An Open Source Solution for Testing
NAT’d and Nested iptables Firewalls

Robert Marmorstein and Phil Kearns — The College of William and Mary

ABSTRACT

As firewalls have increased in power and flexibility, the complexity of configuring them
correctly has grown significantly. An error in the firewall configuration can compromise the
security of the system or interfere with normal network activity. The chance of an error increases
when coordinating multiple firewalls, because the interaction between filters may hide errors more
easily noticed on a single firewall. Firewalls on many networks use network address translation,
which further increases the complexity of the firewall policy and creates additional opportunities
for errors. Because errors in the firewall configuration are often extremely costly in time and
security, system administrators need tools for verifying and debugging their firewall policy. ITVal is
a tool for analyzing iptables-based firewalls that provides a plain English query language for
simple firewall analysis. In this work, we describe extensions to ITVal that allow it to process
network address translation rules and analyze multiple firewalls connected sequentially.

Introduction

Networks with a large number of hosts must
defend against both external and internal intruders.
While a perimeter firewall will block many external
threats, it is useless against attacks from inside the net-
work. With Trojan horses and viruses extremely
prevalent, the problem of intrusions from internal
hosts is growing rapidly [11]. To solve this problem,
many system administrators complement the perimeter
firewall with local firewalls on important internal
hosts [10]. If the network is sufficiently large, the sys-
tem administrator may also place additional firewalls
between the perimeter firewall and groups of related
hosts. The resulting architecture looks something like
Figure 1, which depicts a network with a perimeter
firewall, one unprotected host, two protected hosts,
and a protected subnet. The protected hosts could be a

mail server and a web server, while the protected sub-
net might consist of clients in an accounting depart-
ment with financial information that must be secured.
The perimeter firewall can mitigate denial of service
and other external threats, while the firewall on each
workstation secures services that must be protected
from an inside intruder. Usually, most of the worksta-
tions have very similar filtering policies, which sim-
plifies the distribution of changes to the policy, since
the policy can be edited on a single administration
host and then distributed across the network. One or
more of the firewalls may also use network address
translation(NAT) to further protect internal hosts or to
work around the IPv4 address space problem.

The Linux firewall system, iptables, which pro-
vides NAT and stateful filtering, is well-suited for
securing large networks of workstations and can be a

[OUTSIDE WORLD]
113.137.10.1
Perimeter
Firewall

i 113.137.10.1

192.168.1.1

113.137.10.2

& 113.137.10.3 113.137.10.4

113.137.10.101

i & Intermediate
Firewall

Mail Web

Server Server

Figure 1: Common firewall architecture for defeating insider threats.

19th Large Installation System Administration Conference (LISA °05)

192.168.1.2 192.168.1.3 192.168.1.4

L2 S S

103

An Open Source Solution for Testing NAT’d and Nested iptables Firewalls

cheap solution for providing security against internal
threats. Unfortunately, iptables rule sets are particularly
difficult to understand and debug. Changes to the fire-
wall may introduce subtle errors that disrupt normal
traffic and can be difficult to diagnose.

The multiplicity of firewalls, in networks like the
one described, greatly increases the difficulty of
avoiding configuration errors. Removing a rule at the
perimeter often means exposing hosts that are not suf-
ficiently protected by their local firewalls. Incorrectly
adding rules to a local or intermediate firewall can
unintentionally block important network services.
Firewalls with NAT are even more complex because a
set of translation rules must be considered in addition
to the filtering rules.

For example, consider the filtering chains given
in Figure 2 that could be used to secure the network
shown in Figure 1. The first chain is the forwarding
chain of a perimeter firewall that protects a network

Marmorstein and Kearns

113.137.10.0/24 from intrusions on an insecure net-
work 113.137.9.0/24. Rule 1 of the chain blocks traffic
from the insecure network. Rule 2 protects the mail
server by blocking all traffic from the outside world.
The remaining rules secure various services that
should be allowed to pass through the firewall. The
second chain is the INPUT chain of the internal mail
server, 113.137.10.3. It permits SMTP, secure IMAP,
and SSH traffic, but blocks anything else.

There are several invariants that the administrator
wishes to preserve about this network. First, web traffic
from anywhere but the insecure network should always
be allowed to host 113.137.10.4, the web server. Sec-
ond, hosts from the outside world should never be able
to SSH into the mail server. Third, no traffic should
ever be permitted from the insecure network.

