
Real-time Log File Analysis Using the
Simple Event Correlator (SEC)

John P. Rouillard – University of Massachusetts at Boston

ABSTRACT

Log analysis is an important way to keep track of computers and networks. The use of
automated analysis always results in false reports, however these can be minimized by proper
specification of recognition criteria. Current analysis approaches fail to provide sufficient support
for the recognizing the temporal component of log analysis. Temporal recognition of event
sequences fall into distinct patterns that can be used to reduce false alerts and improve the
efficiency of response to problems. This paper discusses these patterns while describing the
rationale behind and implementation of a ruleset created at the CS department of the University of
Massachusetts at Boston for SEC – the Simple Event Correlation program.

Introduction

Wi t h today’s restricted IT budgets, we are all try-
ing to do more with less. One of the more time con-
suming, and therefore neglected, tasks is the monitoring
of log files for problems. Failure to identify and resolve
these problems quickly leads to downtime and loss of
productivity. Log files can be verbose with errors hid-
den among the various status events indicating normal
operation. For a human, finding errors among the rou-
tine events can be difficult, time consuming, boring,
and very prone to error. This is exacerbated when
aggregating events, using a mechanism such as syslog,
due to the intermingling of events from different hosts
that can submerge patterns in the event streams.

Many monitoring solutions rely on summarizing
the log files for the previous days logs. This is very
useful for accounting and statistics gathering. Sadly, if
the goal is problem determination and resolution then
reviewing these events the day after they are generated
is less helpful. Systems administrators cannot proac-
tively resolve or quickly respond to problems unless
they are aware that there is a problem. It is not useful
to find out in the next morning’s summary that a pri-
mary NFS server was reporting problems five minutes
before it went down. The sysadmin staff needs to dis-
cover these problems while there is still time to fix the
problem and avert a catastrophic loss of service.

The operation of computers and computer net-
works evolves over time and requires a solution to log
file analysis that address this temporal nature. This
paper describes some of the current issues in log anal-
ysis and presents the rationale behind an analysis rule
set developed at the Computer Science Department at
the University of Massachusetts at Boston. This rule-
set is implemented for the Simple Event Correlator
(SEC), which is a Perl based tool designed to perform
analysis of plain text logs.
Current Approaches

There are many programs that try to isolate error
events by automatically condensing or eliminating routine

log entries. In this paper, I do not consider interactive
analysis tools like MieLog [Takada02]. I separate
automatic analysis tools into offline or batch monitor-
ing and on-line or real-time monitoring.

Offline Monitoring

Offline solutions include: logwatch [logwatch],
SLAPS-2 [SLAPS-2], or Addamark LMS [Sah02].
Batch solutions have to be invoked on a regular basis
to analyze logs. They can be run once a day, or many
times an hour. Offline tools are useful for isolating
events for further analysis by real time reporting tools.
In addition they provide statistics that allow the sys-
tem administrator to identify the highest event sources
for remedial action. However, offline tools do not pro-
vide the ability to provide automatic reactions to prob-
lems. Adam Sah in discussing the Addamark LMS
[Sah02, p. 130] claims that real-time analysis is not
required because a human being, with slow reaction
times, is involved in solving the problem. I disagree
with this claim. While it is true that initially a human
is required to identify, isolate and solve the problem,
once it has been identified, it is a candidate for being
automatically addressed or solved. If a human would
simply restart apache when a particular sequence of
events occur, why not have the computer automati-
cally restart apache instead? Automatic problem
responses coupled with administrative practices can
provide a longer window before the impact of the
problem is felt. An ‘‘out of disk space’’ condition can
be addressed by removing buffer files placed in the
file system for this purpose. This buys the system
administrator a longer response window in which to
locate the cause of the disk full condition minimizing
the impact to the computing environment.

Most offline tools do not provide explicit support
for analyzing the log entries with respect to the time
they were received. While they could be extended to
try to parse timestamps from the log messages, this is
difficult in general, especially with multiple log files
and multiple machines, as ordering the events requires

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 133

Real-time Log File Analysis Using the Simple Event Correlator (SEC) Rouillard

normalizing the time for all log messages to the same
timezone. Performing analysis on log files that do not
have timestamps eliminates the ability of these batch
tools to perform analysis by time. Solutions such as
the Addamark LMS [Sah02] parse and record the
generation time, but the lack of real-time event-driven,
as opposed to polled, triggers reduces its utility.

Online Monitoring

Online solutions include: logsurfer [logsurfer],
logsurfer+ [logsurfer+], swatch [swatch, Hansen1993],
2swatch [2swatch], SHARP [Bing00], ruleCore
[ruleCore], LoGS [LoGS] and SEC [SEC]. All of these
programs run continuously watching one or more log
files, or receiving input from some other program.

Swatch is one of the better known tools. Swatch
provides support for ignoring duplicate events and for
changing rules based on the time of arrival. However,
swatch’s configuration language does not provide the
ability to relate arbitrary events in time. Also, it lacks
the ability to activate/deactivate rules based on the
existence of other events other than suppressing dupli-
cate events using its throttle action.

Logsurfer dynamically changes its rules based
on events or time. This provides much of the flexibil-
ity needed to relate events. However, I found its syn-
tax difficult to use (similar to the earliest 1.x version
of SEC) and I never could get complex correlations
across multiple applications to work properly. The
dynamic nature of the rules made debugging difficult.
I was never able to come up with a clean, understand-
able, and reliable method of performing counting oper-
ations without resorting to external programs. Using
SEC, I have been able to perform all of the operations
I implemented in logsurfer with much less confusion.

LoGS is an analysis program written in Lisp that
is still maturing. While other programs create their
own configuration language, LoGS’s rules are also
written in Lisp. This provides more flexibility in
designing rules than SEC, but may require too much
programming experience on the part of the rule
designers. I believe this reduces the likelihood of its
widespread deployment. However, it is an exciting
addition to the tools for log analysis research.

The Simple Event Correlator (SEC) by Risto
Vaarandi uses static rules unlike logsurfer, but pro-
vides higher level correlation operations such as
explicit pair matching and counting operations. These
correlation operations respond to a triggering event
and persist for some amount of time until they time-
out, or the conditions of the correlation are met. SEC
also provides a mechanism for aggregating events and
modifying rule application based on the responses to
prior events. Although it does not have the dynamic
rule creation of logsurfer, I have been able to easily
generate rules in SEC that provide the same function-
ality as my logsurfer rules.

Filter In vs. Filter Out
Should rules be defined to report just recognized

errors, or should routine traffic be eliminated from the
logs and the residue reported? There appear to be
people who advocate using one strategy over the other.

I claim that both approaches need to be used and
in more or less equal parts. I am aware of systems that
are monitored for only known problems. This seems
risky as it is more likely an unknown problem will
sneak up and bite the unwary systems administrator.
However, very specific error recognition is needed
when using automatic responses to ensure that the best
solution is chosen. Why restart Apache if killing a
stuck CGI program will solve the problem?

Filtering out normal event traffic and reporting
the residue allows the system administrator to find sig-
natures of new unexpected problems with the system.
Defining ‘‘normal traffic’’ in such a way that we can
be sure its routine is tricky especially if the filtering
program does not have support for the temporal com-
ponent of event analysis.

Event Modeling

Modeling normal or abnormal events requires
the ability to fully specify every aspect of the event.
This includes recognizing the content of the event as
well as its relationship to other events in time. With
this ability, we can recognize a composite or corre-
lated event that is synthesized from one or more primi-
tive events. Normal activity is usually defined by these
composite events. For example a normal activity may
be expressed as:

‘sendmail -q’ is run once an hour by root at 31
minutes after the hour. It must take less than one
minute to complete.

> CMD: /usr/lib/sendmail -q
> root 25453 c Sun May 23 03:31:00 2004
< root 25453 c Sun May 23 03:31:00 2004

Figure 1: Events indicating normal activity for a
scheduled cron job.

This activity is shown by the cron log entries in Figure
1 and requires the following analysis operations:

• Find the sendmail CMD line verifying its
arrival time is around 31 minutes after the hour.
If the line does not come in, send a warning.

• The next line always indicates the user, process id
and start time. Make sure that this line indicates
that the command was run by root.

• The time between the CMD line arrival and the
final line must be less than one minute. Because
other events may occur between the start and end
entries for the job, we recognize the last line by
its use of the unique number from the second
field of the second line.

This simple example shows how a tool can ana-
lyze the event log in time. Tools that do not not allow

134 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Rouillard Real-time Log File Analysis Using the Simple Event Correlator (SEC)

the specification of events in the temporal realm as
well as in the textual/content space can suffer from the
following problems:

• matching the right event at the wrong time.
This could be caused by an inadvertent edit of
the cron file, or a clock skew on the source or
analyzing host.

