
Unifying Unified Voice Messaging
Jon Finke – Rensselaer Polytechnic Institute

ABSTRACT

Roughly 18 months after installing a unified voice messaging system, we picked it up and
merged it into our pre-existing production email domain. This paper deals with both technical
aspects deploying a unified messaging system, as well as the cultural shock of merging the very
different operational domains of Email support with Telecommunications support into a shared
support model. As an added bonus we will discuss the merging two Exchange/Active Directory
worlds into one with minimal impact on the existing users of both systems. Lastly, we will discuss
some issues of operating a partially unified voice messaging system.

Introduction

After 12 years of service, our campus voicemail
system failed. We were finally able to restore service
after a 10 day1 outage, but it was now clear to every-
one, that this system needed to be replaced. Although
we had been evaluating replacement voicemail sys-
tems prior to the failure, this changed the process from
a theoretical exercise into a crash product selection
and deployment exercise. Several years earlier [3], our
division had implemented a Microsoft Exchange email
service and this was in use by about 700, mostly
administrative users. The eventual proposal was to
install a Unified voice messaging system from Cisco
that uses Exchange as a back end message store.

One of the attractive features of this product was
unified voice messaging – that is your voicemails
would appear as emails with .WAV files attached in
your inbox. You could listen to them via the telephone
like normal voicemail, or you could ‘‘play’’ the mes-
sage via your email client. Since they were email mes-
sages, you could also use your email client to file or
forward the message to other people. You could also
get the system to ‘‘read’’ your email to you over the
telephone (although good spam filtering is helpful
here). Another benefit is that the new system could
join the existing Windows 2000 domain and use the
existing exchange servers. This allows us to leverage
both existing hardware and existing support staff. The
proposal went forward to the President’s cabinet and
emergency funding was allocated.

Unfortunately, no one had actually talked with
folks who supported the existing Exchange installation
and we received some push-back from them when we
mentioned making changes to the Active Directory
schema and creating another 5000 mailboxes to go
along with the 700 they currently supported, as well as
adding this new service with full administrator rights
to the domain. So instead, we found a few more
servers and installed a second Windows 2000 domain
with it’s own Exchange server. Although this allowed
us to cut over from the creaky old voicemail system so

1Some replacement parts were obtained via EBay

we had new hardware, it created some new problems
for us. The first was that we now had to support a
number of windows machines, along with a our own
exchange server, and between our PBX Switch engi-
neers and our Network Engineers, we were not in a
happy place [6]. The second, and perhaps bigger prob-
lem, is that we had promised to deliver Unified Mes-
saging, not just a replacement for the old, telephone
only interface, voicemail system. In order to deliver
on this promise, we had to find a way to merge the
two domains. We also wanted to avoid another hard
cut over like the initial installation, where all of our
users had to set up their mailboxes and record greet-
ings but then lost all of their existing messages.

Initial Installation

Our initial installation was a replacement of our
Octel voice messaging system with the Cisco Unity
voicemail system. Since we were setting up a stand
alone Exchange domain for this system, we did not
have to worry about unified messaging at this point,
just plain old voicemail accessed via a telephone set.
At that time, we had an Intecom S80 PBX and a few
experimental (for us) Voice Over IP (VOIP) phones.
The PBX communicated with the voicemail system
using a bunch of analog telephone lines and a single
RS232 serial line for control and switching informa-
tion. This single interface would prove to be a major
factor in how we managed the switchover. Since the
PBX only understood (and could communicate with) a
single voicemail system, we had to do a hard
switchover; bring up the new system, move the wires
from old to new, and shut off the old system.

The Unity product includes a web based tool for
administration, as well as several bulk load tools to
process CSV files. Through these tools, an administer
could create and destroy subscribers (which includes
the exchange mailbox). We had two issues with this
approach; the first is that a GUI interface is just too
much work to manage ongoing changes,2 and the

2We had previously automated the creating and expiration
of student voicemail assignments based on room assign-
ments in the Housing Office database.

20th Large Installation System Administration Conference (LISA ’06) 275



Unifying Unified Voice Messaging Finke

second is that we would have the creation and deletion
of Exchange accounts in the hands of Telecom staff3

instead of the Exchange Administrator. We needed a
way to give telecom staff the ability to add and delete
voicemail boxes, and we wanted to automate and inte-
grate with other systems as much as possible. Although
the Cisco interfaces had some provisions to enable indi-
vidual users to do some of their own maintenance, we
also wanted the ability of departmental administrators
to manage the people in their departments. We have
found the departmental administrator concept a very
useful and powerful thing on our directory (white
pages) deployment [2] and we wanted to be able to use
that with the voice mail system.

In our deployment of our original windows
domain, we had automated a good deal of our data
flow [3] and were comfortable with that concept. But
in order to enable the distributed control and manage-
ment that we wanted, we had to strictly enforce our
policy and practices. To do this, we really needed to
replace the Cisco tools with our own tools. To this end,
we wrote our own web tool to allow the management
of mailboxes and call handlers, and enforce our naming
conventions and additional record keeping along the
way. One of our new rules, is that all mailboxes need to
be ‘‘owned’’ by either a department or an individual,
thus the new tool can display all of the mailboxes (and
call handlers) owned by a specific person or depart-
ment. In fact, the only way to create a new mailbox or
call handler, is to first select the owner, and from there,
creation can continue. The tool also attempts to avoid
errors and do as much of the ‘‘thinking’’ as possible.
When a new mailbox is created, the tool first checks to
see if that number (telephone extension) is already
assigned to another mailbox. If it is in use, it will note
that fact, and give several options such as expiring the
existing mailbox which would free up the number, or
creating an Enhanced Call Processor.4 Creating the
ECP automatically and then assigning the original
mailbox to ‘‘1’’ and the new mailbox to ‘‘2’’ saved a
few steps for the telecom staff and helped avoid proce-
dural errors. This would also generate a ‘‘work item.’’
In the initial deployment, a staff member would still
need to record the greeting (‘‘Press one for Sam, press
two for John’’).

One of the tasks our telecom staff dreaded at the
start of the semester, was setting up all of the student
ECPs. They would have to record greetings for over
800 call handlers (‘‘press one for Marquia, press two
for Sharon’’). We made two changes to this process.
The first was to use some Text to Speech routines to
preset the subscribers name when we created a mail-
box. We were actually pretty pleased with how well

3It isn’t that we don’t trust our Telecom staff, but they do not
have the training to administer Exchange and they are not in
the department that is responsible for the Exchange service.

