
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

MRTG
The Multi Router Traffic Grapher

Tobias Oetiker
Swiss Federal Institute of Technology, Zurich

MRTG – The Multi Router
Traffic Grapher

Tobias Oetiker – Swiss Federal Institute of Technology, Zurich

ABSTRACT

This paper describes the history and operation of the current version of MRTG as well as
the Round Robin Database Tool. The Round Robin Database Tool is a program which logs and
visualizes numerical data in a efficient manner. The RRD Tool is a key component of the next
major release of the Multi Router Traffic Grapher (MRTG). It is already fully implemented and
working. Because of the massive performance gain possible with RRD Tool some sites have
already started to use RRD Tool in production.

Motivation

In Summer 1994, the De Montfort University in
Leicester, UK, had one 64 kBit Internet link for more
than 1000 networked computers. As it was not possi-
ble to get a faster Internet link for another year, it was
desirable to at least provide the users on campus with
current and detailed information about the status of the
link.

This situation prompted the development of the
Multi Router Traffic Grapher. Every five minutes, it
queried the ‘‘Octet Counters’’ of the university’s Inter-
net gateway router. From this data, the average trans-
fer rate of the Internet link was derived for every five-
minute interval and a web page was generated with
four graphs showing the transfer rates for the last day,
week, month, and year. The visual presentation on the
Web allowed everyone with a web browser to monitor
the status of the link. Figure 1 (next page) presents an
MRTG-generated web page.

While the availability of these graphs did of
course not increase the capacity of the link, the perfor-
mance data provided by MRTG proved to be a key
argument to convince management that a faster Inter-
net link was indeed needed.

How MRTG-2 Works

The original MRTG program was a Perl script
which used external utilities to do SNMP queries and
to create GIF images for display on the HTML pages.
When MRTG was published on the Internet in spring
1995, it spread quite quickly and people started using
it at their own sites.

Soon, however, user feedback highlighted two
key problem areas: scalability and portability. While
MRTG worked fine when monitoring 10 links, larger
sites ran into performance problems. At De Montfort,
the intention was to monitor the off-site Internet link
and maybe one or two links between buildings; perfor-
mance was not a limiting factor. External users
pointed out that some sites had much larger monitor-
ing needs and were running MRTG right at its limits.

MRTG logged its data to an ASCII file, rewriting
it every five minutes, constantly consolidating it, so
that the logfile would not grow over time. The logfile
did only store slightly more data than was needed to
draw the graphs on the web page. The graphs were
converted to GIF format by piping a graph in PNM
format to the pnmtogif tool from the PBM pack-
age. This setup limited MRTG to monitor about 20
router ports from a workstation.

A second obstacle for potential users was that
MRTG required snmpget from the CMU SNMP
package. This package proved to be rather difficult to
compile on various platforms at that time.

In the mean time, I had left De Montfort Univer-
sity and was working at the Swiss Federal Institute of
Technology. There I had no responsibility for the cam-
pus network and the Internet link was sufficiently fast.
MRTG was not one of my top priority projects any-
more. Because the CMU SNMP library did not com-
pile on Solaris I had not even a working installation of
MRTG.

This all changed when Dave Rand
<daver@bungi.com> got interested in MRTG and
contributed a small C program called rateup.
Rateup solved MRTG’s performance problem by
implementing the two most CPU intensive tasks in C
and thus moving them out of the MRTG Perl script.
Rateup did the logfile rewriting and the graph gen-
eration.

Rateup initiated the development of MRTG-2.x.
First, I modified rateup to use Thomas Boutell’s
GD library [5] which enabled it to generate GIF files
much faster than pnmtogif. Second, the SNMP
portability problem was solved by switching from
CMU’s snmpget to Simon Leinen’s Perl SNMP
module [4], written in pure Perl and thus making it
virtually platform independent.

After almost a year of beta testing and the imple-
mentation of many user requested features, the result
of these efforts was released as MRTG-2.0 in January
1997.

1998 LISA XII – December 6-11, 1998 – Boston, MA 141

MRTG – The Multi Router Traffic Grapher Oetiker

Figure 1: Screenshot of an MRTG-2 web page.