• not noticing that the event took too long to run.
• not noticing that the event failed to complete at

all.
Temporal Relationships

The cron example mentions one type of temporal
restriction that I call a schedule restriction. Schedule
restrictions are defined by working on a defined
(although potentially complex) schedule. Typical
schedule restrictions include: every hour at 31 minutes
past the hour, Tuesday morning at 10 a.m., every
weekday morning between 1 and 3 a.m.

In addition to schedule restrictions, event recogni-
tion requires accounting for inter-event timing. The
events may be from a single source such as the
sequence of events generated by a system reboot. The
statement that the first to last event in a boot sequence
should complete in five minutes is an inter-event timing
restriction. Also, events may arise from multiple
sources. Multi-source inter-event timing restrictions
might include multiple routers sending an SNMP
authentication trap in five minutes, or excessive ‘‘con-
nection denied’’ events spread across multiple hosts and
multiple ports indicating a port scan of the network.

These temporal relationships can be explicit
within a correlation rule: specifying a time window for
counting the number of events, suppressing events for
a specified time after an initial event. The timing rela-
tionship can also be implicit when one event triggers
the search for subsequent events.
Event Threading

Analysis of a single event often fails to provide a
complete picture of the incident. In the example
above, reporting only the final cron event is not as
useful as reporting all three events when trying to
diagnose a cause. Lack of proper grouping can lead to
underestimating the severity of the events. Consider
the following scenario:

1. A user logs in using ssh from a location that
s/he has never logged in from before.

2. The ssh login was done using public key
authentication.

3. The ssh session tries to open port 512 on the
server. It is denied.

4. Somebody tries to run a program called
‘‘crackme’’ that tries to execute code on the
stack.

5. The user logs out.

Looking at this sequence implies that somebody
broke in and tried to execute an unsuccessful attempt
to gain root privileges. However, in looking at individ-
ual events, it is easy to miss the connections. Taken in

isolation, each event could be easily dismissed, or
even filtered out of the reports. Reporting them as dis-
crete events, as many analysis tools do, may even con-
tribute to an increased chance of missing the pattern.
Taken together they indicate a problem that needs to
be investigated. A log analysis tool needs to provide
some way to link these disparate messages from dif-
ferent programs into a single thread that paints a pic-
ture of the complete incident.

Missing Events
Log analysis programs must be able to detect

missing log events [Finke2002]. These missing events
are critical errors since they indicate a departure from
normal operation that can result in a many problems.
For example, cron reports the daily log rotation at
12:01 a.m. If this job is not done (say, because cron
crashed), it is better to notice the failure immediately
rather than three months later when the partition with
the log files fills up.

The problem with detecting missing events is that
log monitoring is – by its nature – an event-driven
operation: if there is no event, there is no operation.
The log analysis tool should provide some mechanism
for detecting a missing event. One of the simpler ways
to handle this problem is to generate an event or action
on a regular basis to look for a missing event. An
event-driven mechanism can be created using external
tools such as cron to synthesize events, but I fail to see
a mechanism that the log analysis tool can use to detect
the failure of the external tool to generate these events.

Handling False Positives/False Negatives
A false negative occurs when an event that indi-

cates a problem is not reported. A false positive results
when a benign event is reported as a problem. False
negatives impact the computing environment by failing
to detect a problem. False positives must be investi-
gated and impact the person(s) maintaining the comput-
ing environment. A false positive also has another dan-
ger. It can lead to the ‘‘boy who cried wolf’’ syndrome,
causing a true positive to be ignored as a false positive.

Two scenarios for generating false negatives are
mentioned above. Both are caused by incorrectly spec-
ifying the conditions under which the events are con-
sidered routine.

False positives are another problem caused by
insufficiently specifying the conditions under which
the event is a problem. In either case, it may not be
possible to fully specify the problem conditions
because:

• Not all of the conditions are known.
• Some conditions are not able to be monitored

and cannot be added to the model.

It may be possible to find correlative conditions
that occur to provide a higher degree of discrimination
in the model. These correlative events can be use to
change the application of the rules that cause the false
positive to inhibit the false report.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 135

Real-time Log File Analysis Using the Simple Event Correlator (SEC) Rouillard

To reduce these false positives and false nega-
tives, the analysis program needs to have some way of
generating and receiving these correlative events.

While it is impossible to eliminate all false
reports, by proper specification of event parameters,
false reports can be greatly reduced.

Single vs. Multiple Line Events

Programs can spread their error reports across
multiple lines in a logfile. Recognizing a problem in
these circumstances requires the ability to scan not
just a single line, but a series of lines as a single
instance. The series of lines can be treated as individ-
ual events, but key pieces of information needed to
trigger a response or recognize an event sequence may
occur on multiple lines. Consider the cron example of
Figure 1: the first two lines provide the information
needed to determine that it is an entry for sendmail
started by root, and the process id is used in discover-
ing the matching end event. Handling this multi-line
event as multiple single line events complicates the
rules for recognizing the events.

Multi-line error messages seem to be more
prevalent in application and device logs that do not
use the Unix standard syslog reporting method, but
some syslog versions split long syslog messages into
multiple parts when they store them in the logfile. For-
tunately, when I have seen this happen, the log lines
always occur adjacent to one other without any inter-
vening events from other sources. This allows recog-
nition provided that the split does not occur in the
middle of a field of interest.

With syslog and other log aggregation tools, a
single multi-line message can be distorted by the
injection of messages from other sources. The logs
from applications that produce multi-line messages
should be directed to their own log file so that they are
not distorted. Then a separate SEC process can ana-
lyze the log file and create single line events that are
passed to a parent SEC for global correlation. This is
similar to the method used by Addamark [Sah02].

Although keeping the log streams separate simpli-
fies some log analysis tasks, it prevents the recognition
of conditions that affect multiple event streams.
Although SEC provides a mechanism for identifying the
source of an event, performing event recognition across
streams requires that the event streams be merged.

SEC Correlation Idioms and Strategies

This section describes particular event scenarios
that I have seen in my analysis of logs. It demonstrates
idioms for SEC that model and recognize these scenarios.

SEC Primer

A basic knowledge of SEC’s configuration lan-
guage is required to understand the rules presented
below. There are nine basic rule types. I break them
into two groups: basic and complex rules. Basic rules

types perform actions and do not start an active corre-
lation operation that persists in time. These basic types
are described in the SEC man page as:

• Suppress: suppress matching input event (used
to keep the event from being matched by later
rules).

• Single: match input event and immediately exe-
cute an action that is specified by rule.

• Calendar: execute an action at specific times
using a cron like syntax.

Complex rules start a multi-part operation that
exists for some time after the initial event. The sim-
plest example is a SingleWithSuppress rule. It triggers
on an event and remains active for some time to sup-
press further occurrences of the triggering event. A
Pair rule recognizes a triggering event and initiates a
search for a second (paired) event. It reduces two sep-
arate but linked events to a single event pair. The com-
plex types are described in the SEC man page as:

• SingleWithScript: match input event and
depending on the exit value of an external
script, execute an action.

• SingleWithSuppress: match input event and
execute an action immediately, but ignore fol-
lowing matching events for the next T seconds.

• Pair: match input event, execute the first action
immediately, and ignore following matching
events until some other input event arrives
(within an optional time window T). On arrival
of the second event execute the second action.

• PairWithWindow: match input event and wait
for T seconds for another input event to arrive.
If that event is not observed within a given time
window, execute the first action. If the event
arrives on time, execute the second action.

• SingleWithThreshold: count matching input
events during T seconds and if given threshold
is exceeded, execute an action and ignore all
matching events during rest of the time win-
dow.

• SingleWith2Thresholds: count matching input
events during T1 seconds and if a given thresh-
old is exceeded, execute an action. Now start to
count matching events again and if their num-
ber per T2 seconds drops below second thresh-
old, execute another action.

SEC rules start with a type keyword and continue
to the next type keyword. In the example rules below,
‘. . .’ is used to take the place of keywords that are not
needed for the example, they do not span rules. The
order of the keywords is unimportant in a rule definition.

SEC uses Perl regular expressions to parse and
recognize events. Data is extracted from events by
using subexpressions in the Perl regular expression.
The extracted data is assigned to numeric variables $1,
$2, . . ., $N where N is the number of subexpressions
in the Perl regular expression. The numeric variable

136 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Rouillard Real-time Log File Analysis Using the Simple Event Correlator (SEC)

$0 is the entire event. For example, applying the regu-
lar expression ‘‘([A-z]*): test number ([0-9]*)’’ to the
event ‘‘HostOne: test number 34’’ will assign $1 the
value ‘‘HostOne’’, $2 the value ‘‘34’’, and $0 will be
assigned the entire event line.