4ECP – A TLA we inherited from the Octel voicemail sys-
tem – press 1 for John, press 2 for Sam

these routines did with many of the names. The sec-
ond change was when we set up the call handler, we
would generate the greeting by concatenating the
names for each mailbox with the appropriate ‘‘press
xxx for’’ phrases. This has the additional feature that
if the subscriber records their own name, when we
regenerate the greeting for the call handler, it will use
the subscribers name recorded in their own voice.

We had previously written a tool to manage stu-
dent voice mail accounts. This tool would look at the
room assignments from residence life, and automati-
cally assign mailboxes based on the room (which
determined the phone number.) In the earlier version,
this would generate a CSV file that would be loaded
into the Octel system. This tool was modified to create
the mailboxes and populate the appropriate call han-
dlers. In this case, there were two types of handlers, a
‘‘Direct Transfer to xxxx’’ for single rooms and ‘‘Stu-
dent Residence ECP xxxx’’ for shared rooms. Each
student mailbox was assigned a six digit ‘‘directory
number.’’5 By using a call handler to access all student
mailboxes, we did not need to worry about changing
the extension assigned to mailbox, and as students
changed rooms, they could keep the same six digit
directory number, even as their room number (and
phone number in their room) changed.

Subscribers, Call Handlers and Distribution Lists,
Oh My!
A detailed discussion of the Unity Voice Messag-

ing system would take a few days, and during our
deployment, we purchased a web based training pack-
age to help jump start the Unified Messaging Team.
But a brief overview of how Unity works would be
helpful. The core building block of the Unity system is
the call handler. This defines how a call is processed,
what messages are played, what options the caller has
during the call, and what happens after the greeting
has been played.

Each call handler has some basic attributes
including a name, an owner (which is a unity sub-
scriber or unity distribution list) and an optional
recorded name and an optional extension. It can also
have a number of different types of greetings; a stan-
dard greeting, a ‘‘closed’’ greeting to be used when the
university is closed, and alternate greeting, a busy
greeting and an internal greeting. Each of these greet-
ings can be enabled or disabled (the standard is always
enabled), a source for the greeting which can be a
recorded message (stored in a .WAV file, a system
greeting (if there is a recorded name, it will be
‘‘RECORDED NAME is busy or unavailable’’ other-
wise just ‘‘Extension XXXX is busy or unavailable’’)
or simply blank. There are some switches to control if
caller input is accepted during the greeting, how many
times to replay the message and finally, what to do

5Our campus uses four digit dialing – these six digit num-
bers are not directly dial-able, but can be dialed from within
the voicemail system.

276 20th Large Installation System Administration Conference (LISA ’06)



Finke Unifying Unified Voice Messaging

after the greeting is played. These options include tak-
ing a message, transferring to another subscriber or
call handler, transferring to another extension or sim-
ply hanging up.

Call handlers can also accept caller input – a
touch tone key press that can transfer to another sub-
scriber – or any of the options for after playing the
greeting. This can be configured for each of the 12
touch tone key presses. You can also configure how
long a message can be left, who the message goes to,
and what happens after the message is recorded. There
are more options and settings available, but we are not
currently using all of them.

The next part of the Unity system is the sub-
scriber. This is a call handler with a message store
attached, and some user information such as a PIN, a
display name for the directory (both Active Directory
and some directory lookup functions in Unity) and the
location of the mail store. In general, the messages are
stored in an Exchange server. This allows subscribers
to access the messages via Outlook, or via the tele-
phone (The Unity system is also an Exchange user that
can open any mailbox). There is an option for mes-
sages to be sent immediately via SMTP to some other
mail server. Although this means they can’t access
their voicemail via the telephone, since it is out of
Unity’s reach, they do get it via their preferred email
client. This option is attractive to some of our users
who don’t use Exchange.

Unlike stand alone call handlers, subscribers (or
their call handlers) must have an extension. Sub-
scribers can also have alternate extensions, which
allows a person with more than one phone line to have
all of their calls go to one voice mailbox. Another
attribute of subscribers, is notification and the mes-
sage waiting indicator (MWI). The MWI is set when
there are ‘‘unread’’ voice messages in their inbox.6

The system can also notify you of voicemail (and
emails if you wish) via phone calls, pagers or email
notification.

Another part of the Unity system, are distribution
lists. These can be used to send group messages to
folks and they can also be the owner of call handlers.
We have two categories of automatically maintained
lists, an ‘‘All Hands XXXX’’ list for some depart-
ments who request it, and ‘‘department admin
XXXX’’ list with the department administrators for
any department that owns call handlers. These are cre-
ated automatically when a call handler is created. The
owner of a call handler can update the greeting, this
allows several folks in a department to maintain the
greetings easily.

Although Unity has an ‘‘owner ’’ for each object,
we maintain our own owner information in our Oracle

6There is a childlike attraction to selecting ‘‘mark as un-
read’’ in Outlook and having the red light on your phone
turn on.

database which allows us to delegate control and
administration more effectively.

Functional Layout
In Figure 1, we have a diagram of our configura-

tion. We have our old legacy phone system (PBX),
which is connected to the voicemail system via both
analog lines for voice traffic, and a serial line for con-
trol information. This PBX is also connected to our
Call manager to provide a path for VOIP phones to
talk with PBX based telephones. Both the Call man-
ager and the PBX are have trunks to connect to our
regular phone carriers for inbound and outbound
phone service.

Figure 1: Function Diagram.

The call manager and the voicemail system
(Unity) are also connected to the campus network,
albeit behind firewalls. They use the network to com-
municate with each other, and Unity also connects to
the Exchange message store. The call manager also
uses the network to communicate with the individual
voip telephones. The configuration (user provisioning
at least) of the active directory domain, the call man-
ager and the Unity system are all driven by an Oracle
database. This database also handles our Identity Man-
agement functions and also drives our LDAP directory
databases and many other aspects of our operation.

Write Only Memory
In our initial version of Unity, Cisco offered a C#

API [7], so we built a process (the Unity Queue Run-
ner) that would run on the Unity server, accept com-
mands via a queue in our database [5] and process
them via the API. We were pressed for time on this
installation (recall that the original system had already
failed hard for 10 days and was showing signs of addi-
tional failures) and this command path was one way
only. We had to issue commands and assume that they
worked. We kept track of what we thought we had
done, and hoped that we were right.7 At this point, we
had no way to read back the contents of the configura-
tion database on the Unity server.