Let’s assume that the administrator decides to
allow SSH traffic through the perimeter firewall for
hosts on subnet 113.137.8.0/24 by adding a rule to the

Chain FORWARD (Default Policy DROP)
target prot source destination flags
1 DROP tcp | 113.137.9.0/24 anywhere
2 DROP tep anywhere 113.137.10.3
3 | ACCEPT | tcp anywhere anywhere TCP dpt:80
4 | ACCEPT | tcp anywhere anywhere TCP dpt:53
Rule Set on the Perimeter Firewall
Chain INPUT (Default Policy DROP)
target prot source destination flags
1 | ACCEPT | tcp | anywhere | anywhere TCP dpt:22
2 | ACCEPT | tcp | anywhere | anywhere | TCP dpt:993
3 | ACCEPT | tcp | anywhere | anywhere TCP dpt:25
Rule Set on the Mail Server
Figure 2: Rule sets for an example network.
Chain FORWARD (Default Policy DROP)
target prot source destination flags
1 DROP tep 113.137.9.0/24 anywhere
2 | ACCEPT | tcp 113.137.8.0/24 anywhere
3 DROP tcp anywhere 113.137.10.3
4 | ACCEPT | tcp anywhere anywhere TCP dpt:80
5 | ACCEPT | tcp anywhere anywhere TCP dpt:53
Figure 3: An incorrect perimeter rule set.
Chain FORWARD (Default Policy DROP)
target prot source destination flags
1 DROP tcp | 113.137.9.0/24 anywhere
2 DROP tep anywhere 113.137.10.3
3 | ACCEPT | tcp 113.137.8.0/24 anywhere
4 | ACCEPT | tcp anywhere anywhere TCP dpt:80
5 | ACCEPT | tcp anywhere anywhere TCP dpt:53

Figure 4: A correctly modified rule set.

104

19th Large Installation System Administration Conference (LISA °05)

Marmorstein and Kearns

forwarding chain of the perimeter firewall as shown in
Figure 3. The first rule and the last three rules are the
same as those in Figure 2, but the second rule is new.
This change preserves the first and third invariant, but
violates the second, because SSH traffic from the out-
side world can now reach the mail server. To correct
the violation, she can either add restrictions to the fil-
ter on the mail server or switch the order of rules two
and three in the perimeter filter.

A correct rule set for the perimeter firewall is
shown in Figure 4. The new rule set allows HTTP and
DNS traffic from 113.137.8.0/24, but preserves all
three invariants.

Existing Tools

There is a fairly large body of tools available for
testing firewalls. Port scanners, such as nmap [6], can
be used to reveal open and closed ports on each host.
Tools that perform general security audits, such as
SATAN [5], Nessus [2], SARA [17], and ISS [9] also
include components for testing firewalls by sending
specially crafted packets to a host. In addition, there
are a few tools, such as Ftester [3], designed specifi-
cally for analyzing stateful firewalls.

All of these tools are active tools that test the
firewall by sending traffic through it. This has the dis-
advantage of consuming bandwidth and interfering
with normal traffic. Furthermore, active tools are usu-
ally very inflexible. Rather than providing general
functionality for investigating the firewall configura-
tion, they are usually designed to test specific vulnera-
bilities. Also, they usually only simulate packets origi-
nating from a single host or small group of hosts.
Incorrectly configured firewalls that allow packets
from an untested host will pass the test even though an
error exists. Some tools use address spoofing to miti-
gate this problem, but because of bandwidth con-
straints, no active tool can test every possible address
that might originate a packet to the firewall.

More importantly, active tools do not work well
with multiple firewalls and network address transla-
tion. Because packets dropped by one firewall are
never seen by the second, it is often difficult for an
active tool to generate a spoofed packet that will
exploit configuration errors in both firewalls. Also,
replies to packets with NAT’d source addresses may
never been seen by the active analysis tool.

Because active tools have these drawbacks, pas-
sive tools, which perform an offline analysis of the
firewall can be more practical. One such tool is the
Lumeta firewall analyzer [18], a commercial product.
Lumeta is based on Fang [1] and provides general
query capability for Checkpoint and PIX firewalls.
Because Lumeta provides an offline analysis of the
firewall policy, it has many advantages over active
tools. Unfortunately, Lumeta is not designed to work
with iptables firewalls.

An Open Source Solution for Testing NAT’d and Nested iptables Firewalls

A few other groups have also done some work
on passive analysis. A team at the University of Texas
has developed a tool that uses SQL-like queries for
firewall analysis [12]. They have also developed a sys-
tem for improving the structure of the rule set using
decision diagrams [7]. Another group has used deci-
sion diagrams to implement basic firewall queries [8,
16]. None of these tools are specifically targeted at ipt-
ables and they do not support NAT.

In previous work, we presented an open source
tool, ITVal, for performing a passive analysis of a sin-
gle iptables firewall. ITVal uses an efficient decision
diagram library [13] to provide a plain-English query
language that a system administrator can use to
quickly test for vulnerabilities. ITVal is particularly
useful for evaluating changes to the firewall configu-
ration. A system administrator can perform an [TVal
audit before and after each change to the firewall and
examine the results to quickly determine if any of the
important security invariants of the network have
changed. As presented in [15], ITVal supported neither
NAT nor analysis of multiple connected firewalls. In
this work, we present extensions to ITVal that allow it
to take these into account.