Because complex rule types create ongoing cor-
relation operations, a single rule can spawn many
active correlation operations. Using the regular
expression above, we could have one correlation that
counted the number of events for Host and another
separate correlation that counted events for HostTwo.
Both counting correlations would be formed from the
same rule, but by extracting data from the event the
two correlations become separate entities.

This data allows the creation of unique contexts,
correlation descriptions and coupled patterns linked to
the originating event. We will explore these items in
more detail later. Remember that when applying a
rule, the regular expression or pattern is always
applied first regardless of the ordering of the key-
words. As a result, references to $1, $2, . . ., $N any-
where else in the rule refer to the data extracted by the
regular expression.

SEC provides a flow control and data storage
mechanism called contexts. As a flow control mecha-
nism, contexts allow rules to influence the application
of other rules. Contexts have the following features:

• Contexts are dynamically created and often
named using data extracted from an event to
make names unique.

• Contexts have a defined lifetime that may be
infinite. This lifetime can be increased or
decreased as a result of rules or timeouts.

• Multiple contexts can exist at any one time.
• A context can execute actions when its lifetime

expires.
• Contexts can be deleted without executing any

end-of-lifetime actions.
• Rules (and the correlations they spawn) can use

boolean expressions involving contexts to
determine if they should apply. Existing con-
texts return a true value; non-existent contexts
return a false value. If the boolean expression is
true, the rule will execute, if false the rule will
not execute (be suppressed).

In addition to a flow control mechanism, con-
texts also serve as storage areas for data. This data can
be events, parts of events or arbitrary strings. All con-
texts have an associated data store. In this paper, the
word ‘‘context’’ is used for both the flow control
entity and its associated data store. When a context is
deleted, its associated data store is also deleted. Con-
texts are most often used to gather related events, for
example login and logout events for a user. These con-
texts can be reported to the system administrator if
certain conditions are detected (e.g., the user tried to
perform a su during the login session).

The above description might seem to imply that a
single context has a single data store; this is not always

the case. Multiple contexts can share the same data
store using the alias mechanism. This allows events
from different streams to be gathered together for
reporting or further analysis. The ability to extract data
from an event and linking the context by name to that
event provides a mechanism for combining multiple
event streams into a single context that can be reported.
For example, if I extract the process ID 345 from sys-
log events, I can create a context called: process_345
and add all of the syslog events with the same PID to
that event. If I now link the context process_346 to the
process_345 context, I can add all of the syslog events
with the pid 346 to the same context (data store). So
now the process_345/process_346 context contains all
of the syslog events from both processes.

In the paper, I use the term ‘session.’ A session is
simply a record of events of interest. In general these
events will be stored in one or more contexts. If ssh
errors are of interest, a session will record all the ssh
events into a context (technically a context data store that
may be known by multiple names/aliases) and report that
context. If tracing the identities that a user assumes dur-
ing a login is needed, a different series of data is
recorded in a context (data store): the initial ssh connec-
tion information is recorded, the login event, the su event
as the user tries to go from one user ID to another.

The rest of the elements of SEC rules will be
presented as needed by the examples.

Responding To Or Filtering Single Events

The majority of items that we deal with in pro-
cessing a log file are single items that we have to
either discard or act upon. Discardable events are the
typical noise where the problem is either not fixable,
for example a failing reverse DNS lookups on remote
domains from tcp wrappers, or are valueless informa-
tion that we wish to discard.

Discardable events can be handled using the sup-
press rule. Figure 2 is an example of such a rule.

type=suppress
desc=ignore non-specific paper problem \

report since prior events have \
given us all we need.

ptype=regexp
pattern=. printer: paper problem$

Figure 2: A suppress rule that is used to ignore a
noise event sent during a printer error. Note: SEC
example rules are reformatted/split for readabil-
ity. They may or may not work exactly as pre-
sented.

Since all of my rule sets report anything that is
not handled, we want to explicitly ignore all noise
lines to prevent them from making it to the default
‘‘report everything’’ rule.

This is a good time to look at the basic anatomy
of a SEC rule. All rules start with a type option as

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 137

Real-time Log File Analysis Using the Simple Event Correlator (SEC) Rouillard

described earlier. All rules have a desc option that doc-
uments the rule’s purpose. For the complex correlation
rules, the description is used differentiate between cor-
relation operations derived from a single rule. We will
see an example of this when we look at the horizontal
port scan detection rules.

Most rules have a pattern option that is applied to
the event depending on the ptype option. The pattern
can be a regular expression, a substring, or a truth
value (TRUE or FALSE). The ptype option specifies
how the pattern option is to be interpreted: a regular
expression (regexp), a substring (substr), or a truth value
(TValue). It also determines if the pattern is successfully
applied if it matches the event match (regexp/substr), or
does not match (nregexp/nsubstr) the event. For TValue
type patterns, TRUE matches any event (successful
application), while FALSE (not successfully applied)
does not match any input event. If the pattern does not
successfully apply, the rule is skipped and the next rule
in the configuration file is applied.

A number can be added to the end of any of the
nregexp, regexp, substr, or nsubstr values to make the pat-
tern match across that many lines. So a ptype value of reg-
exp2 would apply the pattern across two lines of input.

By default when an event triggers a rule, the
event is not compared against other rules in the same
file. This can be changed on a per rule basis by using
the continue option.1

After single event suppression, the next basic
rule type is the single rule. This is used to take action
when a particular event is received. Actionable events
can interact with other higher level correlation events:
adding the event to a storage area (context), changing
existing contexts to activate or deactivate other rules,
activating a command to deal with the event, or just
reporting the event. Figure 3 is an example of a single
rule that will generate a warning if the printer is
offline from an unknown cause.

type=single
continue=dontcont
desc = Report Printer Offline if needed
ptype=regexp
pattern=ˆ(\w._-]+): printer: Report Printer Offline if needed
context = Report_Printer_$1_Offline
action = write - "printer $1 offline, unknown cause" ; \

delete Report_Printer_$1_Offline

Figure 3: A single command that writes a warning message and deletes a context that determines if it should execute.

In Figure 3 we see two more rule options: context
and action. The context option is a boolean expression
of contexts that further constrains the rule.

When processing the event
lj2.cs.umb.edu: printer: Report Printer

Offline if needed

the single rule in Figure 3 checks to see if the pattern
applies successfully. In this case the pattern matches
the event, but if the Report_Printer_lj2.cs.umb.edu_Offline

1Note: continue is not supported for the suppress rule type.

context does not exist, then the actions will not be exe-
cuted. The context Report_Printer_lj2.cs.umb.edu_Offline is
deleted by other rules in the ruleset (not shown) if a
more exact diagnosis of the cause is detected. This sup-
presses the default (and incorrect) report of the problem.

The action option specifies the actions to take
when the rule fires. In this case it writes the message
printer lj2.cs.umb.edu offline, unknown cause to standard
output (specified by the file name ‘‘-’’) . Then it
deletes the context Report_Printer_lj2.cs.umb.edu_Offline
since it is no longer needed.

There are many potential actions, including:
• creating, deleting, and performing other opera-

tions on contexts
• invoking external programs
• piping data or current contexts to external pro-

grams
• resetting active correlations
• evaluating Perl mini-programs
• setting and using variables
• creating new events
• running child processes and using the output

from the child as a new event stream.
We will discuss and use many of these actions later in
this paper.
Scheduling Events With Finer Granularity

Part of modeling normal system activity includes
accounting for scheduled activities that create events.
For example, a scheduled weekly reboot is not worth
reporting if the reboot occurs during the scheduled
window, however it is worth reporting if it occurs at
any other time.

For this we use the calendar rule. It allows the
reader to schedule and execute actions on a cron like
schedule. In place of the ptype and pattern options it
has a time option that has five cron-like fields. It is
wonderful for executing actions or starting intervals on
a minute boundary. Sometimes we need to start inter-
vals with resolution of a second rather than a minute.

Figure 4 shows a mechanism for generating a
window that starts 15 seconds after the minute and lasts
for 30 seconds. The key is to create two contexts and
use both of them in the rules that should be active (or
inactive) only during the given window. One context
wait_for_window expires to begin the timed interval. The
window context expires marking the end of the interval.
Creating an event on a non-minute boundary is trivial
once the reader learns that the event command has a
built in delay mechanism.