7This actually worked quite well, after 18 months of opera-
tion, we had only had a handful of errors – all due to human
intervention

20th Large Installation System Administration Conference (LISA ’06) 277



Unifying Unified Voice Messaging Finke

What’s In A Name
We ran into a few issues with our naming conven-

tions. One of the first problems we had, is that when
the Unity Queue Runner was passing commands to
Unity, it would reference the mailbox or call handler by
it’s name. On a few occasions, someone using the
Cisco tool, had changed the name directly in Unity. As
a result, the command would fail – since the object
wouldn’t be found. Although there were only a few of
them, they generated quite a few headaches for the
technical staff, as well as problems for the front office
folks. Eventually we were able to convince the front
office folks that ‘‘never change a name,’’ meant exactly
that. We actually could go into the SQLServer database
on Unity to find and fix them, but it was very annoying.

A more common problem, and very annoying, is
that we used names like ‘Fac/Staff ECP nnnn or ‘Stu-
dent ECP nnnn’ for our call handlers. What we did not
know at the time, that the call handler search function
on the Cisco tool only used the first eight characters,
and there was no way to search by extension. Thus, the
search tool would return a list of all ‘Fac/Staff ECPs,’
an unsorted list at that. This did have the minor benefit
of making the Cisco tool almost useless for working
with call handlers, which forced the front office staff to
use our own tools and reduced the first problem a bit.

Another part of our early naming convention,
was to embed the department name or abbreviation
into the name of call handlers for departments (ECPs
and Voicemail trees). While this made some degree of
sense for the Octel system (where we inherited the
practice), it proved to have several issues with Unity.
In the original deployment, we ran into departments
that did not have abbreviations, and the resulting name
was too long. Even with the abbreviations, the search
problem mentioned above hit us just about every time.
The other issue that we ran into, is that departments
changed their name and abbreviations periodically,
which then meant that we had to rename call handlers,
which we can’t easily do.

Since our tools to manage the Unity system had
additional fields to capture owner information (and
whatever else we wanted), we no longer needed to
overload the call handler names like we did with the
Octel system. Some of these naming problems we
were able to correct before our second upgrade; we
were able to destroy and recreate all student call han-
dlers over the semester break. In other cases, we kept
the old (longer) names and new call handlers would
get the shorter names following the new convention.
Octel to Unity Switchover

The migration from the old Octel system to the
Cisco Unity system was in some respects easier. Peo-
ple understood that the Octel system was about ready
to die, and had lower expectations. On the other hand,
there was a lot more busy work required. We were
able to get a dump of the Octel configuration, which
included the directory number, class of service, the

owner ‘‘name’’ (this was a free text field, with no vali-
dation) and some other configuration information. We
needed to map this information on to the new system,
and assign owners to everything.

The student voicemail was pretty easy – we were
already generating those assignments in Oracle and
loading them into the Octel; we wrote some interface
code, and that process could talk to Unity. That left the
fac/staff mailboxes to be migrated. We wrote a tool
that helped us assign owners to Octel mailboxes (and
save this info in Oracle). Some of this could be done
automatically. If an Octel mailbox (directory number)
was listed exactly once in the telephone directory, and
that person was an active employee, we made the
match. The rest needed to be cleaned up manually. The
tool would display unmapped mailboxes, and the front
office staff could work through the list, displaying each
one and attempting to match. The tool would display
matching directory and billing information.8 Other
choices included marking the mailbox as obsolete, or
just tossing it to the end of the list. Eventually, all
Octel mailboxes got an owner or marked as obsolete.

The matching tool let us work with preliminary
data (an earlier snapshot) and one week before the
switchover, we froze the Octel database – we had
campus announcements out, and after the freeze date,
we would process no more changes to the Octel sys-
tem. We then took that snapshot and finished matching
mailboxes with people. At that point, we were able to
pre-create all of the new mailboxes on the Unity sys-
tem. Up to that point, we just had a few pilot users,
mostly accessing it via the few VOIP phones we had
deployed at that time. Another tool we wrote allowed
individuals to pick up their voicemail PIN via the web.
We had previously done this for students, and now we
were able to expand this for all users.

The cut-over was scheduled for a weekend at the
start of the summer (June 6th) – we swung the wires,
moved the direct access numbers (there was a number
for folks to call to get their old messages) and we were
done. On Monday, everyone with a mailbox had to set
it up, record their name, set up their greetings, change
their PIN, and remember to call the special access
number to get any last messages from the Octel. Mes-
sages were not transfered from the old system. After
60 days, the old system was turned off and removed
from service. If you had not picked up your old voice-
mail, too bad. We also made the decision to NOT offer
voicemail service for students during the summer.
This gave us time to handle problems with the
fac/staff mailboxes.

Preparing to Merge the Domains

After a year of running a stand alone voice mail
system, the decision was finally made to move the

8Although we do not charge for voicemail, we often would
have owner information for a number (telephone) that we did
bill for in the telephone billing system. Sadly, this informa-
tion did not include a validated owner.

278 20th Large Installation System Administration Conference (LISA ’06)



Finke Unifying Unified Voice Messaging

voicemail domain into the regular email domain. This
was required to allow us to offer fully unified voice
messaging, and would also reduce the support over-
head coming from two exchange domains. Shortly
after our initial voicemail roll-out, we started a roll out
of VOIP service to some new buildings. Part of this
roll-out included our own control interface to the
Cisco Call Manager, similar to what we did for the
Unity project. Unlike the Unity interface, this one
used XML [4] and was bidirectional. One of the side
effects of this, was the appearance of VOIP phones on
the desks of staff who were involved with the Unity
project. This was mostly to enable testing of the VOIP
service, but proved to be handy in other ways. One of
the very valuable features, is that unlike the Intecom
PBX, the Call Manager (the ‘‘brains’’ of the VOIP
system) understood how to talk to more than one
voicemail system, and could talk to them via TCP/IP.