ITVal

ITVal implements a query engine for evaluating
the configuration of a firewall. Some example queries
are shown in Figure 5. The main components of each
query are the keyword QUERY followed by an
optional input chain, a subject, and a query condition.
The input chain parameter determines whether the
query should consider traffic inbound to the firewall,
traffic outbound from the firewall, or traffic forwarded
through the firewall.

The subject tells ITVal what information to report.
For instance, the subject SADDY instructs ITVal to list
the source addresses of packets that match the query.
The condition is made up of primitives that can be
combined with the logical operators AND, OR, and
NOT to form complex queries. The available primi-
tives are FROM, TO, ON, FOR, WITH, and IN, which
specify source address, destination address, source
port, destination port, TCP flag status, and connection
state, respectively. There is also a special primitive,
LOGGED, which matches packets for which the fire-
wall contains a matching LOG rule. The reader is
referred to [15] for the details of the query language.
One feature of the query language we will exploit in
our examples is the ability to name groups of hosts
and services for use in multiple queries with the
GROUP and SERVICE keywords, respectively.

The internal representation of both the queries
and the rule sets is handled by the FDDL [13] decision
diagram library. FDDL provides a data structure called
a Multi-way Decision Diagram(MDD) for represent-
ing large sets of vectors compactly. MDDs are particu-
larly well suited for representing firewall rules. In fact,

19th Large Installation System Administration Conference (LISA °05) 105

An Open Source Solution for Testing NAT’d and Nested iptables Firewalls

an MDD implementation of the iptables filtering algo-
rithm showed significant performance gains over the
existing implementation [4].

e QUERY SADDY TO 192.168.*;
List all hosts with access to subnet
192.168.0.0/16.

e QUERY DPORT FROM 113.137.10.* AND NOT
FOR TCP 993;
List all destination ports, except the secure
IMAP port(993), that can be accessed by hosts
in the 113.137.10.0/24 subnet.

e QUERY SPORT NOT FROM 192.168.1.101 AND
FOR 137.113.6.2;
List all source ports open on host 137.113.6.2
to machines other than host 192.168.1.101.

e QUERY DADDY FOR TCP 25 AND (IN NEW OR IN
ESTABLISHED);
List all hosts that can receive packets on port
25 on a connection in the NEW or ESTAB-
LISHED state.

e QUERY DADDY FROM 192.168.1.* AND (FOR TCP
25 OR FOR TCP 80 OR FOR TCP 110);
List all hosts that can receive SSH, SMTP, or
HTTP traffic from hosts on the 192.168.1.0/24
subnet.

Figure 5: Some example |TVal queries.

Formally, an MDD is a directed acyclic graph in
which the nodes are organized into levels and every
arc from a node at a level >0 points to a node at level
k-1. In ITVal, each level of the MDD corresponds to
one attribute of a packet potentially seen by the fire-
wall. Every node of the diagram represents a set of
packets that share some common attributes. Each arc
at level k represents a choice of value for attribute £.
An example MDD for the last query of Figure 5 is
shown in Figure 6. Because we do not allow duplicate
nodes with all arcs pointing to the same descendants,
this means that a path through the MDD represents
exactly one packet.

We use MDDs to represent both the rule set of
the firewall and a set of queries. To represent a rule
set, we add a level of terminal nodes to the bottom of
the MDD which correspond to the ultimate fate of the
packet (accepted or dropped) as determined by the
rule set. To represent the queries, we instead add a
level of terminals that indicate whether the packet
matches the query conditions or not.

Intuitively, a rule set MDD represents the set of
packets accepted by the firewall, while a query MDD
represents the set of packets that satisfy the query condi-
tions. When depicting MDDs graphically, we will often
show only paths to the ACCEPT node or the MATCHES
node. To save space, we also omit the terminal level.

To perform a query, we first represent the query
and the rule set as MDDs. The MDD for the rule set is
constructed from a rule set description generated using

Marmorstein and Kearns

the “iptables -L -n” command. The MDD for the query
is generated from a query file provided by the user. We
then evaluate the query on the rule set by applying an
MDD intersection operator to the two MDDs. The inter-
section of the two MDDs is the set of packets accepted
by the firewall which match the conditions of the query.

Level 20:

Source Address, Octet 1
Level 19:

Source Address, Octet 2
Level 18:

Source Address, Octet 3
Level 17:

Sour ce Address, Octet 4
Level 16:

Destination Address
Octet 1

Level 15:
Destination Address

Octet 2

Level 14:
Destination Address

Octet 3

Level 13:
Destination Address

Octet 4
Level 12:
Protocol

Level 11:
Source Port, Byte 1

192

Level 10:

Source Port , Byte 2
Level O

Destination Port, Byte 1

Level 8:
Destination Port, Byte 2

Level 7:
FIN Flag

Level 6:
SYN Flag
Level 5:
RST Flag
Level4:
PSH Flag
Level 3:
URG Flag

Level 2:
ACK Flag

Level 1. . .
Connection State | nvalid|New | Established [Related |

Figure 6: An example MDD.