138 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Rouillard Real-time Log File Analysis Using the Simple Event Correlator (SEC)

Tr i g g e r i n g events generated by calendar rules or by
expiring contexts can execute actions, define intervals,
trigger rules or pass messages between rules. Triggering
events are used extensively to detect missing events.

rule 1: detect the sendmail event
type = single
desc = sendmail has run, don’t report it as failed
ptype = regexp2
pattern = ˆ\> CMD: /usr/lib/sendmail -q.*\n\> root ([0-9]+) c .*
context = sendmail_31_minute && ! sendmail_31_minute_inhibit
action = delete sendmail_31_minute

rule 2: define the time window and prep to report a missing event
type = calendar
desc = Start searching for sendmail invocation at 31 past hour
time=30 * * * *
action = create sendmail_31_minute 70 write - \

Sendmail failed to run detected at %t; \
create sendmail_31_minute_inhibit 55

Figure 5: Rules to detect a missed execution of a sendmail process at the appointed time.

Start 30 minutes after hour

50 60 70 802010 30 40 750 seconds

50 60 70 802010 30 40 750 seconds

Calendar rules fires at 30 minutes after the hour

sendmail_31_minute_inhibit

sendmail_31_minute

Write message when sendmail_31_minute expires

Calendar rules fires at 30 minutes after the hour

sendmail_31_minute_inhibit

Sendmail CMD line detected

sendmail_31_minute

Delete sendmail_31_minute when CMD event arrives

Ends 31 minutes and 10 seconds after hour
Figure 6: Two timelines showing the events and contexts involved in detecting a missing, or present, sendmail in-

vocation from cron.

type=calendar
time=30 3 * * *
desc=create 30 second window
action=create window 45; \

create wait_for_window 15

type=single
...
context=window && !wait_for_window

Figure 4: A mechanism for creating an timed interval
that starts on a non-minute boundary.

Detecting Missing Events
The ability to generate arbitrary events and win-

dows with arbitrary start and stop times is useful when
detecting missing events. The rules in Figure 5 report
a problem if a ‘sendmail -q’ command is not run by
root near 31 minutes after the hour. Because of natural
variance in the schedule, I expect and accept a send-
mail start event from five seconds before to 10 sec-
onds after the 31st minute.

The event stream from Figure 1 is used as input
to the rules. Figure 6 displays the changes that occur
while processing the events in time. Contexts are rep-
resented by rectangles, the length of the rectangle is
the context’s lifetime. Upside down triangles represent
the arrival of events. Regular triangles represent
actions within SEC. The top graph shows the sequence
when the sendmail event fails to arrive, while the bot-
tom graph shows the sequence when the sendmail pro-
gram is run.

The correlation starts when rule 2 (the calendar
rule) creating the context sendmail_31_minute that will
execute an action (write a message to standard output)
when it times out after 70 seconds (near 31 minutes
and 10 seconds) ending the interval. The calendar rule
creates a second context, sendmail_31_minute_inhibit,
that will timeout in 55 seconds (near 30 minutes and 55
seconds) starting the 15 second interval for the arrival
of the sendmail event. Looking at the top graph in Fig-
ure 7, we see the creation of the two contexts on the
second and third lines. No event arrives within the 15
second window, so the sendmail_31_minute expires and
executes the ‘‘write’’ action. The bottom graph shows
what happens if the sendmail event is detected. Rule 1
is triggered by the sendmail event occurring in the 15

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 139

Real-time Log File Analysis Using the Simple Event Correlator (SEC) Rouillard

seconds window and deletes the sendmail_31_minute
context. The deletion also prevents the ‘‘write’’ action
associated with the context from being executed.

Note that the boolean context of rule 1 prevents
its execution if the sendmail event were to occur less
than five seconds before the 31st minute since ! sendmail_
31_minute_inhibit is false because sendmail_31_minute_
inhibit exists and is therefore true. If the sendmail event
occurs after 31 minutes and 10 seconds, the context is
again false since sendmail_31_minute does not exist,
and is false.

The example rules use the write action to report a
problem. In a real ruleset, the systems administrator
could use the SEC shellcmd action to invoke logger(1)
to generate a syslog event to be forwarded to a central
syslog server. This event would be found by SEC run-
ning on the syslog master. The rule matching the event
could notify the administrator via email, pager, wall(1)
or send a trap to an NMS like HPOV or Nagios.
Besides reporting, the event could be further processed
with a threshold rule that would try to restart cron as
soon as two or more ‘‘missed sendmail events’’ events
are reported, and report a problem only if a third con-
secutive ‘‘missed sendmail event’’ arrived.

Repeat Elimination/Compression
I have dealt with real-time log file reporters that

generated 300 emails when a partition filled up
overnight. There must be a method to condense or de-
duplicate repeated events to provide a better picture of
a problem, and reduce the number of messages spam-
ming the administrators.

The SingleWithSuppress rule fills this de-duplica-
tion need. To handle file system full errors, the rule in
Figure 7 is used.

Example:
Apr 13 15:08:52 host4.example.org ufs: [ID 845546 \
kern.notice] NOTICE: alloc: /mount/sd0f: file system full
type=SingleWithSuppress
desc=Full filesystem $2 on $1
ptype=regexp
pattern=(\w._-]+) ufs: \[.* NOTICE: alloc: (\w/._-]+): file system full
action= write - filesystem $2 on host $1 full
window=3600

Figure 7: A rule to report a file system full error and suppress further errors for 60 minutes.

type=single
desc = report large xntpd corrections for host $1
continue = dontcont
ptype=regexp
context= =(abs($2) > 0.25)
pattern=([A-z0-9._-]+) xntpd\[[0-9]+\]:.*time reset \(step\) ([-]?[0-9.]+) s
action= write - "large xntpd correction($2) on $1"

Figure 8: Rule to analyze time corrections in NTP time adjustment events. The absolute value of the time adjust-
ment must be greater than 0.25 seconds to generate a warning.

This rule reports that the filesystem is full when it
receives its first event. It then suppresses the event mes-
sage for the next hour. Note that the desc keyword
includes the filesystem and hostname ($2 and $1

respectively). This makes the correlation operation that
is generated from the rule unique so that a disk full con-
dition on the same host for the filesystem /mount/fs2
will generate an error event if it occurs five minutes
after the /mount/sd0f event. If the filesystem was not
included in the desc option, then only one alert for a full
filesystem would be generated regardless of how many
filesystems actually filled up during the hour.

Report on Analysis of Event Contents

Unlike most other programs, SEC allows the
reader to extract and analyze data contained within an
event. One simple example is the rule that analyzes
NTP time adjustments. I consider any clock with less
than 1/4 a second difference from the NTP controlled
time sources to be within a normal range. Figure 8
shows the rules that are applied to analyze the xntpd
time adjustment events. We extract the value of the
time change from the step messages. This value is
assigned to the variable $1. The context expression
executes a Perl mini-program to see if the absolute
value of the change is larger than the threshold of 0.25
seconds. If it is, the context is satisfied and the rule’s
actions fire.

The context expression uses a mechanism to run
arbitrary Perl code. It then uses the result of the
expression to determine if the rule should fire. It can
be used to match networks after applying a netmask,
perform calculations with fields of the event or other
tasks to properly analyze the events.

Detect Identical Events Occurring Across Multiple
Hosts

A single incident can affect multiple hosts.
Detecting a series of identical events on multiple hosts
provides a measure of the scope of the problem. The
problem can be an NFS server failure affecting only
one host that does not need to be paged out in the mid-
dle of the night, or it may affect 100 hosts, which
requires recovery procedures to occur immediately.

140 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Rouillard Real-time Log File Analysis Using the Simple Event Correlator (SEC)

Other problems such as time synchronization, or
detection of port scans also fall into this realm.