When we first deployed Unity in the Stand
Alone configuration, we contracted with IBM to pro-
vide us with a consultant to assist us in the planning
(including system requirements), configuration and
deployment. Ben worked out very well, he certainly
knew his stuff and got us going. As an added bonus,
Ben was a Rensselaer graduate, so he was familiar
with the campus and the general operation. But going
forward, we wanted to break the dependency. It got
annoying to the technical staff, that when some issue
came up, the first reaction was to ‘‘Call Ben,’’ before
even attempting to handle the problem ourselves. The
decision was made to handle the migration entirely in
house; we had to develop our own expertise.

This is Only a Test

We decided that we should replace the Unity
server as part of the upgrade. One of the challenges we
had with the initial deployment, is that once we went
live, we had no test system – all changes had to be
made on the production system. It also meant that we
had no backup system available. Although the Unity
server was a pretty standard box running Windows
2000, it did have some special interface cards in it to
talk to the PBX. In the 12 months from the original
deployment, the cost of the server hardware came
down considerably and since it was going into an
existing domain, we did not need domain controllers,
an exchange server, etc. So although the new server
was part of the production windows domain, it was
not in production and we could use it for development
and practicing the migration.

When we originally installed Unity, we knew
that we would eventually be merging into the
win.rpi.edu domain. But since we were concentrating
on the move from Octel to Unity, this sort of slipped
our mind. One of our first projects to get ready for the
merge, was to modify every package, interface, queue
and tool to understand the concept of more than one
domain. Although the changes were generally pretty

small, it touched everything we had developed.
Although a Domain_Id field was added to just about
every table, it really only mattered for the call han-
dlers, subscribers and extension (directory number)
tables. All other objects were associated with call han-
dler or subscriber and could inherit the domain where
needed. The main Unity interface tool had a switch
added, to let the user select which domain they were
working in. All searches, displays and other functions
would be limited to records from that domain. Up
until the cut-over, this switch defaulted to the stand
alone Unity installation. The other key place for this
information was in the command processing stream.
Although the Meta_Change_Queue understood multiple
queues, the Unity_Maint package had to select the
appropriate queue for each command. During the test-
ing of these changes, it was amusing to see a ‘‘Create
Call Handler’’ going to the new system, and all of the
caller input configuration go to the old system.

We got the new Unity server installed, and made
it part of our production Windows domain
(win.rpi.edu). Despite having a queue runner program
working on the stand alone system, we wanted to
merge the queue runner for the Unified9 system with
the original ADSI_Sync program that we were already
running to maintain the windows domain. We also
needed to be very cautious in making changes in this
domain – just about all of our administrative staff was
already using this exchange server and active direc-
tory, and disruptions or bad entries were not accept-
able. Up until we got very close to switch over, the
queue runner process was being run on demand, often
times with break points in it, so we could be very sure
of what was happening. Another significant opera-
tional change, is that although the front office telecom
staff got admin accounts on the new Unity server,
these accounts were read only. Their only create/mod-
ify access was via the interfaces we developed. Fortu-
nately, running the stand alone system gave us time to
make available most, if not all, of the needed com-
mands and functions.

Code Generator

Our command interface was much like a check-
book. We made transactions and recorded them, and
so maintained a picture of what we thought was the
state of the system. But we never had the facility to
‘‘balance’’ the checkbook, and it was possible to miss
transactions. In addition, one of our objectives with
the cut over to the Unified system, that no one would
know that we had done it – greetings needed to be pre-
served, PINs stay the same, and so on. These changes
were all made directly in Unity via telephones, often
by the end users and our system never saw them.

After our initial cut over from Octel to the Stand
Alone Unity system, our next big project was a Voice

9We eventually settled on the name ‘‘Unified’’ for the new
system and ‘‘Stand Alone’’ for the old one.

20th Large Installation System Administration Conference (LISA ’06) 279



Unifying Unified Voice Messaging Finke

over IP deployment. Despite there being a GUI tool
from Cisco, we wanted to have our own interface the
the Call Manager10 to handle provisioning of tele-
phones with better integration with our billing and net-
work systems. The call manager used a SQLServer
database internally and provided an XML based inter-
face that could both make configuration changes and
return information from the database. It also provided
a general SQL interface so that we could make arbi-
trary queries. Implementing our front end required that
we maintain shadow copies of many validation tables
in our Oracle database. Writing this interface code was
tedious and prone to error, but was also very consis-
tent in format. We developed a code generator; we
would define the Oracle shadow table, and then point
the code generator at it, and it would spit back para-
graphs of PL/SQL code and record definitions that we
could then use.

When we returned to the Unity project, we also
wanted to get data out of SQLServer, and we had a
very limited interface11 that would allow us to query
the SQLServer database on the Unity system. We
wrote a PL/SQL package for Oracle, that would gener-
ate a query to be passed to SQLServer, that would
concatenate multiple columns into one, doing appro-
priate type conversions to produce a CSV format
return that we could then write more PL/SQL code to
parse and store. Getting all of this to actually work
(part of one query required seven single quotes in row
to get the appropriate single quote in the final result)
cried out for automation, and so we wrote another tool
to handle all of this. One of the things that SQLServer
has, is a set of tables known as the data dictionary, that
define all of the table and columns (and other things)
in the database. With this, we could query the data dic-
tionary and get back descriptions of all the table and
columns in the database and store them in the Oracle
database. We then added a tool that allows you to
select a table, and columns of interest, the type of
query (just one record based on a primary key, a list of
all keys in a table, etc.) and eventually build up a set
of queries of interest. Then with this, we would gener-
ate an entire PL/SQL package with record definitions,
parsing routines, query routines, etc. This package
could then be compiled in Oracle in used by other
parts of the system.

The first application of the code generator, was
to regenerate the interface used by the code generator
itself to get data dictionary information. The code gen-
erator made it very easy to access almost all of the
data we needed from the SQLServer database on the
Unity system. We could get lots of the mailbox config-
uration information, some statistics about the mail-
boxes and even the PIN. We actually could only get an
MD5 hash of the PIN, but we discovered that when

10The Call Manager is the ‘‘brains’’ of the VOIP system.
11Only the first column of the query would be returned and

the total returned data was truncated at 32 Kbytes.

you pass a 32 character hex hash of a PIN to the
Set_DTMF_Access routine, it would recognise it as
already hashed and set it directly. Thus although we
could not determine what someone had set the PIN
to,12 we could determine that they HAD set it, and we
could copy that value to the new system.