MRTG-2 was not only faster than the previous
release, it was also more user friendly. A tool called
cfgmaker, which is included in the MRTG distribu-
tion, is able to build a skeleton configuration file for a
router by reading its interface table via SNMP. This
allows a lot of people to successfully configure MRTG
even when they do not know too much about SNMP
or about how to find out which physical router inter-
face is mapped to which SNMP variable.

MRTG-2 does neither require the PBM package
nor an external SNMP gatherer anymore. This made
the porting of the package very simple. Without using
autoconf or any similar system, the package

compiles on most Unix platforms. Even a port to Win-
dows NT required only a few changes to the pathname
handling and the calling of external programs. The
most amazing thing with the NT port was that Simon
Leinen’s SNMP Perl module worked under NT with-
out change.

MRTG-2 turned out to have the right mix of fea-
tures to attract the interest of a substantial number of
people.

Lossy Data Storage

A key feature of MRTG-2 is its method for main-
taining logfiles. The basic assumption for designing
the MRTG-2 logfile was that the interest in detailed
information about the load of the network diminishes
proportionally to the amount of time which has passed
between the collection of the information and its anal-
ysis. This led to the implementation of a logfile which
stores traffic data with a decreasing resolution into the
the past. Data older than two years is dropped from the
logfile. The resolution of the logfile matches the reso-
lution of the graphs shown on the web page. This
lossy logfile has the advantage that it does not grow
over time and therefore allows unattended operation of
the system for extended periods of time. Drawing the
individual graphs is relatively fast because no data
reduction step is required and thus disk I/O is mini-
mized.

rateuplogfile logfile

read write

Figure 2: ASCII Logfile processing.

MRTG-2 logfiles are stored in plain ASCII. Each
line starts with a time stamp followed by the corre-
sponding traffic data. The file starts with the most cur-
rent entry and ends about two years in the past. For
processing, it is read as a whole, processed in memory
and written back to disk. This happens for every single
update as shown in Figure 2. Figure 3 shows how the
values from the logfile are consolidated over time.

Estimating the Size of the User Base

While it is easy to state that a substantial number
of people are interested in a package, it is much more
difficult to estimate how many people really use it.
Today, the MRTG home page gets about 700 hits and
200 downloads a day. These numbers are quite high
for such a page, but it does not show how many sites
are actually using MRTG.

Applications like MRTG, which produce output
visible on the Web, offer a unique way to measure the
size of their user base through the existence of the
referrer header in HTTP requests. Every web page

142 1998 LISA XII – December 6-11, 1998 – Boston, MA

Oetiker MRTG – The Multi Router Traffic Grapher

generated with MRTG contains a link to the MRTG
home page. Whenever someone comes to the MRTG
home page through this link, the web server of the
MRTG home page logs the referrer header of the
request. With this information it is possible to make a
crude estimate about the number of sites using MRTG.
Such an analysis was conducted in August 1998, using
data from the last two years. It showed referrer head-
ers from about 17500 different hosts under 11400 sec-
ond level and 120 top level domains.

15 minute average

M
R

TG
 2

.0
 lo

gf
ile lo
g

re
w

rit
e

lo
g

re
w

rit
e

lo
g

re
w

rit
e

5 minute average

average value
one new 15 minute
are consolidated into
three 5 min averages

Figure 3: MRTG-2 Logfile processing.

This excludes all installations of MRTG where
the HTML output has been altered to not show the
MRTG back-link as well as those where nobody has
ever accessed the link. However, it still gives some
sort of lower bound for the number of users.

End of Life for MRTG-2

Because of the better performance, more and
more large sites started to use MRTG. They soon hit
the performance limit again, which was now at
roughly 500 ports queried every five minutes. At the
same time people started to use MRTG to monitor
‘‘non traffic’’ data sources, requiring more user con-
trol over the generated web pages and graphs.

While MRTG-2 initiated widespread use of the
package, it was not fundamentally different from the
original MRTG-1 Perl script. MRTG had just evolved
to the point were it became useful for a larger commu-
nity. For the maintainer of the package, on the other
hand, this evolution had lead to a system which had

outgrown its initial design. Every further enhancement
added unproportionally to the complexity of the soft-
ware. In November 1997, a complete redesign of
MRTG was initiated. While some features would be
totally new, old strengths were to be preserved.

User feedback and personal experience showed
that the following features are the key elements to the
success of MRTG-2:

• Simple Setup: The configuration is done
through simple ASCII text files. An additional
tool helps creating an initial version of the con-
figuration file, tailored to a certain router.