Example input:
May 10 13:52:13 cyber TCPD-Event cyber:127.6.7.1:3424:sshd deny \
badguy.example.com:192.268.15.45 user unknown
Variable = description (value from example above)
$3 = server ip address (127.6.7.1)
$5 = daemon or service connected to on server (sshd)
$8 = ip address of client (attacking) machine (192.268.15.45)
$9 = 1st quad of client host ip address (192)
$10 = 2nd quad of client host ip address (6)
$11 = 3rd quad of client host ip address (7)
$12 = 4th quad of client host ip address (1)
Rule 1: Perform the counting of unique destinations by client host/net
type = SingleWithThreshold
desc = Count denied events from $8
continue = takenext
ptype = regexp
pattern = ˆ(.*) TCPD-Event ([A-z0-9_.]*):([0-9.]*):([0-9]*):([ˆ]*) (deny) \

([ˆ:]*):(([0-9]*)\.([0-9]*)\.([0-9]*)\.([0-9]*)) user (.*)
action = report conn_deny_from_$8 /bin/cat >> report_log
context = ! seen_connection_from_$8_to_$3
thresh = 3
window = 300

Rule 2: Insert a rule to capture synthesized network tcpd events.
type=single
...
pattern = ˆ(.*) TCPD-Event ([A-z0-9_.]*):([0-9.]*):([0-9]*):([ˆ]*) (deny) \

([ˆ:]*):(([0-9]*)\.([0-9]*)\.([0-9]*)\.([0-9]*)) user (.*) net$
action=none

Rule 3: Generate network counting rules and maintain contexts
type = single
desc = maintain counting contexts for deny service $5 from $8 event
continue = takenext
ptype = regexp
pattern = ˆ(.*) TCPD-Event ([A-z0-9_.]*):([0-9.]*):([0-9]*):([ˆ]*) (deny) \

([ˆ:]*):(([0-9]*)\.([0-9]*)\.([0-9]*)\.([0-9]*)) user (.*)
context = ! seen_connection_from_$8_to_$3
action = create seen_connection_from_$8_to_$3 300; \

add conn_deny_from_$8 $0 ; \
event 0 $1 TCPD-Event $2:$3:$4:$5 $6 $7:$9.$10.$11.0 user $13 net; \
event 0 $1 TCPD-Event $2:$3:$4:$5 $6 $7:$9.$10.0.0 user $13 net; \
event 0 $1 TCPD-Event $2:$3:$4:$5 $6 $7:$9.0.0.0 user $13 net; \
add conn_deny_from_$9.$10.$11.0 $0 ; \
add conn_deny_from_$9.$10.0.0 $0 ; \
add conn_deny_from_$9.0.0.0 $0

Figure 9: Rules to detect horizontal port scans defined by connections to 3 different server hosts from the same
client host within 5 minutes. Note: patterns are split for readability. This is not valid for sec input.

One typical example of this rule is to detect hori-
zontal port scans. The rules in Figure 9 identify a hori-
zontal port scan as three or more connection denied
events from different server hosts within five minutes
from a particular external host or network. So 20 con-
nections to different ports on the same host would not
result in the detection of a horizontal scan. In the
example, I assume that the hosts are equipped with
TCP wrappers that report denied connections. The set
of rules in Figure 9 implements the detection of a hori-
zontal port scan by counting unique client host/server
host combinations. A timeline of these three rules is
shown in Figure 10.

The key to understanding these rules is to realize
that the description field is used to match events with
correlation operations. When rule 1, the threshold cor-
relation rule, sees the first rejected connection from
192.168.1.1 to 10.1.2.3, it generates a Count denied
events from 192.168.1.1 correlation. The next time a
deny for 192.168.1.1 arrives, it will be tested by rule
1, the description field generated from this new event
will match an ongoing correlation threshold operation
and it will be considered part of the Count denied events
from 192.168.1.1 threshold correlation. If a rejection
event for the source 193.1.1.1 arrives, the generated
description field will not match an active threshold
correlation, so a new correlation operation will be
started with the description Count denied events from

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 141

Real-time Log File Analysis Using the Simple Event Correlator (SEC) Rouillard

source2. Figure 10 shows a correlation operation from
start to finish. First the event E1 reports a denial from
host 192.168.1.1 to connect/scan 10.1.2.3. The corre-
lation operation Count denied events from 192.168.1.1 is
started by rule 1, rule 2 is skipped because the pattern
does not match, and rule 3 creates the 5-minute-long
context seen_connection_from_192.168.1.1_to_10.1.2.3
that is used to filter arriving event to make sure that
only unique events are counted. The rest of rule 3’s
actions will be discussed later.

Generate network events Generate network events Generate network eventsGenerate network events

0 min 3 min 6 min1 min 2 min 4 min 5 min

Correlation "Count denied events from 192.168.1.1"

Correlation "Count denied events from 192.168.1.1" window shifted to next event.

5 Minute window for correlation shifts to encompass three events in 5 minutes

Report excessive denied events for 192.168.1.1

seen_connection_from_192.168.1.1_to_10.1.2.5

seen_connection_from_192.168.1.1_to_10.1.2.3

seen_connection_from_192.168.1.1_to_10.1.2.6

seen_connection_from_192.168.1.1_to_10.1.2.4

E1/1 E1/2 E2/1

Event1 TCPD−Event 192.168.1.1 to 10.1.2.3

Event 2 TCPD−Event 192.168.1.1 to 10.1.2.4

Event 4 TCPD−Event 192.168.1.1 to 10.1.2.6

Event 3 TCPD−Event 192.169.1.1 to 10.1.2.5

E3/1 E4/1

Event 1, number 2 is not counted because of the existance of the seen_connection_from_192.168.1.1_to_10.1.2.3 context.

Note start of event correlation shifts from E1/1 to E2/1 (which is second event counted) to detect 3 events/5min.

Figure 10: Timeline showing the application of rules to detect horizontal port scans.

The count for rule 1, the threshold correlation
operation, is incremented only if the seen_connec-
tion_from_192.168.1.1_to_10.1.2.3 context does not exist.
When the E1/2 (event 1 number 2) arrives, this con-
text still exists and all the rules ignore the event. When
E2/1 arrives, it triggers rule 1 and rule 3 creating the
appropriate context and incrementing the threshold
operation’s count.

When five minutes have passed since E1/1’s
arrival and the threshold rule has not been triggered by
the arrival of three events, the start of the threshold
rule is moved to the second event that it counted, and
the count is decremented by 1. This occurs because
the threshold rule uses a sliding window by default.
When events 3/1 and 4/1 arrive, they are counted by
the shifted threshold correlation operation started by
rule 1. With the arrival of E2/1, E3/1, and E4/1, three
events have occurred within five minutes and a hori-
zontal port scan is detected. As a result, the action
reporting the context conn_deny_from_192.168.1.1 is
executed and the events counted during the correlation
operation (maintained by the add action of rule 3) are
reported to the file report_log.

Rule 2 and the final actions of rule 3 allow detec-
tion of horizontal port scans even if they come from
different hosts such as: 192.168.3.1, 192.168.1.1, and
192.168.7.1. If each of these hosts scans a different
host on the 10 network, it will be detected as a

horizontal scan from the 192.168.0.0 network. This is
done by creating three events replacing the real source
address with a corresponding network address. One
event is created for each class A, B and C network that
the original host could belong to: 192.168.1.0,
192.168.0.0, and 192.0.0.0. The response to these syn-
thesized events are not shown in Figure 10, but they
start a parallel series of correlation operations and
contexts using the network address of the client in
place of 192.168.1.1.

Vertical scans can use the same framework with
the following changes:

• the filtering context needs to include port num-
bers so that only unique client host/server
host/port triples are counted by the threshold
rule.

• the description of rule 1 to include the server
host IP so that it only counts connections to a
specific server host.

This will count the number of unique server ports
that are accessed on the server from the client host.

In general, using rules 1 and 3, you can count
unique occurrences of a value or group of values. The
context used to link the rules must include the unique
values in its name. The description used in rule 1 will
not include the unique values and will create a bucket
in which the events will be counted. In the horizontal
port scan case, case, my bucket was any connection
from the same client host. The unique value was the
server IP address connected to by the the client host.
In detecting a vertical port scan, the value is the num-
ber of unique ports connected to while the bucket is
the client/server host pair.

These two changes allow the counting ruleset to
count the number of unique occurrences of the parameter
that is present in the filtering rule, but missing from
the rule 1 description (the bucket), e.g., if the context

142 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Rouillard Real-time Log File Analysis Using the Simple Event Correlator (SEC)

specifies serverhost, clienthost, serverport and rule 1
specifies clienthost and serverhost in its description,
then the rules above implement counting of unique
ports for a given clienthost and serverhost. The rules
as presented above specified clienthost and serverhost,
rule 1 specified the clienthost, so the ruleset counted
unique serverhost’s for a given clienthost.

Other counting methods can also be imple-
mented using mixtures of the vertical and horizontal
counting methods.

While I implemented a ‘‘pure’’ SEC solution, the
ability to use Perl functions and data structured from
SEC rules provides other solutions [Vaarandi7_2003]
to this problem.
Creating Threads of Events from Multiple Sources

Many thread recognition operations involve using
one of the pair type rules. Pair rules allow identifica-
tion of a future (child) event by searching for identify-
ing information taken from the present (parent) event.
This provides the ability to stitch a thread through vari-
ous events by providing a series of pair rules.

There are three times when you need to trigger
an action with pair rules:

1. Take action upon receipt of the parent event
2. Take action upon receipt of the child event
3. Take action after some time when the child

event has not been received (expiration of the
pair rule).

