Using this mechanism, we were able to synchro-
nize the files in /etc on every client every six minutes,
and the contents of /usr/local every hour. (This on a
trading floor with over 800 clients.)

We also replicated selected applications from the
NFS servers to the client hard disks. (See the Client
Application Management section.)

We used SUP to replicate most of the files that
NIS normally manages, like /etc/services and the auto-
mounter maps. We only used NIS to manage authenti-
cation – the passwd map.

A more recent development, familiar to many
open source developers and users, is CVSup [polstra].
With ordinary SUP, we had to do a ‘cvs update’ in the
replication source tree on the gold server to check the
latest changes out of the CVS repository. We then used
SUP jobs in crontab to pull the changes from there
down to the client. Today it may make more sense to
skip the intermediary step, and instead use CVSup to
pull files and deltas directly from the CVS repository
into the live locations on the client hard disks.

Step 10: Client File Access
Prerequisites: Network File Servers, File Replication
Servers.

We wanted a uniform filesystem namespace
across our entire virtual machine. We were able to
move data from server to server without changing
pathnames on the clients. We also were able to move
binaries from servers to client disks or back without
changing the pathnames the binaries were executed
from. We used automounters and symlink farms exten-
sively. We would have liked to see good open-source
caching filesystems.

CacheFS was ruled out as a general solution
because of its limited heterogeneity. We might have
been able to use CacheFS on those clients that offered
it, but that would have required significantly different
management code on those clients, and time con-
straints prevented us from developing this further.

In keeping with the virtual machine concept, it is
important that every process on every host see the
exact same file namespace. This allows applications
and users to always find their data and home directo-
ries in the same place, regardless of which host they’re
on. Likewise, users will always be able to find their
applications at the same pathname regardless of hard-
ware platform.

If some clients have an application installed
locally, and others access the same application from a
file server, they both should ‘‘see’’ the application in
the same place in the directory tree of the virtual
machine. We used symbolic link ‘‘farms’’ in the /apps
directory that pointed to either /local/apps or
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/remote/apps, depending on whether the application
was installed locally or remotely. The /local/apps
filesystem was on the client hard disk, while
/remote/apps was composed of automounted filesys-
tems from NFS servers. [mott]

One tiny clue to better understanding of our
model is this: the directories served by an NFS server
were always served from /local/apps on the server
itself. Also, /usr/local was always a symlink to /local.
One of our tenets was that all data unique to a machine
and not part of the OS be stored in /local. This way we
could usually grab all of the critical and irreplaceable
uniqueness of a machine by grabbing the contents of
/local. (OS-related uniqueness goes in /var, as always.)

The automounter has some pitfalls: Indirect
mounts are more flexible than direct mounts, and are
usually less buggy. If a vendor ’s application insists
that it must live at /usr/appname and you want to keep
that application on a central server, resist the tempta-
tion to simply mount or direct automount the directory
to /usr/appname. UNIX provides the symbolic link to
solve this problem. Point the /usr/appname symlink at
an indirect mapped /remote/apps (or similar) directory.
Similarly, a common data directory (perhaps, /data)
managed by an indirect map could be defined for any
shared data that must be writable by the clients.

Another serious danger is the use of /net. Auto-
mounters have the ability to make all exports from a
server appear at /net/servername or something similar.
This is very handy for trouble-shooting and quick
maintenance hacks. It can, however, put an oppressive
load on the server if the server is exporting a large
number of filesystems – cd’ing to /net/scotty will gen-
erate a mount request for all of scotty’s filesystems at
once. Worse, it reduces the flexibility of your infras-
tructure, because host names become a part of the file
name. This prevents you from moving a file to a new
server without changing every script and configuration
file which refers to it.

sunos_4.1.3_sparc

sunos_4.1.4_sparc

sunos_2.5.1_ultra

aix_3.2.5_rs6000

etc

man

bin

lib

usr/local

Figure 2: Example of a Heterogeneous /usr/local SUP
Server Tree.