• Easy Maintenance: Because the logfiles are
automatically consolidated on every run and
therefore do not grow in size, the system can
work unattended for months without running
out of disk space.

• Friendliness: The HTML pages created by
MRTG are easy to understand and give a good
visual representation of the network load, pro-
viding a sound basis for decisions about
upgrading network links.

• Integrated Solution: MRTG performs all the
tasks required for traffic monitoring. No exter-
nal database or SNMP packages are required to
make it work.

The main problem areas in MRTG-2 are the fol-
lowing:

• Performance: MRTG-2 can not monitor more
than about 600 router ports in a 5-minute

1998 LISA XII – December 6-11, 1998 – Boston, MA 143

MRTG – The Multi Router Traffic Grapher Oetiker

interval, which is due to the way the logfiles are
updated as explained above.

• Flexibility: While MRTG-2 is quite config-
urable in general, this seems to make the users
especially aware of the areas where configura-
bility is limited, in particular when using the
program to monitor time-series data other than
network traffic.

The fact that people started using MRTG for
tasks it was never designed for, going to great lengths
tweaking it to get what they wanted, showed that
MRTG offered a unique feature by integrating data
collection, storage, consolidation and visualization in
a single package. The goals for MRTG-3 were there-
fore set to be flexibility and speed.

Design and Implementation of MRTG-3

MRTG-3 moves away from being an application
for monitoring network traffic only. The new MRTG
will be a toolkit to build applications which monitor
large numbers of diverse time-series data sources
using a fast data logging facility. It will be able to cre-
ate a wide variety of graphs, based on data gathered
from one or several sources. A parallel SNMP gath-
erer will help to increase the efficiency of the SNMP
data gathering process. The time-critical parts of
MRTG-3 are implemented in C, while the glue of the
package remains Perl. This allows the users to tailor
the package to their needs without recompiling it.

The Round Robin Database Tool
Development of MRTG-3 started with the imple-

mentation of a completely new mechanism for data
storage. It is called the Round Robin Database (RRD),
which gives a clue on how data is stored. The data
handling as well as the generation of graphs is imple-
mented in a C program called rrdtool. It can
either be called from the command line or through
Perl bindings.

The Round Robin Database is so much faster and
more configurable than MRTG-2 that a number of
people have started to use it in their own custom mon-
itoring applications without waiting for the remaining
parts of MRTG-3 to be written. After some discussion
on the MRTG developers mailing list it was decided to
spin off the rrdtool into a new package separate
from MRTG-3, as it is a complete and useful product
all on its own.

Existing software is more useful than planned
features. Therefore the remaining part of this section
will focus on the Round Robin Database Tool and
touch on the other features of the MRTG-3 package
only at the very end.

Database Design
Designing a new file format offered the possibil-

ity to include a host of features to make the new log-
file not only faster but also much more flexible than
the old text-based logfile from MRTG-2.

• The RRD format uses doubles for data stor-
age. This gets rid of the integer overflow prob-
lems seen when monitoring really fast routers
with MRTG-2 and it allows to log small num-
bers like the load of a machine without scaling.

• The RRD can also store unknown data values.
Which allows it to distinguish between situa-
tions where the data input is zero and those
when no new valid data can be obtained.

• Parameters like the number of log entries, the
resolution of the log and the number of data
sources to log in parallel are configurable.

• The data values in the RRD are stored in native
binary format. This makes access to the data
more efficient, because no conversions are nec-
essary anymore. A cookie in the header of the
RRD is used to test if the RRD is compatible
with the architecture it is being read from.

Data storage in an RRD is a multi step process.
Figure 4 shows a simplified schematic of the new
database design and update procedure.

RRA1

STATIC HEADER

RRA1 PREP

RRA2

DS3DS1 DS2

RRA2 PREP

RRD TOOL

Figure 4: MRTG-3/RRD update procedure.