In the following sections, we present the MDD-
based infrastructure of the changes made to ITVal to

106 19th Large Installation System Administration Conference (LISA °05)

Marmorstein and Kearns

provide support for nested firewalls and NAT. The
system administrator should have access to such infor-
mation in order to increase his understanding of, and
trust in, the tool.

Composing Nested Firewalls

In order to extend ITVal to work with multiple
firewalls, we introduce the concept of a meta-firewall.
A meta-firewall is an imaginary firewall that repre-
sents a composition of the rule sets of two or more
serially connected firewalls. To analyze a meta-fire-
wall, the user passes the names of the rule set descrip-
tion files on the command line. The order of the file-
names must reflect the topology of the firewalls, with
the innermost filter first on the command line and the
outermost filter last.

The meta-firewall has three filter chains analo-
gous to the three built-in chains of a normal firewall.
The FORWARD chain of the meta-firewall regulates
traffic passing through all the firewalls in either direc-
tion. The INPUT chain of the meta-firewall regulates
traffic inbound to the innermost firewall through all of
the outer firewalls. The OUTPUT chain represents
traffic generated by the innermost firewall that suc-
cessfully passes through the outer firewalls to the out-
side world.

Queries are performed against the meta-firewall
as if it were a single iptables firewall. For instance, the
query

QUERY FORWARD DPORT FOR 192.168.*
AND IN NEW;

will list the destination ports of packets bound for the
192.168.0.0/16 subnet that pass through all the fire-
walls in the set.

To construct the meta-firewall, ITVal joins the
MDD for each chain of the component filters using the
MDD intersection operator described in [15]. The algo-
rithm is recursive and uses caching to improve perfor-
mance. Using the caches, we are guaranteed to consider
each pair of nodes in the MDDs only once. Because the
performance depends only on the number of nodes in
each MDD and not on the number of rules, this algo-
rithm scales well to extremely large rule sets and
queries.

Pseudocode for generating the meta-firewall is
shown in Figure 7. The INPUT chain of the meta-fire-
wall is constructed by intersecting the FORWARD

An Open Source Solution for Testing NAT’d and Nested iptables Firewalls

chains of the outer n-1 firewalls and the INPUT chain
of the innermost firewall. The OUTPUT chain is cre-
ated by intersecting the OUTPUT chain of the inner-
most firewall with the FORWARD chains of the outer
n-1 firewalls. The FORWARD chain is the intersection
of all n FORWARD chains.

An MDD depicting the meta-firewall for the rule
sets in Figure 2 is shown in Figure 8. In order to save
space, only the levels for source address, destination
address, and destination port are shown.

Source
Address 1 0-112] 113 | 114-255
Source
Address 2 0-136] 137 | 138-255 0-255
"“ﬁr/
Source
Address3 0-8 10-255 0-255
Source
Address4 0-255
Destination 10.112| 114-255
Address 1 \/
Destination
Address 2 0-255
v
Destination
Address 3 0-255
v
Destination
Address 4 0-255
v
Destination 0
Port 1
¥
Destination
Port 2 53

Figure 8: Combining two rule sets into a meta-fire-
wall.

Figure 9 illustrates how ITVal might be used to
detect the errors described in section 1. We depict the
results of three queries before and after the incorrect

Firewall* ConstructFirewall (int n, Firewall* fws)

1 newFW = NewFirewall ()

2 newFW.forward = fws[0].forward

3 newFW.input = fws[0].input

4 newFW.output = fws[0].output

5 for i in I to n-I:

6 newFW.forward = IntersectMDD (K,
7

8

9 return newFW.

newFW.forward, fws[i].forward).
newFW.input = IntersectMDD (K, newFW.input, fws[i].forward).
newFW.output = IntersectMDD(K, newFW.output, fws[i].forward).

Figure 7: Algorithm for constructing a meta-firewall.

19th Large Installation System Administration Conference (LISA ’05) 107

An Open Source Solution for Testing NAT’d and Nested iptables Firewalls

change. The original, valid, results are shown in Roman
font, while the later query results are shown in bold.

Each query corresponds to one invariant that the
administrator wishes to preserve. The first query asks
which hosts, other than those on the insecure net, can
access the web server. In the original results, we see
that, as expected, any other host can access the web
server. In the modified results, we see that this impor-
tant invariant still holds.

The second query asks whether the SSH port on
the mail server can be accessed from outside the fire-
wall. In the original results, no external machine can
reach it. After the modification, however, the results

Marmorstein and Kearns

show that the SSH port can be accessed from outside
the firewall. SSH traffic from 113.137.8.0/24 can now
reach the mail server. By comparing these results, the
administrator will realize that she has made a mistake
and take steps to correct it.

The last query tests whether services on the mail
server are available to the insecure network. In both
cases, the answer is no.