It was difficult for us to come up with a hetero-
geneous filesystem naming convention. We finally set-
tled on installing a script (/usr/local/bin/platform) on
every machine which, when run, spit out a formatted
version of the output of ‘uname -a’. The naming

convention we used looked something like
‘sunos_4.1.4_sparc’, ‘sunos_5.1.5_ultra’, and ‘aix_3.
2.5_rs6000’. This script was called from everywhere;
automounters, boot scripts, application startup scripts,
and the makefile described below. We used this plat-
form string in many places, including heterogeneous
directory paths. See Figure 2. We made ‘platform’ a
script, not a simple data file, to guard against the pos-
sibility that out-of-date information would cause
errors.

Step 11: Client O/S Update
Prerequisites: Network File Servers, File Replication
Servers.

Vendors are waking up to the need for decent,
large scale operating systems upgrade tools. Unfortu-
nately, due to the ‘‘value added’’ nature of such tools,
and the lack of published standards, the various ven-
dors are not sharing or cooperating with one another.
It is risky to use these tools even if you think you will
always have only one vendor to deal with. In today’s
business world of mergers and reorgs, single vendor
networks become a hodge-podge of conflicting hetero-
geneous networks overnight.

We started our work on a homogeneous network
of systems. Eventually we added a second, and then a
third OS to that network. We took about five months
adding the second OS. When the third came along, we
found that adding it to our network was a simple mat-
ter of porting the tools – it took about a week. Our pri-
mary tool was a collection of scripts and binaries that
we called Hostkeeper.

Hostkeeper depended on two basic mechanisms;
boot time configuration and ongoing maintenance. At
boot, the Hostkeeper client contacted the gold server
to determine whether it had the latest patches and
upgrades applied to its operating system image. This
contact was via an NFS filesystem (/is/conf) mounted
from the gold server.

We used ‘make’ for our state engine. Each client
always ran ‘make’ on every reboot. Each OS/hardware
platform had a makefile associated with it
(/is/conf/bin/Makefile.{platform}). The targets in the
makefile were tags that represented either our own
internal revision levels or patches that made up the
revision levels. We borrowed a term from the
aerospace industry – ‘‘block 00’’ was a vanilla
machine, ‘‘block 10’’ was with the first layer of
patches installed, and so on. The Makefiles looked
something like Listing 1. Note the ‘touch’ commands
at the end of each patch stanza; this prevented ‘make’
from running the same stanza on the same machine
ever again. (We ran ‘make’ in a local directory where
these timestamp files were stored on each machine.)

We had mechanisms that allowed us to manage
custom patches and configuration changes on selected
machines. These were usually driven by environment
variables set in /etc/environment or the equivalent.
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The time required to write and debug a patch
script and add it to the makefile was minimal com-
pared to the time it would have taken to apply the
same patch to over 200 clients by hand, then to all
new machines after that. Even simple changes, such
as configuring a client to use a multi-headed display,
were scripted. This strict discipline allowed us to
exactly recreate a machine in case of disaster.

For operating systems which provided a patch
mechanism like ‘pkgadd’, these scripts were easy to
write. For others we had our own methods. These days
we would probably use RPM for the latter [rpm].

You may recognize many of the functions of
‘cfengine’ in the above description [burgess]. At the
time we started on this project, ‘cfengine’ was in its
early stages of development, though we were still
tempted to use it. If we had this to do again it’s likely
‘cfengine’ would have supplanted ‘make’.

block00: localize
block10: block00 14235-43 xdm_fix01
14235-43 xdm_fix01:

/is/conf/patches/$(PLATFORM)/$@/install_patch
touch $@

localize:
/is/conf/bin/localize
touch $@

Listing 1: Hostkeeper makefile example.

root:all:1 2 * * * [-x /usr/sbin/rtc] && /usr/sbin/rtc -c > /dev/null 2>&1
root:all:0 2 * * 0,4 /etc/cron.d/logchecker
root:all:5 4 * * 6 /usr/lib/newsyslog
root:scotty:0 4 * * * find . -fstype nfs -prune -o -print >/var/spool/lsR
stevegt:skywalker:10 0-7,19-23 * * * /etc/reset_tiv
[...]

Listing 2: Crontab.master file.