An RRD can be configured to accept data from a num-
ber of data sources in parallel. A data source can be
anything, be it an octet counter or the output of a tem-
perature sensor. Each RRD operates at a configurable
base time resolution. All data coming from the data
sources is re-sampled at this resolution. The re-sam-
pling of the data takes care of the problem that it is not
always possible to get new data at the desired point in
time but further processing and storage is much sim-
pler when the data is equally spaced along the time
axis. Figure 5 shows the re-sampling process for a
counter type data source at a 300 second interval.
Counter values may arrive at irregular intervals, but
data can only be stored in the RRD at fixed interval.
The re-sampling ensures that data points are available

144 1998 LISA XII – December 6-11, 1998 – Boston, MA

Oetiker MRTG – The Multi Router Traffic Grapher

for every 300 second interval while the size of the area
below the curves is kept constant.

resampled datava
lu

e
data source value

300 s 300 s time300 s 300 s300 s 300 s

Figure 5: Data resampling process for a counter type
data source at a 300 second interval.

The basic idea behind improving logging perfor-
mance was to reduce the amount of data which has to
be transfered between memory and disk. This is
achieved by storing data in a round robin manner into
preallocated storage areas called Round Robin
Archives (RRA) inside the RRD. Each Round Robin
Archive has its special properties for time resolution,
size and consolidation method. The update interval of
an RRA must be a multiple of the base update interval
of the RRD. Several values at the RRD’s base resolu-
tion are consolidated into one value at the RRA’s reso-
lution using the consolidation method defined for this
RRA. An array of pointers identifies the most current
entry in each RRA, such that only one write operation
is necessary to update an RRA.

rrdtool create demo.rrd --step=300 DS:COUNTER:400:0:1000000 \
DS:GAUGE:600:-100:100 RRA:AVERAGE:1:1000 RRA:AVERAGE:10:2000 \
RRA:MAX:10:2000

Listing 1: Setting up a new Round Robin Database.

One Round Robin Database (RRD) can contain
any number of Round Robin Archives (RRA). For
Example, one RRA could be configured to store data
at the base resolution of the RRD for a few days,
while another one stores the daily averages for 5
years. It is also possible to configure an RRD which
mimics the data storage properties of an MRTG-2 log-
file.

The time to update an RRD with new data values
is roughly proportional to the number of Round Robin
Archives it contains plus a constant part for reading
the header portion of the RRD and time-aligning new
data values.

To help guarantee data quality, the RRD format
allows to specify validity conditions like the minimum
update frequency required or the minimum and maxi-
mum values allowed for a data source. If a condition is
not met, the data supplied is regarded invalid and an
unknown data value is stored in the RRD.

The new design allows to store in the order of a
thousand data values per second in a Round Robin

Database. This rate drops dramatically if the RRD file
is accessed via NFS or if the disk cache of the
machine is too small compared to the number of RRD
files involved in the test. The potential NFS and cache
memory problems aside, not much difference was seen
between a Pentium 120 running Linux and a Sparc
Ultra Enterprise 2 running Solaris at 200 MHz. A
direct comparison with MRTG-2 is not possible
because MRTG-2 integrates the graph creation into the
data logging process.

Graph Generation
MRTG-2 is focused on traffic graphs. Most

parameters of these graphs are hard-coded. The graph-
ing engine of the RRD Tool, however, is as flexible as
the new RRD format. It allows to produce graphs of
any size, spanning an arbitrary time period and to
draw data from a number of data sources stored in dif-
ferent RRDs.

Whenever possible, the graphing engine deter-
mines sensible default values for its configurable
parameters, allowing the user to concentrate on the
fine tuning. Almost every aspect of the graph’s visual
appearance is configurable by overriding the auto-
matic default values. Often configuration is not neces-
sary, because the RRD Tool has several functions
which automatically tune features like axis labels and
scaling to fit the displayed data.

The graphing part of the RRD Tool also has
some built-in analysis capability. It can calculate the
maximum, minimum and average values from any
data source. For more complex requirements, it is pos-
sible to use RPN math on any number of data sources
and then graph the result. Figure 6 shows a sample
graph demonstrating some of the capabilities of the
RRD Tool.

Figure 6: A sample graph from RRD Tool showing
some of its features.

Using the RRD Tool
The RRD Tool exists as a stand-alone program

called rrdtool, which takes its instructions either
from the command-line or from a pipe. The preferred
way of using RRD Tool, though, is to access its

1998 LISA XII – December 6-11, 1998 – Boston, MA 145

MRTG – The Multi Router Traffic Grapher Oetiker

functions directly through Perl bindings. This saves
the overhead generated from executing a new rrd-
tool process for every operation, and, as opposed to
attaching rrdtool via a set of pipes to a Perl script,
it even works under Windows NT.