Call Manager Integration

Between our initial deployment and the migra-
tion to Unified messaging, we had one major change
in our environment; the VOIP deployment. When a
voice mailbox is configured, you need to indicate
which phone switch it is on. This is so Unity knows
which switch receives the MWI. As people were
moved from the PBX to VOIP, we sometimes forgot to
update Unity, so a few days after someone got moved
to VOIP, we would get a trouble call that their message
waiting light wasn’t working anymore. We modified
our call manager configuration tool, to check the Unity
configuration and change it automatically if needed.
This greatly reduced the number of MWI trouble calls
we were getting. This type of cross system integration
is a nice feature of doing our own tool development.

Recorded Names and Greetings

Much of the subscriber configuration informa-
tion was stored in the SQLServer database, and the
actual voice messages were stored as email on the
Exchange server. But the recorded names and greet-
ings were stored as .wav files on the file system on the
Unity server. We could at least get the name of the file
from the SQLServer database. Our next step was to
define a new command for the queue runner that
would ask it to open a sound file and save it into the
Oracle database. The file would get converted to Hex,
passed to a an interface routine in Oracle, that would
convert it back into binary and store it as a BLOB.13

We were already saving ID card photos as BLOBs and
we had reasonable support for managing this informa-
tion and spitting it back out via web tools. This was
pretty neat, as it allowed our admin tools to ‘‘play’’
the greetings and recorded names for subscribers and
call handlers. We were able to ‘‘recognize’’ names that
we had recorded and greetings that we had generated
by the file names, so we didn’t bother to actually save
these in the Oracle database. Collecting names and
greetings was not a fast operation.

Since it took so long to copy all of the recorded
names and greetings, we next wanted to develop a sys-
tem that would just get new recordings. Unfortunately,
although the SQLServer database had the file name, it
did not know the file size or last changed information.
So, we added yet another command, a request for file
information. When the queue runner got this, it would
get the file size and last data info, and store that in the

12OK, 5-8 numeric digits and known hash, we could brute
force it.

13Binary Large Object – how Oracle can store large binary
data values such as a .WAV file.

280 20th Large Installation System Administration Conference (LISA ’06)



Finke Unifying Unified Voice Messaging

Oracle database. This made for some complex update
code; it would check to see if a subscriber had a
recorded name. If it did, it would send a request for
the file info for it. But it might be minutes or even
hours before it got a response (an update in the table),
so it would request info on a lot of files, and mark
them all as pending. Some time later, it would look at
the pending to see if they had been updated, and if so,
it would then ask for a fresh copy of the file. A more
direct query approach have made writing this a lot eas-
ier. But in the end, we had a system that could, in the
span of less than a day, ensure that we the most recent
greetings and names.

Migration Tool

When we moved from Octel to the Stand Alone
Unity system, we had written a migration tool to help
us with that project. So, we wrote a new tool that
would let us examine all of the call handlers and sub-
scribers on the stand alone system and figure out how
to map them to the Unified system. This also provided
a platform to test the migration procedures. When we
had installed the Unified system, we did not populate
it with subscribers, and just set up a few call handlers
and templates to provide a starting point.

The first folks migrated were part of the pilot
group – generally the technical people who were actu-
ally doing the migration, and would not (or could not)
complain if their voicemail got messed up. Since these
were going to be ‘‘unified’’ clients, we did not need to
change their mailbox name. The first step in migrating
someone, made an entry in the migration table, and
changed their status. The first state was generally
‘‘wave wait’’ – which also generated a request for the
sound files. Once the sound files arrived, the new
name could be set and when we were ready, we
pressed the ‘‘create’’ button. As time went on, we got
better, identifying more special cases we had to han-
dle, and getting all of the configuration information
that we needed. These early adopters did not get their
messages copied over until much later.

The tool was then changed to list sets of sub-
scribers, based on class of service, who were not yet in
the migration table. Check boxes made it pretty simple
to decide if we wanted to migrate them, and what their
new mailbox name should be. This allowed us to
review every subscriber and call handler well ahead of
time and get them started down the path. Once a sub-
scriber or call handler was created, a link to the new
entry was also stored in the migration table, so we built
up a record of everyone and everything that got moved.

Prior to Cut-over Weekend

We had originally planned on doing the migra-
tion during the week between Christmas and New
Years. This had the advantage of the students being
out of the dorms and most of the staff on vacation.
However, the wife of the exchange administrator was

due to deliver their third child14 that week, and since it
wasn’t critical that we migrate, we decided to wait until
the entire upgrade team was available. The cut over was
moved to the first weekend of Spring break. The real
driving force was that was the first weekend that all
members of the upgrade team (at least the key mem-
bers) did not have other obligations. It certainly is nice
to be able to select a time that works well for everyone.

Despite having had the pilot group using the new
server, and many of them still unified, there were still
things that we were unable to test. For example, we
were pretty sure that creating 5000 new mailboxes on
our exchange server would not have any unexpected
side effects, but we wouldn’t know until we tried. So
two weeks before the cut-over, we started creating the
new mailboxes using the migration tool. After the first
few batches of 100 went through ok, and backup ran
ok, we sent over 1000, things again looked ok, and we
were able to finish the bulk of them a week before the
cut over. We also added some bulk processing options
to the migration tool, to speed the processing along.

How Long?

Another process we started early, was setting up
the sound files. We did not want to load the sound files
too early – users of the voicemail system were still
updating their greetings and we did not want to
‘‘freeze’’ changes until shortly before the cut over. But
since our collection process was able to detect files
that had changed, we started loading sound files, and a
good thing we did! Although everything worked in
tests, and the extraction of all sound files only took 36
hours, moving the sound files from the database and
converting them back into .WAV files on the Unified
system was very slow and our initial estimate was
almost two weeks! Some research into that determined
that most of the time was in the hex to bin conversion,
and some web searches revealed discussion of just
how slow some of the library routines that did this are.
An alternate library gave us a speed increase of 20,
which was good enough to get us in under the dead-
line.

We wrote another program that would copy mail-
boxes from the Stand Along exchange server and
deposit their contents into the Unified exchange
server. It would take a crosswalk file, since almost all
of the mailbox names were changing as part of the
process. This also was going to append email, since
members of the pilot group already had exchange
mailboxes as their primary mail service. We couldn’t
figure a good way to test this – although we had a
Exchange test domain, it is isolated from the ‘‘real
world,’’ since it tries very hard to get out. We were
also concerned that any testing here would raise more
questions than it answered. Since this program was
based on some tools we had used during an Exchange
recovery operation, we had some feel for the timing,

14Katia Birgit Hill, 7 lb, 13 oz

20th Large Installation System Administration Conference (LISA ’06) 281



Unifying Unified Voice Messaging Finke

and we were confident that it could run in less than
two days – well within our planned upgrade window.