Network Address Translation

In addition to filtering packets that pass through

the firewall, iptables provides a mechanism for modi-

fying the destination or source address of a packet
before and after filtering, respectively. This network

>ITVal Example.fw mail.rs mail.nat perimeter.rs perimeter.nat

#First invariant: Web traffic not from insecure net

{fcan always reach the web server
GROUP insecure 113.137.9.%;

QUERY SADDY INPUT FOR 113.137.10.3 AND NOT FROM insecure AND FOR TCP 80;

{ Addresses: [0-112].*.*.*

[114-255].*.*.*

113.[0-136].*.*

113.[138-255].*.* 113.137.[0-8].* 113.137.[10-255].*

J 4294967040 results.
Addresses: [0-112].%.*.*

[114-255].*.*.*

113.[0-136].*.*

113.[138-255].*.* 113.137.[0-8].* 113.137.[10-255].*

Jf 4294967040 results.

f#fSecond invariant: External hosts should never be able to SSH to the mail

server.
GROUP internal 113.137.10.%*;

QUERY DPORT INPUT NOT FROM internal AND FOR TCP 22 AND TO 113.137.10.3;

J Ports:
0 results.

Ports: 22
1 results.

#Third invariant: No traffic from the insecure network can reach

{fthe mail server.
QUERY DPORT INPUT FROM 113.137.9.%;

Jf Ports:
0 results.

Ports:
0 results.

Figure 9: Query results before and after the change.

Chain PREROUTING (policy ACCEPT)
target | prot source destination flags
1 | DNAT | all | anywhere | 113.137.10.101 TCP dpt:2002 t0:192.168.1.2:22
2 | DNAT | all | anywhere | 113.137.10.101 TCP dpt:2003 t0:192.168.1.3:22
3 | DNAT all anywhere | 113.137.10.101 TCP dpt:2004 t0:192.168.1.4:22
4 | DNAT | all | anywhere | 113.137.10.101 | TCP dpt:3000 to 192.168.1.2:9999

NAT rules for the intermediate firewall

Chain FORWARD (policy ACCEPT)

target | prot source

destination flags

1 | DROP | tcp

113.137.10.4

192.168.1.0/24

Filter rules for the intermediate firewall
Figure 10: Rule set of a NAT ing firewall.

108 19th Large Installation System Administration Conference (LISA °05)

Marmorstein and Kearns

address translation (NAT) can also alter the destination
and source ports of the packet. Properly handling NAT
in the query engine is important, because the modified
packet may be treated differently by the filtering rules
than the original packet. In order for our queries to
take NAT into account, we must modify the rule set
MDD to reflect each of the NAT rules.

Like filtering rules, NAT rules are specified using
chains. Destination NAT(DNAT) rules for incoming
packets are specified in the PREROUTING chain,
which is processed before filtering. In addition to the
PREROUTING chain, iptables provides a POSTROUT-
ING chain, processed after filtering, which is appropri-
ate for source NAT(SNAT), and an OUTPUT chain for
performing DNAT on locally generated packets.

An example rule set for a NAT’ing firewall,
which might represent the intermediate firewall in
Figure 1 is shown in Figure 10. This firewall protects
an internal network 192.168.1.0/24 by hiding the
addresses of hosts from the outside world. To access

An Open Source Solution for Testing NAT’d and Nested iptables Firewalls

a host, an external system must connect to the
NAT’ing firewall, which will forward the connection
on the appropriate port. Each NAT rule has a domain
and a range. The domain of the NAT rule specifies
the set of packets that will be modified. In Figure 10,
the domain of the first rule is ““all TCP packets from
113.137.10.101 on port 2002”°. The range of the NAT
rule specifies a set of new destination or source
addresses and ports. In this case, the range of the rule
is “for 192.168.1.2 on port 22”°. Because NAT can be
used for primitive load balancing, the range may be a
set of destinations rather than a single value. In this
case, packets may be sent to any of the addresses in
the range.

In the figure, the PREROUTING chain maps
ports 2002-2004 to the SSH ports of internal hosts and
also maps port 3000 to some proprietary database soft-
ware running on port 9999 of machine 192.168.1.2.
The FORWARD chain blocks traffic from the web
server to those hosts.

Chain FORWARD (policy ACCEPT)

target | prot source destination flags
1 | DROP | tcp 113.137.10.4 | 192.168.1.0/24
2 | DROP | tcp 113.137.10.3 | 113.137.10.101 | TCP dpt:3000

Figure 11: Incorrectly configured filter on the NAT ing firewall.