One tool that bears closer scrutiny is Sun
Microsystems’ Autoclient. The Autoclient model can
best be described as a dataless client whose local files
are a cached mirror of the server. The basic strategy of
Autoclient is to provide the client with a local disk
drive to hold the operating system, and to refresh that
operating system (using Sun’s CacheFS feature) from
a central server. This is a big improvement over the
old diskless client offering from Sun, which over-
loaded servers and networks with NFS traffic.

One downside of Autoclient is its dependence on
Sun’s proprietary CacheFS mechanism; another is its
scalability. Eventually, the number of clients will
exceed that which one server can support. This means
adding a second server, then a third, and then the prob-
lem becomes one of keeping the servers in sync.
Essentially, Autoclient does not solve the problem of
system synchronization; it delays it. However, this
delay may be exactly what the system administrator
needs to get a grip on a chaotic infrastructure.

Step 12: Client Configuration Management
Prerequisites: Network File Servers, File Replication
Servers.

In a nutshell, client configuration is localization.
This includes everything that makes a host unique, or
that makes a host a participant of a particular group or
domain. For example, hostname and IP addresses must
be different on every host. The contents of
/etc/resolv.conf should be similar, if not identical, on
hosts that occupy the same subnet. Automount maps
which deliver users’ home directories must be the
same for every host in an authentication domain. The
entries in client crontabs need to be mastered from the
gold server.

Fortunately, if you have followed the roadmap
above, most of this will fall into place nicely. If you
fully implemented file replication and O/S update,
these same mechanisms can be used to perform client
configuration management. If not, do something now.
You must be able to maintain /etc/* without manually
logging into machines, or you will soon be spending
all of your time pushing out ad hoc changes.

Earlier, we mentioned the Carnegie Mellon Soft-
ware Update Protocol (SUP). SUP replicated files for
us. These files included the /etc/services file, auto-
mount maps, many other maps that are normally
served by NIS, and the typical suite of gnu tools and
other open-source utilities usually found in /usr/local
on UNIX systems. In each case, we generalized what
we could so every client had identical files. Where this
was not practical (clients running cron jobs, clients
acting as DNS secondaries, etc.), we applied a simple
rule: send a configuration file and a script to massage
it into place on the client’s hard disk. SUP provided
this ‘‘replicate then execute’’ mechanism for us so we
had little need to add custom code.
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In most cases we ran SUP from either a cron job
or a daemon script started from /etc/inittab. This gen-
erally triggered replications every few minutes for fre-
quently-changed files, or every hour for infrequently
changed files.

The tool we used for managing client crontabs
was something we wrote called ‘crontabber’ [crontab-
ber]. It worked by looking in /etc/crontab.master
(which was SUPed to all client machines) for crontab
entries keyed by username and hostname. The script
was executed on each client by SUP, and execution
was triggered by an update of crontab.master itself.
The crontab.master file looked something similar to
Listing 2.

Step 13: Client Application Management
Prerequisites: Client Configuration Management.

Everything up to this point has been substrate for
applications to run on – and we need to remember that
applications are the only reason the infrastructure
exists in the first place. This is where we make or
break our infrastructure’s perception in the eyes of our
users.

We wanted location transparency for every appli-
cation running on any host in our ‘‘virtual machine.’’
We wanted the apparent location and directory struc-
ture to be identical whether the application was
installed on the local disk or on a remote file server.
To accomplish this, we used SUP to maintain identical
installations of selected applications on local disks,
automounted application directories for NFS-served
apps, and Perl-managed symbolic link farms to glue it
all together [mott].

# create from
#
/apps /remote/apps
/apps /local/apps
/apps/pub /remote/apps/pub
#
/prd/sw /net/${HOMESERVER}/export/apps${HOE}/prd/sw
/prd/sw /local/apps1/prd/sw
[...]

Listing 3: autolink.map file.

/apps/CAD-----> /local/apps/CAD /remote/apps/CAD (ignored)
/apps/TeX -----> /remote/apps/TeX

Listing 4: /apps link farm examples.

A heterogeneous and readily available caching
filesystem would have been much simpler to under-
stand, and as mentioned before we originally consid-
ered AFS.