Cut Over!

Friday at 6:00 PM rolled around, and we started
going through the step by step upgrade plan. We had
taken some concepts from Brent Chapman’s Invited
Talk [1] from LISA last year, and we had a communi-
cations person and a communications plan, so that
people who needed to know what was happening,
were informed as milestones were reached (or not).

In the months leading up to the cut over, we had
developed an implementation plan including time esti-
mates, deadlines, dependencies and staff for each step.
We also developed a more detailed tactical plan for the
upgrade weekend, including communication schedules
(i.e., – we were going to give the CIO a status report at
9:45 PM, he wasn’t supposed to call us prior to that
time.) The plan even included dinner menu selections
for the team members. Some aspects of the plan called
for processes to run – instead of standing around
watching, most of the team could eat dinner.

We also had a test plan, which involved other
people from the division testing aspects later on in the
weekend, as well as specific things to test. We also
requested that these testers try those same tests on the
existing system prior to the cut-over, so that they
would know what to expect. We did not want to waste
timing troubleshooting a problem that existing on the
old system and was ‘‘successfully’’ migrated (and we
found bunches of these.)

Final Results
We had reserved the entire weekend for the

upgrade. Within an hour of the start, the wiring changes
were done and the new system, was accepting messages
for people on the PBX. Within an hour after that, we
had moved most of the VOIP people over. We encoun-
tered some problems that did not show up in testing,
where some phones did not want to change their voice-
mail profile and continued to direct calls to the old sys-
tem. Migration of old messages was scheduled to start
Saturday at 9:00 am and by noon, we had copied all of
the voice messages over from the old system to the new
system, and although we were still doing testing, for all
intents and purposes, the upgrade was done and most of
our users did not notice any outages. Their messages
were available, their greetings and recorded names
were intact and their PINs still worked.

Oops
We missed a few things. Although we were

finally able to get all of the VOIP phones switched
over, we overlooked the tool used to add new phones
– it was carefully assigning new phones to the old sys-
tem. Fortunately, once we figured this out, we were
able to correct it and had the users get their messages
from the old system. A few months after the cut-over,
we were still occasionally finding new VOIP phones

with voicemail on the old system. This was finally
tracked down one module that had a literal string with
the PKID of the old voicemail profile embedded in it.
This was noticed when the old voicemail profile was
deleted from the VOIP Call Manager and certain con-
figuration functions started to fail.

We had instructed our users that changes made
after a certain date (a week before the cut-over) may
not be migrated. We had a few cases where people
recorded alternate greetings and enabled them and left
for vacation. Unfortunately, the process to migrate
greetings was not synchronized with the process that
copied the state of the greeting switch, so as a result, a
few people had voicemail greetings wishing folks a
‘‘Happy Thanksgiving’’ during the week of spring
break.

The Unity system (at the release we had), could
be configured to work with two phone systems. So in
the initial deployment, the IBX was switch 0 and the
call manager was switch 1. When the new Unity sys-
tem was installed, the first switch that was configured
was the call manager so it became switch 0, and the
IBX was switch 1. This didn’t matter too much, since
phones are generally configured by name. What this
did do, was change the default switch for lots of mail-
boxes. Since this didn’t matter for mailboxes that
didn’t have a real phone, this shouldn’t be a problem.

One of the nightly jobs the Unity server runs, is
to refresh the Message Waiting Indicator (MWI) on all
the telephones. This is that nice little red light that tells
you that you have a message waiting. Or for the folks
with standard telephone sets, the ‘‘stutter ’’ dial tone,
so that when you pick up the phone, you get some
indication that you have voicemail. Of course, we
have found that many of the folks who have the stan-
dard phones, don’t make a lot of phone calls, and so
never pick up the phone to hear dial tone, and so never
learn that they have voicemail. This also doesn’t work
well where you have shared phones. Which mailbox
controls the single light? One option here is to use
email notification – when you have a new voicemail,
it sends you email telling you about this. While this
makes no sense for unified people (sending you an
email to tell you that you have an email?), it is nice for
folks with just the basic voicemail service. Many of
our mailboxes are set up with 5 or 6 digit ‘‘exten-
sions’’ (fac/staff shared phones that were migrated
from the Octel system often kept a 5 digit extension,
where the first 4 digits matched the phone, and the 5th
was the ‘‘press N’’ value.) So every night, Unity
would attempt to update the MWI setting for 5000
phones – many of which did not actually exist. The
connection to the IBX was a serial line – so this
update would take almost an hour. While this was
going on, new MWI changes would get stuck at the
back of the queue. This wasn’t a big problem at 4 am,
but was mildly annoying.

282 20th Large Installation System Administration Conference (LISA ’06)



Finke Unifying Unified Voice Messaging

When the new system went live (or actually when
created 4900 more mailboxes), we noticed that the
default switch was the call manager and not the IBX,
but hey, the update of the MWI would run a LOT faster
via TCP/IP. Shortly after that, we noticed that the job
that was processing the call detail records (CDR) for
phone billing, was timing out – it was taking too long
to run. Further investigation revealed that each of these
MWI updates was generating two CDR records for
each mailbox, one for invalid extension and one for ser-
vice not available. This increased the number of CDR
records each day from around 2000 to over 10,000.
This was also filling up the CDR space on the call man-
ager a lot faster, and wasting space on the billing sys-
tem. For a short term fix, we wrote yet another process
to pre-delete these CDR from the call manager before
the billing job runs. Who would have thought that such
a trivial decision would prove to be so annoying.

Another thing that bit us was with licensing lim-
its. We originally had 5000 licenses, and our usage
was getting really close to the line, so we got 50 more.
This involves loading a new license file and restarting
the system. We did this and operations continued.
However, this happened after we had built the new
system, but before we cut over, so it was still running
with the license limit of 5000 and not 5050. Shortly
after the migration, we learned that you do NOT want
to exceed your license limit. An updated license file, a
brief outage and full service was restored.