Source
Octet 1 0-112] 1|13 114-255
| S— | ~
Y N
Source
Octet 2 0-136 | 137 | 138-255 0-255
Source
Octet 3 091 10 11-255 0-255
N =y _
Source
Octet 4 021 3 4 |5255 0-255
— Y —
Destination
Octet 1 0-112 | 113 |114-255 | |0-191| 192 [193-255 | 0-255
L L L 1 1 1 1
/ v]
Destination
Octet 2 0-136| 137 [138-254| 0-167 | 168 | 169-255 | |0-255
L L 1 1 1
X y
Destination
Octet 3 091 10 11-255 0 |2-255 0-255
—]
Destination
Octet 4 0-100 | 101 | 102-255 0-255
[N [
A | A 4
Destination
Port 1 0-10| 11 12-255 0-255
| ~— |
X Y
Destination
Port 2 0-183 | 185-255 0-255

Rule Set Before NAT

Source

Octet 1 0-112] 113 | 114-255

L ———————

0-136| 137 | 138-255 0-255
~—1_

 —|

091 10 11-255 0-255

]

0-3| 4 [5255 0-255

e

Sour ce
Octet 2

Sour ce
Octet 3

Sour ce
Octet 4

Destination
Octet 1 0-112| 113 | 114-191 | 192 | 193-255 0-255
C T —_1 I
Destination
Octet 2 0-136| 137 [138-259|0-167| 168 | 169-255 | |0-255
T T | | I T
1 v
Destination
Octet 3 09| 10 11-255 0 |2-255| 0-255
[—1— I I |
¥ ¥
Destination
Octet 4 0-100| 101 | 102-255 0-255
T B I T
v
Destination
Port 1 06| 7 |7-10] 11 12-255 0-255
| I ~—1 |
[v v
Destination
Port 2 0-209] 213-256 0-183| 185-255 0-255

Rule Set After NAT

Figure 12: Applying DNAT to the example rule set.

19th Large Installation System Administration Conference (LISA °05) 109

An Open Source Solution for Testing NAT’d and Nested iptables Firewalls

To access host 192.168.1.2 in the example a user
should connect to port 2002 on 113.137.10.101. The
firewall will then replace the destination address of the
packet with “192.168.1.2” and the destination port
with “22” before passing it through the filter rules
and sending it to the router.

NAT adds another layer of complexity to the
configuration of a firewall. One common mistake is to
add filtering rules for the original address rather than
the NAT’d address. For instance, if the system admin-
istrator decides to further restrict access to the internal
hosts, she might add rule 2 of Figure 11 to prevent the
mail server from accessing the proprietary database.
While this blocks connections to the firewall itself, it
does not block forwarded connections to the internal
hosts. Unfortunately, such a mistake is very subtle and
difficult to catch.

To model network address translation using
MDDs, we create an operator which takes as inputs a
NAT rule and the MDD representation of a set of
packets. It produces as output an MDD representing
the NAT-modified set of packets. Figure 12 shows the
filtering rule set of the example before and after appli-
cation of the DNAT algorithm. Tracing the MDD from
the root node along the path for a packet from address
113.137.10.3 to port 3000 of host 113.137.10.101, we
find that the packet will be accepted by the firewall.
Pseudocode for performing DNAT on the MDD repre-
sentation of the rule set of a single firewall is shown in
Figure 13. SNAT is implemented similarly.

The algorithm takes as parameters a NAT rule
and two MDD nodes at level k. The first node repre-
sents a set of unmodified packets. The second node
represents the same packets after NAT has been

Marmorstein and Kearns

applied. Initially, both parameters point to the root
node of the rule set MDD. Our goal is to create a new
set of rules which map each original packet to the tar-
get of its NAT’d equivalent.

Lines 1 and 2 check for the base case condition.
If we have passed the levels which correspond to the
destination port, we don’t need to do any more work
as all the NAT related information is contained in the
preceding levels. We simply return the node represent-
ing the destination of the NAT d packets.

Lines 3 and 4 check to see if the result has
already been computed. If so, it is retrieved from the
cache and returned.

Line 5 creates the result node. If the recursion
has not yet reached the destination address levels,
lines 6-11 set its arcs to the result of the recursive call.
Otherwise, we consider each value i of the current
attribute. If i is in the domain of the NAT rule, line 17
creates an arc to child of the NAT’d node. Otherwise,
we point arc 7 at the child of node p.

Finally, in lines 20 and 21, we remove the node
if it duplicates another node. If it is a duplicate, the
index of the original node is added to the cache. Oth-
erwise, the index of the result is added to the cache.

Figure 14 provides a query that might be used to
detect the error in Figure 11. The group “insecure” is
a list of hosts that should be prevented from accessing
the secure server. A correctly configured firewall
should always return an empty result. After making
the incorrect change to the filtering rules, the system
administrator adds 113.137.10.3 to the group. Now, if
she again runs the query, she will see the results in
Figure 15 and detect the error.

node_idx DNAT(NAT_RULE nr, level k, node p,

[

if k<{DPORTLEVEL:
return q.

if r = (k,p,q) is in the cache:
return r.

If k>DADDYLEVEL:
for each arc i <k, p>:

node q)

<k, r>[i] = DNAT(nr, k-1, pchild, pchild).

2
3
4
5 r = NewNode (k) .
6
7
8
9

r = RemoveDuplicates(r).

