
Anycast as a Load Balancing feature

Fernanda Weiden <nanda@google.com>, Google Switzerland GmbH
Peter Frost <pfrost@google.com>, Google Switzerland GmbH

Tags: Load balancing, anycast, high availability, case study.

Abstract

Our IT organization is made up of many sub-teams, each providing a service such as DNS, LDAP,
HTTP proxy, and so on. Each one is deployed globally, using their own replication mechanisms. Our
team provides Load Balancing and failover services in a way that other teams can use without
having to manage the underlying technology. We recently added Anycast as a service we offer to
other teams that need to be able to failover between Load Balancers. While Anycast is complex and
mysterious to many systems administrators, our architecture provides the service in a way that the
other teams do not need to worry about the details. They simply provide the service behind Load
Balancers they currently use, with an additional virtual IP address. This paper describes how
Anycast works, it's benefits, and the architecture we used to provide Anycast failover as a service.

Introduction

The most natural way to think about Load Balancing, is to put as
many service replicas as required in your server room, and have
a Load Balancer distribute the load amongst them. To increase
reliability, Load Balancers are usually deployed in High
Availability pairs, and we assume this to be the case throughout
this paper. A regular Load Balancing scenario would look like
Drawing 1.

The above is already an improvement in reliability, but it can go
further. Imagine a disaster scenario where the users are still
active and requesting the service and so is the Load Balancer,
but all the backends for a specific service are not. This solution in itself wouldn’t solve the problem
(see: Drawing 2).

A better design would automatically redirect all those clients to
another location (or server room), making the process as
transparent as possible. A way to accomplish this is to identify
the nearest secondary location, and configure the Load
Balancer to proxy or redirect all the user requests there, until
the local service is re-established. Most load balancing
products offer automatic redirection as depicted in the right
(see: Drawing 3).

But what if the Load Balancers are also not available? (see:
Drawing 4) How can we guarantee that the users will be able to

reach another instance of the service? How can that be accomplished in the least intrusive way?

Drawing 1: Regular Load Balancing
Scenario

Drawing 2: Failure mode

There are many ways to solve this problem, depending on
the specifics of each implementation. One possibility would
be to update DNS records for the services, so users can now
reach the service in a different location.

Potentially, this DNS update can be automated but there has
to be a mechanism to check service status in other locations
and keep track of their state so the system knows where to
send users in case of a failure. Considering that services are
sometimes deployed in hundreds of locations, it would not be
effective to have a central place collecting all the information
about services, so the DNS update mechanism would need

to be distributed to as many locations as the service is
deployed. We consider this a non optimal solution, since
there is the possibility to integrate the monitoring and
automatic failover in the existing Load Balancing
infrastructure.

DNS TTL can also be a burden. Sometimes it is not possible
to use very small TTLs and the time it takes to propagate
DNS changes would still be downtime from the users’
perspective. Once your system is back, there is again the
need to update DNS entries to point users back to the
original location.

Basics of Anycast

Anycast is a network routing technique where many hosts have the exact same IP address. Clients
trying to reach that IP address are routed to the nearest host. If these duplicate hosts all provide the
same service, the clients simply receive the service from the host topologically nearest.

Anycast per se doesn’t have information on service specific health status, which might result in
requests being sent to locations which do not have a healthy instance of the service running. It is
then necessary to think about service specific healthchecks. If a given service has about 200
different instances, managing healthchecks and the Border Gateway Protocol 4 (BGP) configuration
for each of those instances can be very complicated.

Our implementation

We use Anycast for failover between Load Balancing clusters, providing the benefits of Anycast to
any service behind our Load Balancers.

This reduces a lot the network environment complexity, given the reduced number of machines
advertising routes. Our solution uses BGP because it allows creation of a hierarchy for the route
advertising, but other protocols work as well. Using Anycast, there is no longer need for remote
failover using proxies, providing a cleaner solution since the client connects directly to the failover
location, whilst proxying usually makes you lose the client identifying information. It also saves the
proxy overhead between servers and users.

Drawing 3: Remote failover

Drawing 4: Remote failover - failure mode

Our team provides Load Balancing as a service, making it completely separate from the specific
service setup. Multiple services can profit from the same Load Balancing infrastructure, and growing
the number of replicas of a service does not increase the complexity of the network design, since
there are a controlled number of route advertisers.