Listing 1 shows how to set up a new Round
Robin Database called demo.rrd.

The demo.rrd database has a base update
interval of 300 seconds. It accepts input from two data
sources and stores its data in two Round Robin
Archives. The first data source is a counter type
which must be read at least every 400 seconds. It
counts between 0 and 1,000,000 units per second. The
second data source is a gauge type with a minimum
read interval of 600 seconds. It outputs values between
-100 and 100. Any values not complying with the
limits defined for each data source will be recorded as
unknown.

Figure 7: Output of the sample line.

Data is stored in three Round Robin Archives.
The first one stores the last 1,000 value sets in
300-second intervals (one base interval). The second
RRA stores 2,000 value sets in 3,000-second intervals,
building the average of 10 base intervals. Finally the
third RRA has the same properties as the second,
except that it stores the maximum 300-second values
seen over the last 10 base intervals.

Storing data into an RRD is simple:
rrdtool update demo.rrd DATA:1994982:U

This updates the RRD with a reading from the
first data source (the counter) and an unknown read-
ing from the second data source. The time-stamp for
this update is the current time. If desired, the time can
be specified via the --time option.

rrdtool graph demo.gif --start=-86400 --title="LISA Demo Graph" \
--vertical-label=’Degree Fahrenheit’ \
DEF:celsius=demo.rrd:1:AVERAGE \
"CDEF:fahrenheit=celsius,9,*,5,/,32,+" \
AREA:fahrenheit#ff0000:"Temperature in Room J97" \
GPRINT:fahrenheit:AVERAGE:"Average for the last 24h %2.1fF"

Listing 2: Graphing using RRD Tool.

After the RRD has been filled with some data,
the graphing function of RRD Tool can be used to
generate a visual representation of the data collected
so far. See Listing 2.

The output created by this command is shown in
Figure 7. It shows the temperature data from the last
24 hours (86400 seconds). The temperature data is
expressed in degree Fahrenheit and is derived from the
Celsius scale using RPN math on the CDEF line in the
example above.

RRD Tool in the Real World
Otmar Lendl’s (<Lendl@Austria.EU.net>)

implementation of an in-house network monitoring
solution based on RRD for EUnet Austria is an exam-
ple for RRD Tool being used in a productive environ-
ment.

In Lendl’s setup, RRD Tool is used to monitor
and graph about 6000 variables from 1200 network
interfaces, servers and dial-in lines in 5 minute inter-
vals. Their system runs on a low-end SPARCsta-
tion-5/170 at a load of about 0.2. The data-acquisition
software is written in Perl 5 using the Perl-bindings
for RRD and UCD SNMP. It is split into a scheduler
(using the EventServer Perl module) and multiple
worker processes which communicate via UDP. The
visualization is implemented as mod_perl scripts
running under Apache 2.3. All images, as well as most
of the HTML, are generated dynamically.

Unfortunately, the web pages generated by this is
setup are not accessible from outside of EuNet Austria
for privacy reasons.

Additional Plans for MRTG-3

SNMP Data Gathering
The Round Robin Database moves the perfor-

mance bottleneck of MRTG to the data gathering com-
ponent. The plan for improving SNMP data gathering
performance is to issue several SNMP requests in par-
allel. This works around network latency as well as
problems with routers that answer SNMP requests
slowly.

Graphs on Demand
Because the generation of graphs is quite expen-

sive, it is not sensible to update thousands of GIF
images on a regular basis. It is more efficient to gener-
ate the graphs when a user wants to see them. The
graph shown in Figure 6 took about 0.3 seconds to
generate on a Pentium 120. This means that graphs
can be created on the fly and still an acceptable
response time can be achieved. For high traffic sites
this could be coupled to a graph cache so that the each
graph is only regenerated when it is out of date.

146 1998 LISA XII – December 6-11, 1998 – Boston, MA

Oetiker MRTG – The Multi Router Traffic Grapher

HTML Generation
In MRTG-2 the look of the generated HTML

pages was tuned using a large number of configuration
options. MRTG-3 will work with template files and
therefore make the design of HTML pages both sim-
pler and more flexible.