The Pair rule provides actions for triggers 1 and 2.
The PairWithWindow rule provides actions for triggers 2
and 3. None of the currently existing pair rules provides
a mechanism for taking actions on all three triggers.
Figure 11 shows a way to make up for this limitation
by using a context that expires when the pair rule is due
to be deleted. Since triggers 2 and trigger 3 are mutu-
ally exclusive, part of trigger 2’s action is to delete the
context that implements the action for to trigger three.

type=pair
...
action = write - rule triggered ; \

create take_action_on_pair_expiration 60 (write - rule expired)
...
pattern2=
action2 = write - pattern 2 seen ; \

delete take_action_on_pair_expiration
...
window=60

Figure 11: A method to take an action on all three trigger points in a pair rule.

I have used this method for triggering an auto-
matic repair action upon receipt of the first event. The
arrival of the second event indicated that the repair
worked. If the second event failed to arrive, an alert
would be sent when the context timed out. Also, I
have triggered additional data gathering scripts from
the first event. The second event in this case reported
the event and additional data when the the end of the
additional data was seen. If the additional data did not
arrive on time, I wanted the event to be reported.

This mechanism can replace combinations of
PairWithWindow and Single rules. It simplifies the rules
by eliminating duplicate information, such as patterns,
that must be kept up to date in both rules.

Correlating Across Processes

One of more difficult correlation tasks involves
creating a session made up of events from multiple
processes.

Figure 12 shows a ruleset that sets up a link
between parent and child ssh processes. Its application
is show in Figure 13.

When a connection to ssh occurs, the parent
process, running as root, reports the authentication
events and generates information about a user’s login.
After the authentication process, a child sshd is
spawned that is responsible for other operations includ-
ing port forwarding and logout (disconnect) events.
The ruleset in Figure 12 captures all of the events gen-
erated by the parent or child ssh process. This includes
errors generated by the parent and child ssh processes.

A session starts with the initial network connec-
tion to the parent sshd and ends with a connection
closed event from the child sshd. I accumulate all
events from both processes into a single context. I also
have rules (not shown in the example) to report the
entire context when unexpected events occur.

The tricky part is accumulating the events from
both processes into a single context. The connection
between the event streams is provided by a tie event
that encompasses unique identifying elements from
both event streams and thus ties together the two
streams into a single stream.

Each ssh process has its own unique event
stream stored in the context session_log_<host-
name>_<pid>. There is a Single rule, omitted for
brevity, that accumulates ssh events into this context.
When the tie event is seen, it provides the link
between the parent sshd session_log context and the
child session_log context. The data from the two con-
texts is merged and the two context names (with the
parent and child pid’s) are assigned to the same under-
lying context. Hence the child’s session_log_<hostname>_
<child pid> context and the parent’s session_log_
<hostname>_<parent pid> contexts refer to the same
data. After the contexts are linked, actions using either
the child context name or the parent context name

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 143

Real-time Log File Analysis Using the Simple Event Correlator (SEC) Rouillard

operate on the same underlying context. Reporting or
adding to the context using one of the linked names
acts the same regardless of which name is used.

rule 1 - recognize the start if an ssh session,
and link parent and child event contexts.
type=PairWithWindow
continue=takenext
desc=Recognize ssh session start for $1[$2]
ptype=regexp
pattern=([A-Za-z0-9._-]+) sshd\[([0-9]+)\]: \[[ˆ]]+\] Connection from ([0-9.]+) \

port [0-9]+
action=report session_log_$1_$2 /bin/cat
desc2=Link parent and child contexts
ptype2=regexp
pattern2=([A-Za-z0-9._-]+) [A-z0-9]+\[[0-9]+\]: \[[ˆ]]+\] SSHD child process +([0-9]+\

spawned by $2
action2=copy session_log_$1_$2 %b; \

delete session_log_$1_$2; \
alias session_log_$1_%2 session_log_$1_$2; \
add session_log_$1_$2 $0; \
event 0 %b; \
alias session_log_owner_$1_%2 session_log_owner_$1_$2; \

window=60

rule 2 - recognize login event and save username for later use
type=single
desc=Start login timer
ptype=regexp
pattern=([A-Za-z0-9._-]+) sshd\[([0-9]+)\]: \[[ˆ]]+\] Accepted \

(publickey|password) for ([A-z0-9_-]+) from [0-9.]+ port [0-9]+ (.*)
action=add session_log_$1_$2 $0; add session_log_owner_$1_$2 $4

rule 3 - handle logout
type=single
desc=Recognize ssh session end
ptype=regexp
pattern=([A-Za-z0-9._-]+) sshd\[([0-9]+)\]: \[[ˆ]]+\] Closing connection to ([0-9.]+)
action= delete session_log_$1_$2; delete session_log_owner_$1_$2

Figure 12: Accumulating output from ssh into a single context.

In Figure 14 the first event E1 triggers rule 1
from Figure 13, the PairWithWindow rule, to recognize
the start of the session. The second half of rule 1 looks
for a tie event for the following 60 seconds. There
may be many tie events, but there should be only one
tie event that contains the the pid of the parent sshd.
Since we have that stored in $2, we use it in pattern2.
The start of session event is passed onto additional
rules (not shown) by setting the continue option on
rule 1 to takenext. These additional rules record the
events in the session_log context identified by system
and pid, as in the session_log_example. org_10240 con-
text of Figure 14.

If the tie event is not found within 60 seconds,
the session_log_example.org_10240 context is reported.
However, if the tie event is found as in Figure 13, then
a number of other operations occur. The tie event is
generated by a script that is run by the child sshd.
Therefore it is possible for the child sshd to generate
events before the tie event is created. Because of the
default rule that adds events to the session_log_example.
org_10245, additional work must be done when the tie
event arrives to preserve the data in the child’s

session_log. The second part of rule 1 in Figure 12
copies child’s session_log context into the variable
%b. The child’s session_log is then deleted and aliased
to the parent session_log. The %2 variable is the value
of $2 from the first pattern, the parent process’s PID.
After pattern2 is applied, the parent PID is referenced
as %2 because $2 is now the second subexpression of
pattern2. Next the data copied from the child log is
injected into the event stream to allow re-analysis and
reporting using the combined parent and child context.

The last action for the tie event is to alias the
login username stored in the context session_log_owner_
<hostname>_<parent pid> to a similar context under the
child pid. Then any rule that analyzes a child event
can obtain the login name by referencing the alias con-
text. Rule 2 in Figure 12 handles the login event and
creates the context session_log_owner_<hostname>_
<parent pid> where it stores the login name for use by
the other rules in the ruleset. Rule 2 also stores the
login event in the session_log context.

The last rule is very simple. It detects the ‘‘close
connection’’ (logout) event and deletes the contexts
created during the session. The delivery of event N
(EN) in Figure 13 causes deletion of contexts. Deleting
an aliased context deletes the context data store as
well as all the names pointing to the context data store.

144 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Rouillard Real-time Log File Analysis Using the Simple Event Correlator (SEC)

Rule 3 uses the child PID to delete session_log_example.
org_10245 and session_log_owner_example.org_10245,
which cleans up all four context names (two from the
parent PID and two from the child) and both context
data stores.

This mechanism can be used for correlating any
series of events and passing information between the
rules that comprise an analysis mechanism. The trick is
to find suitable tie events to allow the thread to be fol-
lowed. The tie event must contains unique elements
found in the events streams that are to be tied together. In
the ssh correlation I create a tie event using the pid’s of
the parent and child events. Every child event includes
the PID of the child sshd so that I can easily construct
the context name that points to the combined context
data store. For the ssh correlation, I create the tie event
by running shell commands using the sshrc mechanism
and use the logger(1) command to inject the tie event
into the data stream. This creates the possibility that the
tie event arrives after events from the child process. It
would make the correlation easier if I modified the sshd
code to provide this tie event since this would generate
the events in the correct order for correlation.

... N min0 min 2 min1 min
E1 − Initial parent event: example.org sshd[10240]: [ID 800047 auth.info] Connection from 192.168.0.1 port 3500

is not shown in the ruleset.

Pair correlation"Recognize ssh session start for example.org[10240]"

Logout event
destroy’s context

E1 E2 E3 E4 E5 EN

Note 1, 2

Tie event causes two contexts to be aliased together into one context with two names

session_log_example.org_10245

session_log_example.org_10240

session_log_owner_example.org_10240

session_log_owner_example.org_10245

Recorded in context Recorded Recorded

EN − Logout child event: example.org sshd[10245]: [ID 800047auth.info] Closing connection to 192.168.0.1
E5 − Child event: example.org sshd[10245]: [ID 800047 auth.info] bind: Cannot assign requested address
E4 − Child event: example.org sshd[10245]: [ID 800047 auth.info] error: connect_to 127.0.0.1 port2401 failed
E3 − Tie event: example.org rouilj[10248]: [ID 702911 auth.notice] SSHD child process 10245 spawned by 10240
E2 − Parent event: example.org sshd[10240]: [ID 800047 auth.info] Accepted publickey for rouilj from 192.168.0.1 port 3500 ssh2

Note 1: creation of session_log_example.org_10240 context in response to E1 is done by a catchall rule that

Note 2: alias of two contexts is shown by the large box labeled with both context names.