Conclusions

In retrospect, doing the initial installation as a
stand alone exchange domain, and then later migrating
it into our production email domain was a good thing.
We had no operational experience with the Cisco
Unity product, and despite having run the previous
voicemail system for 12 years, there were some signif-
icant differences. We had to make a lot of decisions
when we first deployed Unity, and several turned out
to be sub optimal.15 We were able to correct a number
of these as part of the migration process.

We also got a test system out of the whole
process. One of the first things we want to try, is does
our system restore actually work.

Are We Done Yet
A rather annoying oversight from an implemen-

tors standpoint, is that we had not defined a way to
determine when the migration was ‘‘done.’’ There is a
different mindset, sense of urgency, etc. between ‘‘Cut
over Weekend’’ and ‘‘Normal Operations.’’ It may
seem like a trivial point, but it has an impact on the
people involved. One of the problems we had, is that
there were things that were configured wrong on the
old system and we ‘‘successfully’’ duplicated those
wrong configurations on the new system. It was nice

15Which is a nice way of saying ‘‘wrong.’’ But we didn’t
know any better at the time.

to finally just fix problems as they were encountered,
and not worry was it a migration problem or a new or
even an existing problem. It was really annoying to
get a complaint about someone’s message waiting
indicator not working, and after an hour of digging,
determine that it NEVER worked in the first place.

We also left the old system on line – perhaps for
too long. This allowed some folks to continue to use
the old system without anyone knowing it – which led
to some confusing problems. This was only a problem
with the call manager. The PBX was a hard
switchover, a physical cable move, but the call man-
ager continued to talk to both system, and it wasn’t
until we deleted the voice mail profile on the call man-
ager the referenced the old system, did we shake out
the that last few references to it.
Culture Clash

The email folks and the voicemail folks had
developed many years of policies and procedures.
With the merging of the two worlds, these differences
need to be identified and resolved. For example, in the
past when a new person got a telephone, they would
often have to flush out the messages and greetings
from the previous owner of the phone. We have
NEVER re-used email accounts! What was once a rea-
sonable and acceptable practice, is now obsolete!

Another issue we have the actual deletion of
mailboxes. In the stand alone domain, the module that
deleted a subscriber record, would also delete the
exchange mailbox. But with our ‘‘real’’ windows
domain, the administrators still review and delete
mailboxes by hand. I expect once the mailboxes from
last springs students hits the ‘‘delete’’ queue, they may
reconsider this. For now, we delete them as sub-
scribers (which frees up the Unity license) and they
are marked as disabled in Exchange.

One of the more annoying problems, is dealing
with full mailboxes. With the stand alone domain, we
had a rule that would permanently delete messages that
had been ‘‘deleted’’ by the user. Mailboxes would still
occasionally fill up, but that didn’t really cause much
of fuss. Unfortunately, we have some users of the
exchange service, who have decided that the trash can,
is just another folder and that it is a good place for long
term storage (I would hate to see their office). We have
missed our chance to put the same rule we had on the
stand alone system, trash gets emptied automatically!

Futures

Although we are now positioned to provide uni-
fied voice messaging to anyone on campus, there are
some issues to be worked out. We have the basic prob-
lem that while anyone with a telephone (and in some
cases, that may not be a requirement) can have a
voicemail box, the requirements to get an exchange
mailbox are much stricter. There are also some addi-
tional features we would like to offer, and some other
minor problems that we would like to fix.

20th Large Installation System Administration Conference (LISA ’06) 283



Unifying Unified Voice Messaging Finke

Partially Unified Environment
Unlike many Unity installations, we will be oper-

ating in a mixed environment where many people are
not unified. This can result in some potential issues for
our non unified users. Although we have attempted to
hide voicemail only users in active directory, and we
also tag their names with the word ‘‘voicemail,’’ these
addresses can still ‘‘leak’’ out. The simplest way
would be when a unified user receives voicemail from
a non unified, but on campus, user. The voicemail will
be from a recognizable name (i.e., ‘‘David Hudson
(Voicemail).’’ It is a trivial matter in outlook to then
add that address to your address book, and then you
can easily access what is supposed to be a hidden
name. Ok, so what is the problem here? Say some
wacko (perhaps with tenure) leaves me voicemail say-
ing that he wants some specific hostname changed. As
a unified user, I forward this, after typing some com-
ments like ‘‘Ignore this idiot – let me know if he con-
tacts you,’’ but I accidentally get Dave’s voicemail
entry. Dave then listens to his voicemail, is told by
Unity that I forwarded a voicemail to him, and plays
him the original message, But since there is a voice
message, it does NOT read him my comments. If I had
just sent Dave a regular email to his voicemail
address, he would have been told he has an email
(which might confuse him), and it would then read it
to him, but in this case, since there was voice, only
that would be played.

There are a few other oddball cases like this, but
we were concerned enough that we have delayed
widespread deployment until we can resolve this.
Work is underway to add some hooks in the Exchange
server that will detect these cases and generate a
bounce to the sender. Once that is done, I expect that
we will resume the more general deployment.
Student Voicemail Becomes Opt-In

One of the things we had overlooked in this
project, was anti-virus scanning. In the original stand
alone deployment, we did not need anti virus scan-
ning, as the exchange server was pretty well isolated
from the rest of the world. However, in the unified
environment, we need the scanning, and you have to
scan all mailboxes. This is licensed on a per mailbox
basis, so there was a jump in the licensing cost. Cisco
is also changing their licensing, and the per mailbox
cost is going to be going up.

Historically, we had provided voicemail service
to all on campus students. Not only was the old Octel
system paid for, the vendor had gone out of business,
so even if there had been per mailbox licensing costs,
there was no one to pay them to. It was easier to create
mailboxes for everyone, and ignore the idle ones. Now
that model has changed, and there is significant costs
for mailboxes. We don’t mind paying for active ones,
but paying for idle ones is a bit annoying. Many of our
students come to campus now with their own cell
phones. One of the things we have noticed, is a large

drop in long distance revenue from students – they are
no longer using their dorm room phones to make long
distance calls. What is more, they don’t seem to be
using them all that much to receive calls – at least
many are not bothering to set up their voicemail
boxes. We did some analysis of usage; one of the
fields saved by Unity is the last time a mailbox was
opened via the phone. For the spring semester, of the
2500 student voicemail boxes we had on line, only
500 actually called it! We had enabled email notifica-
tion for students, and all mailboxes had a recorded
name (done automatically), but it was pretty clear that
we were wasting a lot of licenses.