10 Add (k, p, g) = r to the cache.
11 return r.
12 For each arc i e <k, p>:
13 pchild = <k, p>[i]
14 if i € Range(nr[k]):
15 for each value j in nr([k] (4):
16 gchild = DNAT(nr, k-1, pchild, <k, p>[j]).
17 <k,r>[i] = Union(<k,r>[i],
DNAT (nr, k-1, pchild, qchild)).
18 otherwise:
19 <k,r>[i] = pchild.
20 r = RemoveDuplicates(r).

21 Add (k,p,q) = r to the cache.
22 return r.

Figure 13: Algorithm for destination NAT of MDDs.

110 19th Large Installation System Administration Conference (LISA °05)

Marmorstein and Kearns

GROUP insecure 113.137.10.3;
QUERY SADDY INPUT FROM insecure
AND FOR TCP 3000;

Addresses:
0 results.

Figure 14: Query for detecting errors in the NAT ing
firewall.

GROUP insecure 113.137.10.3
113.137.10.4;

QUERY SADDY INPUT FROM insecure
AND FOR TCP 3000;

Addresses: 113.137.10.4
1 result.

Figure 15: Results for an incorrectly configured fire-
wall.

Nested Composition with Network Address Trans-
lation

In order to analyze a network that contains
nested and NAT’d firewalls, the user specifies the file-
names of filter rule sets and NAT rule sets alternately
on the command line starting with the innermost fire-
wall and working toward the outside.

The pseudocode in Figure 16 combines NAT
with analysis of multiple firewalls. The procedure
DNAT ALL applies the chain of DNAT rules pointed
to by its first parameter to the MDD specified by the
second parameter. The procedure SNAT ALL works
similarly for SNAT.

In order to correctly derive the output chain of
the meta-firewall, we work from the outermost fire-
wall toward the innermost firewall combining pairs of
firewalls. We DNAT the outermost firewall, then enter
a loop in which we intersect the result with the
unNAT’d filter rules of the next firewall to be consid-
ered. In each iteration, of the loop, we perform SNAT
on the result of the intersection using the SNAT rules

An Open Source Solution for Testing NAT’d and Nested iptables Firewalls

of the first firewall. We then DNAT using the DNAT
rules of the second firewall. This alternating behavior
simulates the traversal of a packet first through the
PREROUTING chain, then through the filtering rules,
and finally through the POSTROUTING chain.

To derive the input and forward chains, we per-
form the same operations in reverse order, working
from the innermost firewall to the outermost firewall.

Conclusions and Future Work

Although modifying rule sets can be a compli-
cated and error-prone process, the use of passive anal-
ysis tools can greatly simplify the task. Tools like ITVal
that identify firewall configuration errors can prevent
subtle mistakes from compromising the long-term
security of a network. With our modifications, ITVal
can be successfully used to analyze NAT’d firewalls in
a hierarchical network topology. While this works well
for networks in which the internal workstations share a
common policy, developing algorithms for processing
a more general topology is desirable.

In addition to supporting destination and source
NAT, iptables provides two special case NAT targets.
The REDIRECT target rewrites the destination
address of a packet so that it will be routed to the fire-
wall itself. The MASQUERADE target rewrites the
source address of a packet so that it appears to have
been originated by the firewall. The REDIRECT and
MASQUERADE targets are extremely useful for envi-
ronments in which addresses are assigned dynami-
cally, since the address of the original host need not be
known apriori when designing the rule set. In order to
represent REDIRECT and MASQUERADE rules,
ITVal needs to lookup the IP address of the host and
perform SNAT or DNAT using the host IP as the new
IP address. Although this is not currently implemented
in the tool, we plan to add it soon. In order to perform
MASQUERADE and REDIRECT, ITVal needs to
know the IP addresses of each network interface.

Firewall* NAT(int n, Firewall** FW)

1 newFW = NewFirewall ()

2 newEFW.forward = DNAT ALL(fws[0] .dnat, fws[0].forward).

3 newFW.input = DNAT_ALL(fws[0] .dnat, fws[O0].input).

4 newFW.output = DNAT_ALL(fws[n-I1].nat, fws[n-1].output).

5 for i in 1 to n-1:

6 newFW.forward = IntersectMDD (K, newFW.forward, fws[i].forward).
7 newFW.forward = SNAT_ALL(fws[i-1].snat, newFw.forward).

8 newEFW.forward = DNAT ALL(fws[i].dnat, newEW.forward).

9 newFW.input = IntersectMDD (K, newFW.input, fws[i].forward).

10 newFW.input = SNAT ALL(fws[i-1].snat, newFw.input).

11 newFW.input = DNAT ALL(fws[i].dnat, newFW.input).

12 newFW.output = IntersectMDD(K, newFW.output, fws[(n-i)-1].forward).
13 newFW.output = SNAT_ALL(fws[(n-i)].snat, newFw.output).