Another advantage of having Load Balancers as Anycast peers is the reduced number of routing
changes, because the Load Balancer combines multiple instances of a service into one VIP. That
has been one of the concerns regarding Anycast deployments. Having the Load Balancer deal with
service specific state healthchecks makes it possible to deploy Anycast not only for UDP based
services, but also for TCP based services.

We configured the network environment so there is one subnet reserved for all Anycast virtual IPs
(VIPs). The routers are configured to accept /32 route advertisements in that subnet from the Load
Balancers. This allows the implementation of protection against misconfiguration by using ACLs
which only allow routes from the specified subnet, preventing accidental takeover of IP space.

Anycast VIPs can be configured in addition to the normal VIPs on the same Load Balancers.

Software used for this implementation
All our Load Balancers are deployed in high availability pairs to protect against single machine
failure. For this we used Heartbeat, from Linux-HA project[1], which is a cluster resource
management software. Heartbeat brings network interfaces and backend management software up
and down. These are all configured as heartbeat resources.

For backend monitoring and failover, we use ldirectord[4]. Ldirectord runs healthchecks against the
backends for each of our VIPs, adding or removing from the Load Balancing pool service instances
that changes health state. It can also redirect all the connections to a different location in case of
failure in all backends, using the fallback option.

We added a feature to ldirectord, implementing a fallback command configuration: when the last of
the local backends goes down, it triggers this command. We use that to bring the Anycast IP address
up and down based on backend status.

Ldirectord communicates directly with ifconfig (to bring IPs up and down) and ip_vs (via ipvsadm) to
add and remove service backends from the Load Balancing pool.

ip_vs is the Linux Kernel module for Load Balancing[0]. It currently supports tunnelling, half NAT and
Direct Routing (DR) modes. In our setup, all VIPs are configured using DR.

Quagga[2] is a network routing software package, allowing a GNU/Linux system to participate in
network routing protocols. In our solution, we use the BGP implementation to enable our Load
Balancers to advertise BGP routes to the network devices.

We allocate an IP for each service, and create the standard configuration for LVS to bring the VIPs
up, and use the feature we added to ldirectord to bring the Anycast IP network interface up or down,
depending on the state of the backends. If all the backends are down, ldirectord will bring the IP from
that VIP down, and Quagga will immediately let the routers know so they withdraw the route to that
VIP.

The picture on the right illustrates the network architecture,
and details on the software deployment.

Adding new services to the setup
Services can be added to Anycast by simply configuring their
backends in a VIP on an Anycast enabled Load Balancer. In
our case, that means Heartbeat and ldirectord configuration.

The network configuration will already be in place, significantly
reducing the barrier of entry for new services. Expanding a
service to new locations follows exactly the same process, the
Anycast routing will take care of sending user traffic to the
new, nearer load balancer setup.

Services currently using this setup
● DNS

● HTTP proxy

● Radius

● Web SSO

● NTP

● LDAP (in test now).

Failure modes and recovery times

All of the mentioned recovery times take into consideration our specific Anycast deployment.
Environments with different timeouts and configuration parameters can have different response and
recovery times. The route propagation time is less than 1 second, and we have set a 30 second
“dead timer” for the routers to consider the BGP peer dead.

Cleanly stopping the BGP peering service creates a outage of less than 1 second for the services as
the routes update. In the case of all service backends becoming unavailable, it will take the service
specific healthcheck time plus the <1s route propagation delay for recovery.

In a sudden network or power failure at the location, it will take the time for the “dead timer” to expire
plus the small route propagation delay for recovery.

Conclusion
Moving Anycast routing configuration to a managed load balancer service minimizes the work and
complexity required for service configuration while providing them with fast, automatic, distance
aware failover. It also helps reduce load and complexity of network infrastructure by aggregating
service advertisements into one peering point per site and reducing the rate of routing changes to
complete site failures only.

References
[0] The Linux Virtual Server Project, http://www.linuxvirtualserver.org
[1] High Availability, http://www.linux-ha.org
[2] Quagga, a software routing suite, http://www.quagga.net
[3] RFC1771 - A Border Gateway Protocol 4, http://www.faqs.org/rfcs/rfc1771.html
[4] Ldirectord, http://www.vergenet.net/linux/ldirectord/

Drawing 5: Load Balancing with Anycast -
software architecture