We made all applications available for execution
on all hosts, regardless of where the application bina-
ries physically resided. At first, it may seem strange
that a secretary might have the ability to run a CAD

program, but an ASIC engineer will certainly appreci-
ate the fact that, when their own workstation fails, the
secretary’s machine can do the job (see the Disaster
Recovery section).

We executed our apps from /apps/applica-
tion_name. We had the automounter deliver these
binaries, not to /apps, but to /remote/apps/ applica-
tion_name. We then created a symbolic link farm in
/apps. The link farm simply pointed to the
/remote/apps directories of the same name.

To support the extra speed we needed for some
applications, we used SUP to replicate the application
from the NFS server into the /local/apps/applica-
tion_name directory on the client hard disk. The Perl
code which drove SUP referred to a flat file (/etc/auto-
sup.map) which listed applications to be replicated on
particular machines. We inspiringly dubbed this code
‘autosup’ [autosup]. The autosup.map file looked
something like:

scotty: elm wingz escapade metrics
luna: elm wingz
[...]

After ‘autosup’ updated the local copies of applica-
tions, possibly adding or deleting entire apps, another
Perl script, ‘autolink’, updated the symbolic link farm
to select the ‘‘best’’ destination for each /apps sym-
link. The selection of the best destination was made by
simply ordering the autolink targets (in
/etc/autolink.map) so that more preferential locations
overrode less preferential locations. The autolink.map
file usually looked something like Listing 3. The triv-
ial example in Listing 4 shows how the symbolic links
in /apps would look with a CAD package installed
locally, and TeX installed on a file server.

The ‘autosup’ script was usually triggered by a
nightly crontab which SUPed down the new auto-
sup.map, and ‘autolink’ was usually triggered by
‘autosup’.

It is important to note that part of application
management is developer management. At first, many
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of our application developers loved to have their pro-
grams write files in the directory tree that contained
their program, and they tended to hardcode pathnames
to other binaries. We consider this a bad thing. For our
in-house developers we managed to convince them to
refer to environment variables for where data and
binaries lived. For external applications we had to do
tricks with symlinks.

Step 14: Mail
Prerequisites: Client Configuration Management.

Now that you have a way of managing send-
mail.cf on client hard disks you can set up mail. Avoid
like the plague any attempts to use non-SMTP mail
solutions – the world has gone SMTP, and there are
now many fine GUI SMTP mail readers available.
Proprietary solutions are no longer necessary for user-
friendliness. We used NFS-mounted mail spools: POP
or IMAP would probably be the better choice today.

Step 15: Printing
Prerequisites: Client Configuration Management.

During the first few days after any new infras-
tructure went live, we usually spent about 80% of our
time fixing unforeseen printing problems. Printers
will eat your lunch. Assuming you can pick your
printers, use high-quality postscript printers exclu-
sively.

The best print infrastructure we’ve seen by far is
the one a major router vendor uses internally – 90
Linux print servers worldwide spooling to 2000 print-
ers, seamlessly and reliably providing print service to
thousands of UNIX and NT clients via Samba
[samba]. The details of this infrastructure have not
been released to the public as of the time this paper
goes to press – check www.infrastructures.org for an
update.

Step 16: Monitoring
Prerequisites: Client Application Management.

When all of the above was done, we found very
little monitoring was needed – the machines pretty
much took care of themselves. We never got around to
setting up a central syslogd server, but we should
have. We only had paging working spottily at best.
These days, with most alpha paging vendors providing
free e-mail gateways, this should be much easier. Oth-
erwise, you may want to take a look at the Network
Paging Protocol (SNPP) support in HylaFAX.
[hylafax]

Migrating From an Existing Infrastructure

Think of a migration as booting a new virtual
machine, and migrating your old hardware into the
new virtual machine.

The first infrastructure we used to develop this
model was in fact one that had started chaotically, as
four desktop machines that were administered by the
application developers who sat in front of them. As

the internal application they developed became suc-
cessful, the infrastructure grew rapidly, and soon con-
sisted of 300 machines scattered worldwide. At the
time we embarked on this effort, these 300 machines
were each unique, standalone hosts – not even DNS or
NIS were turned on. This state of affairs is probably
all too typical in both large and small organizations.