14 newFW.output = DNAT_ALL(fws[(n-i)-1].output, newFW.output).

15 newEFW.forward = SNAT ALL(fws[n-1].snat,

newFw.forward) .

16 newFW.input = SNAT ALL(fws[n-1].snat, newFw.input).
17 newFW.output = SNAT_ALL(fws[0] .snat, newFw.output).

18 return newFW.

Figure 16: NAT with multiple firewalls.

19th Large Installation System Administration Conference (LISA °05) 111

An Open Source Solution for Testing NAT’d and Nested iptables Firewalls

Since this information cannot be determined from the
rule set, we will need to create an input mechanism for
specifying these addresses.

Improving the output mechanism could also
greatly improve the tool. Queries that return a large
number of results can sometimes generate “‘informa-
tion overload.” Investigating ways to present this
information more concisely, perhaps through a graphi-
cal tool, would greatly improve the utility of the tool.
While system administrators can use ITVal to catch
configuration errors, it is still sometimes difficult to
identify the particular rules that cause the problem.
Labeling arcs in the rule set and result MDDs could
address this issue. Identifying the rules that cause a
configuration error would also make it possible to per-
form guided repair of the firewall. Future versions of
ITVal may not only catch firewall errors, but give a
system administrator suggestions about how to change
those errors to satisfy safety and liveness invariants of
the network.

The latest version of |TVal is available on the web
at http://itval.sourceforge.net/ .

Author Information

Robert Marmorstein is a graduate student at the
College of William and Mary and a hard-core free
software geek. When he is not hacking away at fire-
wall analysis tools, he can usually be found tinkering
with his assortment of Linux and BSD based systems.
His e-mail address is rmmarm@wm.edu .

References

[1] Wool, Avishai, Alain Mayer, and Elisha Ziskind,
“Fang: A firewall analysis engine,” Proceedings
of the IEEE Symposium on Security and Privacy,
May, 2000.

[2] Anderson, Harry, Introduction to Nessus, Octo-
ber, 2003.

[3] Barisani, Andrea, “Testing firewalls and ids with
ftester,” TISC Insight, Vol. 5, 2001.

[4] Christiansen, Mikkel and Emmanuel Fleury, “An
mtidd based firewall using decision diagrams for
packet filtering,” Telecommunication Systems,
Vol. 27:2-4, pp. 297-319, 2004.

[5] Farmer, Dan and Wietse Venema, SATAN: Secu-
rity Administrator’s Tool for Analyzing Net-
works, 1995.

[6] Fyodor, “The art of port scanning,” Phrack,
7(51), September, 1997.

[7] Gouda, Mohamed G. and Alex X. Liu, “Firewall
design: Consistency, completeness, and compact-
ness,” Proceedings of the International Confer-
ence on Distributed Computing Systems. IEEE
Computer Society, March 2004.

[8] Hazelhurst, Scott, “A proposal for dynamic
access lists for tep/ip packet filtering,” Technical
Report TR-Wits-CS-2001-2, University of Wit-
watersrand, April, 2001.

Marmorstein and Kearns

[9] “Internet Security Systems,” Internet Scanner
User Guide, Version 7.0 SP 2, 2005.

[10] Jonah, Kevin, “Multiple firewalls defend against
multiplying threats,” Washington Technology,
Vol. 18, Num. 8, July, 2003.

[11] Leon, Mark, “Inside the Firewall: Will Bigger
Encryption Keys Keep Your BI Data Safe From
Harm?” Intelligent Enterprise, May, 2005.

[12] Liu, Alex X., Mohamed G. Gouda, Huibo Heidi
Ma, and Anne HH. Ngu, “Firewall queries,”
Proc. of the 8th International Conference on
Principles of Distributed Systems (OPODIS-04),
LNCS 3544, Springer-Verlag, December, 2004.

[13] Marmorstein, Robert, Designing and implementing
a user library for manipulation of multiway deci-
sion diagrams, MS Project Report, Department of
Computer Science, The College of William and
Mary, http://www.cs.wm.edu/Pubs/710paper.pdf,
2004.

[14] Marmorstein, Robert, ITVal Website, http://itval.
sourceforge.net/, 2005.

[15] Marmorstein, Robert, and Phil Kearns, “A tool
for automated iptables firewall analysis,”
FREENIX/Open Source Track, 2005 USENIX
Annual Technical Conference, pages 71-82,
April, 2005.

[16] Fatti, Anton, Scott Hazelhurst and Andrew Hen-
wood, “Binary decision diagram representation
of firewall and router access lists,” Technical
Report TR-Wits-CS-1998-3, University of Wit-
watersrand, October, 1998.

[17] Todd, Bob, SARA man page, http://www-arc.
com/sara/sara8.html .

[18] Wool, Avishai, ““Architecting the Lumeta Fire-
wall Analyzer,” Proceedings of the 10th
USENIX Security Symposium, August, 2001.

112 19th Large Installation System Administration Conference (LISA °05)