After some discussions with the CIO, Residence
Life and the Office of the First Year Experience, we
decided to make student voicemail an opt in service.
The web tool they use to pick up their voicemail PIN,
will let them request/create a voicemail box if they so
chose. After about three weeks since the dorms
opened, we have had 370 out of a possible 2925 stu-
dents request a voice mailbox for their dorm room.
Department Administrator Tools

We have identified departmental administrators
for each department. These people can update direc-
tory information for people in their departments, as
well as issue short term VPN/Wireless access accounts
and manage guests. We will be adding a tool to help
these people administer the voice mailboxes owned by
their department or people in their department. This
will likely be rolled out when a similar tool to admin-
ister VOIP equipment is released.
User Call Handler Options

One feature we hope to release to users once we
understand the billing issues, is the ability to maintain
your own caller input selections. For instance, when you
listen to my message, you are given the option to press
six, and your call will be transferred to my cell phone.
This allows people to contact me via my cell phone, yet
I don’t need to give out my cell phone number.

There are a number of other advanced features in
the Unity systems that we may be exploring as well.

References and Availability

The bulk of this project is written in PL/SQL.
The core package is the Unity_Maint package (see Fig-
ure 2) that provides access the to Oracle tables that
store our version of the configuration, and communi-
cates with the Unity server via the Meta_Change
_Queue package. This package is basically site inde-
pendent – none of our business rules are applied here,
just the basic communication and configuration. The
bulk of the site specific operations, and those requiring
work in more than one table (such as creating ECPs) is
in the Unity_Functions package. Later efforts to work in
expiring mailboxes was put in the Unity_Expire pack-
age. This division was mostly to accommodate a lot of
changes in expiration processing without impacting
tools using the Unity_Functions package. The primary

284 20th Large Installation System Administration Conference (LISA ’06)



Finke Unifying Unified Voice Messaging

administrative tool is provided via the Web_Unity_
Admin package. The student voicemail tool predated this
project by several years and is in the We b _ Voice-
mail_Admin package which in turn used the Tc o m _ Voice-
mail_Maint package. These existing packages were joined
to the new project via the Unity_Dorm_Functions package.
Some of this structure is the result of when things were
deployed and several packages could be merged.

The Unity Queue Runner program took com-
mands from the Meta_Change_Queue, translate them
via the Unity_Record package and then processes them
appropriately. Although in our original Windows 2000
integration process we were maintaining Active Direc-
tory directly, in this case, we made the changes in the
Unity server (which has it’s own SQLServer data-
base), and the Unity application would make the
changes in Active Directory. The Unity application
would also create Exchange mailboxes as needed
(Deleting mailboxes has been disabled for now).

Figure 2: Code Structure.

Most of the PL/SQL source code for the Simon
system as well as the full table and view descriptions
are available via the web at http://www.rpi.edu/campus/
rpi/simon/misc/Tables/simon.Index.html and http://www.
rpi.edu/campus/rpi/simon/misc/Tables/SIS-index.html .
Some of the modules that interface with the Cisco Call
Manager are currently under contract with another
vendor, and we are not making them publicly avail-
able until the details of the contract are worked out.
The migration tools were changing during the course
of the migration, what we used at the start is different
from tool we used at the end of the project. These
tools were not intended for extended use, although we
will keep the source code around in case we migrate
again. There are also a number of scripts that were put
together as needed.

If you ask nicely, I will try to answer questions
and might be able to dig out some of the C and JAVA
code that makes up other parts of the system.

Acknowledgments

I would like to thank Rudi van Drunen for his
shepherding of this paper with me. I also want to
thank Rob Kolstad for his excellent (as usual) job of
typesetting this paper. I also want to thank the other

members of the Unified Messaging Team here at
Rensselaer for their contributions to the project, as
well as my girlfriend Joyce who encouraged me
throughout the entire process.

Author Biography
Jon Finke graduated from Rensselaer in 1983

with a BS-ECSE. After stints doing communications
programming for PCs and later general networking
development on the mainframe, he then inherited the
Simon project, which has been his primary focus for
the past 15 years. He is currently a Senior Systems
Programmer in the Communication and Middleware
Technology department at Rensselaer, where he is
developing identity management systems and integrat-
ing Simon with the rest of the Institute information
systems. In addition to the Simon project, Jon is also
involved with the support of the Telecommunications
billing system, and providing data and interfaces for
Unity Voice Messaging and CISCO VOIP deployment
projects at Rensselaer. He hopes to someday find out
what Middleware is. When not playing with comput-
ers, you can often find him merging a pair of adjacent
row houses into one, or inventing new methods of
double entry accounting as treasurer for Habitat for
Humanity of Rensselaer County. Reach him via
USMail at RPI; VCC 319; 110 8th St; Troy, NY
12180-3590. Reach him electronically at finkej@rpi.edu.
Find out more via http://www.rpi.edu/˜finkej .

Bibliography

[1] Chapman, Brent, ‘‘Incident command for IT:
What we can learn from the fire department,’’
The 19th Large Installation Systems Administra-
tion Conference (LISA 2005), December, 2005.

[2] Finke, Jon, ‘‘Institute white pages as a system
administration problem,’’ The Tenth Systems
Administration Conference (LISA 96) Proceed-
ings, pp. 233-240, USENIX, October, 1996.

[3] Finke, Jon, ‘‘Embracing and extending Windows
2000,’’ The Sixteenth Systems Administration
Conference (LISA 2002), USENIX, November,
2002.

[4] Finke, Jon, ‘‘Generating configuration files: The
directors cut,’’ The Seventeenth Systems Admini-
stration Conference (LISA 2003), USENIX,
October, 2003.

[5] Finke, Jon, ‘‘Meta change queue: Tracking
changes to people, places and things,’’ The Eigh-
teenth Large Installation Systems Administration
Conference (LISA 2004), pp. 231-239, USENIX,
November, 2004.

[6] Finke, Jon, ‘‘When worlds collide: The two-
sided sword of technology integration,’’ ;Login:
The USENIX Magazine, Vol. 30, Num. 3, pp.
6-7, June, 2005.

[7] Microsoft, Vi s u a l c#.net, 2001, http://msdn.micro
soft.com/vcsharp .

20th Large Installation System Administration Conference (LISA ’06) 285