If you are migrating existing machines from an
old infrastructure (or no infrastructure) into a new
infrastructure, you will want to set up the infrastruc-
ture-wide services (like NIS, DNS, and NFS) first.
Then, for each desktop host:

1. Create a replacement host using your chosen
‘‘Host Install’’ tool as described in this paper.

2. Have the user log off.
3. Migrate their data from their old workstation to

an NFS server.
4. Add the new NFS-served directory to the auto-

mounter maps so the new host can find it.
5. Drop the new client on the user’s desk.

This may sound impossible if each of your desk-
top hosts have unique filesystem layouts, or still have
a need to retain unique data on their own hard disk.
But we were able to accommodate some of these vari-
ations with some thought, and get rid of the rest. Some
of the ways we did this are described in the sections
above.

We found it to be much easier and more effective
in the long run to roll through an existing infrastruc-
ture replacing and rebuilding hosts, rather than trying
to converge a few files at a time on the existing hosts.
We tried both. Where we replaced hosts, a 100-host
infrastructure could be fully converted to the new
world order in under three months, with one sysadmin
working at it half-time. User impact was limited to the
time it took to swap a host. Where we instead tried to
bring order out of chaos by changing one file at a time
on all hosts in an infrastructure, we were still converg-
ing a year later. User impact in this case was in the
form of ongoing and frustrating changes to their
world, and prolonged waits for promised functionality.

Disaster Recovery

The fewer unique bytes you have on any host’s
hard drive, the better – always think about how you
would be able to quickly (and with the least skilled
person in your group) recreate that hard drive if it
were to fail.

The test we used when designing infrastructures
was ‘‘Can I grab a random machine and throw it out
the tenth-floor window without adversely impacting
users for more than 10 minutes?’’ If the answer to this
was ‘‘yes,’’ then we knew we were doing things right.

Likewise, if the entire infrastructure, our ‘‘virtual
machine,’’ were to fail, due to power outage or terror-
ist bomb (this was New York, right?), then we should
expect replacement of the whole infrastructure to be
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no more time-consuming than replacement of a con-
ventionally-managed UNIX host.

We originally started with two independent
infrastructures – developers, who we used as beta
testers for infrastructure code; and traders, who were
in a separate production floor infrastructure, in another
building, on a different power grid and PBX switch.
This gave us the unexpected side benefit of having
two nearly duplicate infrastructures – we were able to
very successfully use the development infrastructure
as the disaster-recovery site for the trading floor.

In tests we were able to recover the entire pro-
duction floor – including servers – in under two hours.
We did this by co-opting our development infrastruc-
ture. This gave us full recovery of applications, busi-
ness data, and even the contents of traders’ home
directories and their desktop color settings. This was
done with no hardware shared between the two infras-
tructures, and with no ‘‘standby’’ hardware collecting
dust, other than the disk space needed to periodically
replicate the production data and applications into a
protected space on the development servers. We don’t
have space here to detail how the failover was done,
but you can deduce much of it by thinking of the two
infrastructures as two single machines – how would
you allow one to take on the duties and identity of the
other in a crisis? With an entire infrastructure man-
aged as one virtual machine you can have this kind of
flexibility. Change the name and reboot...

If you recall, in our model the DNS domain
name was the name of the ‘‘virtual machine.’’ You
may also recall that we normally used meaningful
CNAMES for server hosts – gold.mydom.com,
sup.mydom.com, and so on. Both of these facts were
integral to the failover scenario mentioned in the pre-
vious paragraph, and should give you more clues as to
how we did it.

Push vs. Pull

We swear by a pull methodology for maintaining
infrastructures, using a tool like SUP, CVSup, or
‘cfengine’. Rather than push changes out to clients,
each individual client machine needs to be responsible
for polling the gold server at boot, and periodically
afterwards, to maintain its own rev level.

Before adopting this viewpoint, we developed
extensive push-based scripts based on rsh, rcp, and
rdist.

The problem we found with the r-commands was
this: When you run an r-command based script to push
a change out to your target machines, odds are that if
you have more than 30 target hosts one of them will
be down at any given time. Maintaining the list of
commissioned machines becomes a nightmare.