Configuration
While MRTG-2 was a monolithic program, ver-

sion 3 will be a set of Perl modules which can be
assembled into custom monitoring applications. The
user can decide which modules to use.

One module will provide a high-level user inter-
face for making MRTG-2-like applications. Scripts
which use this module will consist of two parts: In
the first part, the user will define all the data sources
to monitor. In the second part, an event handler will be
called which fetches the requested data and updates
the respective RRDs and HTML pages in an opti-
mized order.

Summary

MRTG 1.0 was conceived as an in-house appli-
cation. Its publication on the Internet showed that
there was a considerable demand for such a program.
Many free tools like NeTraMet [1], Scotty [6], CMU
SNMP were available for retrieving data on the cur-
rent state of a network link, but MRTG’s approach for
long term analysis and the friendly presentation on the
Web was new. Many users stated that they were able
to monitor network links with MRTG ‘‘better ’’ than
with any commercial tool available at the time.

Today, the NetSCARF project’s Scion [7] is
providing a solution somewhat similar to MRTG.

BigBrother [3] and CFlowd [2] tools
applied in the same area.

The RRD package dramatically improves the
logging performance and has better configurability
than the MRTG-2 software. This makes it suitable for
a broader range of applications, both in the area where
a lot of data has to be gathered as well as in cases that
call for more complex monitoring configurations than
a simple two parameter traffic graph.

Acknowledgments

MRTG is an application which only exists due to
the participation of many people. I would like to thank
the following people and institutions in particular:
Dave Rand for initiating MRTG-2 development with
his rateup utility; Simon Leinen for the SNMP
library written entirely in Perl; Thomas Boutell for the
gd library which is used to generate the graphical out-
put of MRTG; the De Montfort University in Leices-
ter, UKgand the Department of Electrical Engineering
of the Swiss Federal Institute of Technology in Zurich
for supporting the MRTG development; and last but
not least to Larry Wall, the creator of Perl.

Availability and Support

MRTG-2 is the current release. It is available
from the MRTG home page on http://ee-staff.ethz.ch/
˜oetiker/webtools/ . All the code available in connec-
tion with MRTG-3 and RRD Tool development is
available from http://ee-staff.ethz.ch/˜oetiker/webtools/
mrtg/3.0/ . MRTG is available under the terms of the
GNU GPL. For exchange with other MRTG users
there are mailing lists available. For commercial sup-
port please contact the author. Further information can
be found on the MRTG home page.

Author Information

Tobias Oetiker got a Master’s degree in Electri-
cal Engineering from the Swiss Federal Institute of
Technology, Zurich (ETHZ) in 1995. After working
for one year at De Montfort University in Leicester,
UK doing Unix system management, he returned to
Switzerland and has since been employed by the
Department of Electrical Engineering of the Swiss
Federal Institute of Technology as a toolsmith and sys-
tem manager. Reach the author at <oetiker@ee.
ethz.ch>.

References

[1] Nevil Brownlee. NeTraMet, a network traffic
accounting meter for PC and UNIX. http://www.
auckland.ac.nz/net/Accounting/ .

[2] Daniel W. McRobb and John Hawkinson.
Cflowd, an experimental software to collect data
from Cisco’s flow-export feature. http://engr.ans.
net/cflowd/ .

[3] Sean MacGuire. Big Brother, a tool for proactive
network monitoring. http://www.iti.qc.ca/
users/sean/bb-dnld/ .

[4] Simon Leinen. Perl 5 SNMP Module, an SNMP
client implemented entirely in Perl. http://www.
switch.ch/misc/leinen/snmp/perl/ .

[5] Thomas Boutell. GD Lib, a graphics library for
fast creation of GIF images. http://www.boutell.
com/gd/ .

[6] Jürgen Schönwälder. Scotty, a Tcl Extensions for
Network Management. http://www.ibr.cs.
tu-bs.de/projects/scotty/ .

[7] W. Nortongand A. Adams. Scion, a tool to query
SNMP-aware network equipment for perfor-
mance information, and make that information
available on the Web. http://www.merit.edu/
net-research/netscarf/ .

[8] Jon Kay. Internet Measurement Tool Survey,
http://www.caida.org/Tools/taxonomy.html .

1998 LISA XII – December 6-11, 1998 – Boston, MA 147

148 1998 LISA XII – December 6-11, 1998 – Boston, MA