Figure 13: The application of the ssh ruleset showing the key events in establishing the link between parent and
child processes.

Having the events arriving in the wrong order for
cross correlation is a problem that is not easily reme-
died. I suppress reporting of the child events while
waiting for the tie event (not shown). Then once the
tie event is received, the child events are resubmitted
for correlation. This is troublesome and error prone
and is an area that warrants further investigation.

Strategies to Improve Performance

One major issue with real-time analysis and noti-
fication is the load imposed on the system by the anal-
ysis tool and the rate of event processing. The rules
can be restructured to reduce the computational load.

In other cases the rule analysis load can be distributed
across multiple systems or across multiple processes
to reduce the load on the system or improve event
throughput for particular event streams.

The example rule set from UMB utilizes a num-
ber of performance enhancing techniques. Originally
these techniques were implemented in a locally modi-
fied version of SEC. As of SEC version 2.2.4, the last
of the performance improvements has been imple-
mented in the core code.

Rule Construction
For SEC, construction of the rules file(s) plays a

large role in improving performance. In SEC, the
majority of computation time is occupied with recog-
nizing events using Perl regular expressions. Optimiz-
ing these regular expressions to reduce the amount of
time needed to apply them improves performance.

However, understanding that SEC applies each
rule sequentially allows the reader to put the most
often matched rules first in the sequence. Putting the
most frequently used rules first reduces the search
time needed to find an applicable rule. Sending a
USR1 signal to SEC causes it to dump its internal
state showing all active contexts, current buffers, and
other information including the number of times each
rule has been matched. This information is very useful
in efficiently restructuring a ruleset

Using rule segmentation to reduce the number of
rules that must be scanned before a match is found
proves the biggest gains for the least amount of work.

Rule Segmentation
In August 2003, I developed a method of using

SEC’s multiple configuration file mechanism to prune
the number of rules that SEC would have to test
before finding a matching rule.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 145

Real-time Log File Analysis Using the Simple Event Correlator (SEC) Rouillard

This mechanism provides a limited branching
facility within SEC’s ruleset. A single criteria filtering
rule is shown in Figure 14.

type=suppress
continue=dontcont
ptype=NRegExp
pattern=ˆ[ABCD]
desc=guard for abcd rules

type=single
continue=dontcont
ptype=TValue
pattern=true
desc=guard for events handled by other \

ruleset files
action=logonly
context = [handled]

type=single
continue=takenext
ptype=TValue
pattern=true
desc=report handled
action=create handled

<rules here>

type=single
ptype=TValue
pattern=true
desc=Guess we didn’t handle this event \

after all
action=delete handled

Figure 14: A sample rule set to allow events to be fil-
tered and prevented from matching other rules in
the file.

This rule depends on the Nregexp pattern type.
This causes the rule to match if the pattern does not
match. The pattern is crafted to filter out events that
can not possibly be acted upon by the other rules in
the file. In this example I show another guard that is
used to prevent this ruleset from considering the event
if it has been handled. It consists of a rule that matches
all events2 and fires if the handle context is set. If it
does not eliminate the event from consideration, I set
the handled context to prevent other rulesets from pro-
cessing the event and pass the event to the ruleset. If
the final rule triggers, then the event was not handled
by any rule in the ruleset. The final rule deletes the
handled context so that the following rulesets will have
a chance to analyze the event.

Note that this last rule is repeated in the final rule
file to be applied. There it resets the handled context so
that the next event will be properly processed by the
rulesets.

In addition to a single regexp, multiple patterns
can be applied and if any of them select the event, the
event will be passed through the rest of the rules in the
file. A rule chain to accept an event based on multiple

2The TValue ptype is only available in SEC 2.2.5 and new-
er. Before that use regexp with a pattern of /ˆ.?/.

patterns is shown in Figure 15. The multiple filter cri-
teria can be set up to accept/reject the event using
complex boolean expressions so that the event must
match some patterns, but not other patterns.

type= single
desc= Accept event if match2 is seen.
continue= takenext
ptype= regexp
pattern= match2
action= create accept_rule

type= single
desc= Accept event if match3 is seen.
continue= takenext
ptype= regexp
pattern= match3
action= create accept_rule

type= single
desc= Skipping ruleset because neither \

match2 or match3 were seen.
ptype= TValue
pattern= true
context= ! accept_rule
action= logonly

type= single
desc= Cleaning up accept_rule context \

since it has served its purpose.
continue=takenext
ptype= TValue
pattern= true
context= accept_rule
action= delete accept_rule; logonly

<other rules here>

Figure 15: A ruleset to filter the input event against
multiple criteria. The words ‘‘match2’’ or
‘‘match3’’ must be seen in the input event to be
processed by the other rules.

The segmentation method can be arbitrary, how-
ever it is be most beneficial to group rules by some
common thread such as the generator, using a a
file/ruleset for analyzing sshd events and another one
for xntp events. Another segmentation may be by host
type. So hosts with similar hardware are analyzed by
the same rules. Hostname is another good segmentation
property for rules that are applicable to only one host.

The segmentation can be made more efficient by
grouping the input using SEC’s ability to monitor mul-
tiple files. When SEC monitors multiple files, each
file can have a context associated with it. While pro-
cessing a line from the file, the context is set. For
example, reading a line from /var/adm/messages may
set the adm_messages context, while reading a line
from /var/log/syslog would set the log_syslog context
and clear the adm_messages context. This allows seg-
mentation of rules by source file. Offloading the work
of grouping to an external application such as syslog-ng
provides the ability to group the events not only by
facility and level as in classic syslog, but also by other

146 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Rouillard Real-time Log File Analysis Using the Simple Event Correlator (SEC)

parameters including host name, program, or by a
matching regular expression. Since syslog-ng operates
on the components of a syslog message rather than the
entire message, it is expected to be more efficient in
segmenting the events than SEC.

Restructuring the rules for a single SEC process
using a simple five file segmentation based on the first
letter of the event using an 1800 rule ruleset increased
throughput by a factor of three. On a fully optimized
ruleset of 50 example rules, running on a SunBlade 150
(128 MB of memory, 650 Mhz), I have seen rates
exceeding 300 lines/sec with less than 40% processor
utilization. In tests run under the Cygwin environment
on Microsoft windows 2000, 40 rules produced a
throughput of 115 log entries per second. This single file
path of 40 rules is roughly equivalent to a segmented
ruleset of 17 files with 20 rules each for a total of 340
rules, with events equally distributed across the rulesets.

Note that these throughput numbers depend on
the event distribution, the length of the events etc.
Your mileage may vary.

Parallelization of Rule Processing

In addition to optimizing the rules, multiple SEC
processes can be run, feeding their composite events
to a parent SEC. SEC can watch multiple input
streams. It merges all these streams into a single
stream for analysis. This merging can interfere with
recognition of multi-line events as well as acting to
increase the size of an event queue, slowing down the
effective throughput rate of a single event stream.
Running a child SEC process on an event stream
allows faster response to that stream.

SEC’s spawn action creates a process and creates
an event from every line emitted by the child process.
The events from these child processes are placed on
the front of the event queue for faster processing.

These features allow the creation of a hierarchy
of SEC processes to process multiple rules files. This
reduces the burden on the parent SEC process by dis-
tributing the total number of rules across different pro-
cesses. In addition, it simplifies the creation of rules
when multi-line events must be considered, by pre-
venting the events from being distorted by the injection
of other events in the middle of the multi-line event.

SEC is not threaded, so use of concurrent pro-
cesses is the way to make SEC utilize multiprocessor
systems. However, even on uniprocessor systems, it
seems to provide better throughput by reducing the
mean number of rules that SEC has to try before find-
ing a match.

Distribution Across Nodes

SEC has no built-in mechanism for distributing
or receiving events with other hosts. However, one can
be crafted using the ideas from the last two sections.
Although this has not been tested, it is expected to
provide a significant performance improvement.

The basic idea is to have the parent SEC process
use ssh to spawn child SEC processes on different
nodes. These nodes have rules files that handle a por-
tion of the event stream. The logging mechanisms are
set up to split the event streams to the nodes so that
each node has to work on only a portion of the event
stream. Even if the logs are not split across nodes, the
reduced number of rules on each node is expected to
allow greater throughput.

This can be used in a cluster to allow each host
to process its own event streams and report composite
events to the parent SEC process for cross-machine
correlation operations.