In the course of writing code to correct for this,
you will end up with elaborate wrapper code to deal
with: timeouts from dead hosts; logging and retrying

dead hosts; forking and running parallel jobs to try to
hit many hosts in a reasonable amount of time; and
finally detecting and preventing the case of using up
all available TCP sockets on the source machine with
all of the outbound rsh sessions.

Then you still have the problem of getting what-
ever you just did into the install images for all new
hosts to be installed in the future, as well as repeating
it for any hosts that die and have to be rebuilt tomor-
row.

After the trouble we went through to implement
r-command based replication, we found it’s just not
worth it. We don’t plan on managing an infrastructure
with r-commands again, or with any other push mech-
anism for that matter. They don’t scale as well as pull-
based methods.

Cost of Ownership

Cost of ownership is priced not only in dollars
but in lives. A career in Systems Administration is all
too often a life of late nights, poor health, long week-
ends, and broken homes.

We as an industry need to raise the bar for
acceptable cost of administration of large numbers of
machines. Most of the cost of systems administration
is labor [gartner]. We were able to reduce this cost
enough that, while the number of machines we were
administering grew exponentially, our group only
grew linearly. And we all got to spend more nights and
weekends at home.

While we were unable to isolate any hard num-
bers, to us it appears that, by using the techniques
described in this paper, systems administration costs
can be reduced by as much as an order of magnitude,
while at the same time providing higher levels of ser-
vice to users and reducing the load on the systems
administrators themselves.

SysAdmin or Infrastructure Architect?

There’s a career slant to all of this.

Infrastructure architects typically develop them-
selves via a systems administration career track. That
creates a dilemma. A systems administration back-
ground is crucial for the development of a good infras-
tructure architect, but we have found that the skillset,
project time horizon, and coding habits needed by an
infrastructure architect are often orthogonal to those of
a systems administrator – an architect is not the same
animal as a senior sysadmin.

We have found, in the roles of both manager and
contractor, that this causes no end of confusion and
expense when it comes to recruiting, interviewing, hir-
ing, writing and reading resumes, and trying to market
yourself. Recruiters generally don’t even know what
an ‘‘infrastructure architect’’ is, and far too often
assume that ‘‘senior sysadmin’’ means you know how
to flip tapes faster. Most of us at one time or another
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have been restricted from improving a broken infras-
tructure, simply because it didn’t fit within our job
description.

In order to improve this situation, we might sug-
gest that ‘‘infrastructure architect’’ be added to the
SAGE job descriptions, and USENIX and affiliate
organizations help promulgate this ‘‘new’’ career path.
We’d like to see more discussion of this though. Is an
IA an advanced version of a sysadmin, or are they
divergent?

There seems to us to be a mindset – more than
skillset – difference between a sysadmin and an archi-
tect.

Some of the most capable systems administrators
we’ve known are not interested in coding (though they
may be skilled at it). When given a choice they will
still spend most of their time manually changing
things by logging into machines, and don’t mind
repetitive work. They tend to prefer this direct
approach. They can be indispensable in terms of main-
taining existing systems.

As mentioned before, infrastructure architects
tend to spend most of their time writing code. They
are motivated by challenges and impatience – they
hate doing the same thing twice. When allowed to
form a vision of a better future and run with it they,
too, can be indispensable. They provide directed
progress in infrastructures which would otherwise
grow chaotically.

While most people fall somewhere between
these two extremes, this difference in interests is there
– it may not be fair or correct to assume that one is a
more advanced version of the other. Resolving this
question will be key to improving the state of the art
of enterprise infrastructures.

Conclusion

There are many other ways this work could have
been done, and many inconsistencies in the way we
did things. One fact that astute readers will spot, for
instance, is the way we used both file replication and a
makefile to enact changes on client disks. While this
rarely caused problems in practice, the most appropri-
ate use of these two functions could stand to be more
clearly defined. We welcome any and all feedback.

This is the paper we wish we could have read
many years ago. We hope that by passing along this
information we’ve aided someone, somewhere, years
in the future. If you are interested in providing feed-
back on this paper and helping improve the state of the
art, we’d like to welcome you to our web site: Updates
to this paper as well as code and contributions from
others will be available at www.infrastructures.org.
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