Limitations

Like any tool, SEC is not without its limitations.
The serial nature of applying SEC’s rules limits its
throughput. Some form of tree-structured mechanism
for specifying the rules would allow faster application.
One idea that struck me as interesting is the use of rip-
ple-down rulesets for event correlation [Clark2000]
that could simply the creation and maintenance or
rulesets as well as speed up execution of complex cor-
relation operations.

As can be seen above, a number of idioms con-
sist of mating a single rule to a more complex correla-
tion rule to receive the desired result. This makes it
easy to get lost in the interactions of more complex
rulesets. I think more research into commonly used
idioms, and the generation of new correlation opera-
tions to support these idioms will improve the read-
ability and maintainability of the correlation rules.

The power provided by the use of Perl regular
expressions is tempered by the inability to treat the
event as a series of fields rather than a single entity.
For example, I would prefer to parse the event line
into a series of named fields, and use the presence,
absence and content of those fields to make the deci-
sions on what rules were executed. I think it would be
more efficient and less error prone to come up with a
standard form for the event messages and allow SEC
to tie pattern matches to particular elements of the
event rather then match the entire event. However,
implementation of the mechanism may have to wait
for the ‘‘One True Standard for Event Reporting,’’ and
I do not believe I will live long enough to see that
become a reality.

The choice of Perl as an implementation lan-
guage is a major plus because it is a more widely
known language than C among the audience for the
SEC tool this increases the pool of contributers to the
application. Also, Perl allows much more rapid devel-
opment than C. However, using an interpreted lan-
guage (even one turned into highly optimized byte-
code) does cause a slowdown in execution speed com-
pared to native executable.

SEC does not magically parse timestamps. Its
timing is based on the arrival time of the event. This

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 147

Real-time Log File Analysis Using the Simple Event Correlator (SEC) Rouillard

can be a problem in a large network if the travel time
cannot be neglected in the event correlation operations.

Future Directions

Refinement of the available rule primitives and
actions (e.g., the expire action) is an area for investi-
gation. A number of idioms presented above are more
difficult to use than I would like. In some cases these
idioms could be made easier by adding new correla-
tion types to the language. In other cases a mechanism
for storing and retrieving redundant information (such
as regular expressions and timing periods) will sim-
plify the idioms. This may be external using a pre-
processor such as filepp or m4, or may be an internal
mechanism.

Even though SEC development is ongoing, not
every idea needs to be implemented in the core. Using
available Perl modules and custom libraries it is possi-
ble to create functions and routines to enhance the
available functionality without making changes to the
SEC core. Developing libraries of add-on routines – as
well as standard ways of loading and accessing these
routines is an ongoing project. This form of extension
permits experimentation without bloating SEC’s core.

I would like to see some work done in formaliz-
ing the concept of rule segmentation and improving
the ability to branch within the rule sets to decrease
the time spent searching for applicable rules.

Availability

SEC is available from http://kodu.neti.ee/˜risto/sec/ .

In addition to the resources at the primary SEC
site above, a very good tutorial has been written by
Jim Brown [Brown2003] and is available at: http://
sixshooter.v6.thrupoint.net/SEC-examples/article.html .

An annotated collection of rules files is available
from http://www.cs.umb.edu/˜rouilj/sec/sec_rules-1.0.tgz.
This expands on the rules covered in this paper and
provides the tools for the performance testing as well
as a sample sshrc file for the ssh correlation example.

Conclusion

SEC is a very flexible tool that allows many com-
plex correlations to be specified. Many of these com-
plex correlations can be used to model [Prewett] normal
and abnormal sequences of events. Precise modeling of
events reduces both the false positive and false negative
rates easing the burden on system administrators.

The increased accuracy of the model provided by
SEC results in faster recognition of problems leading
to reduced downtime, less stress and higher more con-
sistent service levels.

This paper has just scratched the surface of
SEC’s capabilities. Refinements in rule idioms and
linkage of SEC to databases are just a few of the
future directions for this tool. Just as prior log analysis

applications such as logsurfer influenced the design
and capabilities of SEC, I believe SEC will serve to
foster research and push the envelope of current log
analysis and event correlation.

Author Biography

John Rouillard is a system administrator whose
first Unix experience was on a PDP-11/44 running
BSD Unix in 1978. He graduated with a B.S. in
Physics from the University of Massachusetts at
Boston in 1990. He specializes in automation of
sysadmin tasks and as a result is always looking for
his next challenging position.

In addition to his system administration job he is
also an emergency medical technician. Over the past
few years, when not working on an ambulance, he has
worked as a planetarium operator, and built test beds
for domestic hot water solar heating systems. He has
been a member of IEEE since 1987 and can be reached
at rouilj@ieee.org .

References

[2swatch] ftp://ftp.sdsc.edu/pub/security/PICS/2swatch/
README .

[Brown2003] Brown, Jim, ‘‘Working with SEC – the
Simple Event Correlator,’’ http://sixshooter.v6.
thrupoint.net/SEC-examples/article.html ,
November 23, 2003.

[Brown5_2004] Brown, Jim, ‘‘SEC Logfuscator Project
Announcement,’’ simple-evcorr-users mailing list,
http://sourceforge.net/mailarchive/forum.php?
thread_id=2712448&forum_id=2877 , May 3,
2004.

[Clark2000] Clark, Veronica, ‘‘To Maintain an Alarm
Correlator,’’ Bachelor ’s thesis, The University of
New South Wales, http://www.hermes.net.au/pvb/
thesis/ , 2000.

[Finke2002] Finke, John, ‘‘Process Monitor: Detecting
Events That Didn’t Happen,’’ USENIX Systems
Administration (LISA 16) Conference Proceed-
ings, pp. 145-154, USENIX Association, 2002.

[Hansen1993] Hansen, Stephen E. and E. Todd Atkins,
‘‘ A u t o m a t e d System Monitoring and Notification
with Swatch,’’ USENIX Systems Administration
(LISA VII) Conference Proceedings, pp. 145-156,
USENIX Association, http://www.usenix.org/
publications/library/proceedings/lisa93/hansen.
html , November 1993.

[logsurfer] http://www.cert.dfn.de/eng/logsurf/ .
[LoGS] Prewett, James E., ‘‘Listening to Your Cluster

with LoGS,’’ The Fifth LCI International Conf-
erence on Linux Clusters: TheHPC Revolution
2004, Linux Cluster Institute, http://www.linux
clustersinstitute.org/Linux-HPC-Revolution/
Archive/PDF04/05-Prewett_J.pdf , May 2004.

[logwatch] Bauer, Kirk, http://www.logwatch.org/ .
[logsurfer+] http://www.crypt.gen.nz/logsurfer/ .

148 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Rouillard Real-time Log File Analysis Using the Simple Event Correlator (SEC)

[NNM] ‘‘ManagingYour Network with HP OpenView
Network Node Manager,’’ Hewlett-Packard
Company, Part number J5323-90000, January
2003.

[Prewett] Prewett, James E., private correspondence,
March 2004.

[ruleCore] http://www.rulecore.com .
[Sah02] Sah, Adam, ‘‘A New Architecture for Manag-

ing Enterprise Log Data,’’ USENIX Systems
Administration (LISA XVI) Conference Proceed-
ings, pp. 121-132, USENIX Association, November
2002.

[SEC] Vaarandi, Risto, http://kodu.neti.ee/˜risto/sec/ .
[SECman] SimpleEvent Correlator (SEC) manpage,

http://kodu.neti.ee/˜risto/sec/sec.pl.html .
[SLAPS-2] SLAPS-2, http://www.openchannelfounda-

tion.org/projects/SLAPS-2 .
[SHARP] Bing, Matt and Carl Erickson, ‘‘Extending

UNIX System Logging with SHARP,’’ USENIX
Systems Administration (LISA XIV) Conference
Proceedings, pp. 101-108, USENIX Association,
http://www.usenix.org/publications/library/
proceedings/lisa2000/full_papers/bing/bing_html/
index.html, December 2000.

[Snare] InterSectAlliance, http://www.intersectalliance.
com/projects/SnareWindows/index.html .

[swatch] Atkins, Todd, http://swatch.sourceforge.net/ .
[Takada02] Takada, Tetsuji and Hideki Koike, ‘‘MieLog

A Highly Interactive Visual Log Browser Using
Information Visualization and Statistical Analysis,’’
USENIX Systems Administration (LISA XVI)
Conference Proceedings, pp. 133-144, USENIX
Association, http://www.usenix.org/events/lisa02/
tech/takada.html , November 2002.

[Vaarandi7_2003] Vaarandi, Risto, ‘‘Re: Is this possi-
ble with SEC,’’ simple-evcorr-users mailing list,
http://sourceforge.net/mailarchive/forum.php?
thread_id=2712448&forum_id=2877 , Jul 4, 2003.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 149

150 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

