XtreemOS: a Linux-based Operating System for Large Scale Dynamic Grids

Christine Morin
XtreemOS Scientific Coordinator
INRIA Rennes - Bretagne Atlantique
contact@xtreemos.eu
What is XtreemOS?
Linux-based Operating System

with native Virtual Organization support

for Next Generation Grids
Data Centers

Cloud Computing

Internet of the Future

Next Generation Grids

Service Infrastructures
"A fully distributed, dynamically reconfigurable, scalable and autonomous infrastructure to provide location independent, pervasive, reliable, secure and efficient access to a coordinated set of services encapsulating and virtualizing resources (computing power, storage, instruments, data, etc.) in order to generate knowledge"
What are the Actors’ Needs?
Users
End users - Service Administrators

- **Ease of use**
 - Do not want to care with Grid issues
 - Want to work with familiar interfaces
 - Want to use their non Grid-aware legacy applications
 - Simple login as a Grid user in a VO

- **Secure and reliable application/service execution**

- **High performance**

- **Ubiquitous access** to services, applications & data
Administrators

- **Site administrators**
 - Ease of management
 - Autonomous management of local resources
 - Should not be impacted by every single change in a VO

- **VO administrators**
 - Ease of management
 - Flexibility in VO policies
 - Accounting
Developers’ Needs

- Ease of development of Grid applications
 - Reuse existing code
- Stable API
- Conformance to standard API
 - Familiar API Posix
 - Grid application standards
Operating System

Set of integrated services (user account, process, file, memory segment, sockets, access rights)

Single computer

Application

Operating System

Hardware
Why a Grid Operating System?
Middleware Approach

Grid Middleware

OS

Hardware
Example: Globus Toolkit
Grid Operating System
Grid Operating System

A comprehensive set of cooperating system services

providing a stable interface

for a wide-area dynamic distributed infrastructure

composed of heterogeneous resources

spanning multiple administrative domains
XtreemOS Grid OS
XtreemOS
A Grid OS based on Linux with Native VO Support
Application Spectrum

- Wide range of applications...
 - Grid aware distributed applications
 - Grid unaware (legacy) applications executed in a Grid

- ... in different domains
 - E-business
 - Services...
 - Scientific applications

... XtreemOS is an OS!
XtreemOS Fundamental Properties

Virtual Organization

Application Management

Data Management

Scalability

Transparency
Scalability

- Scale
 - Thousands of nodes in thousands sites in a wide area infrastructure
 - Thousands of users

- Consequences of scale
 - Heterogeneity
 - Node hardware & software configuration
 - Network performance
 - Multiple administrative domains
 - High churn of nodes
XtreemOS Service Scalability

- **Scalability with the number of entities & their geographical distribution**
 - Avoid contention points & save network bandwidth (performance)
 - Run over multiple administrative domains (security)

- **Adaptation to evolving system composition (dynamicity)**
 - Run with partial vision of the system
 - Self-managed services
 - Transparent service migration
 - Critical services highly available
 - No single point of failure
XtreemOS Fundamental Properties

Virtual Organization

Application Management

Data Management

Scalability

Transparency
Transparency
User’s Point of View

- Bring the Grid to standard Linux users
 - Feeling to work with a Linux machine
 - Standard way of launching applications
 - `ps` command to check status of own jobs
 - No limit on the kind of applications supported
 - Interactive applications
 - Grid-aware user sessions
 - **Grid-aware shell** taking care of Grid related issues
 - VO can be built to isolate or share resources
 - Parameter defined by VO administrator
Transparency
Application & Application Developer’s Point of View

- **Make Grid executions transparent**
 - Hierarchy of jobs in the same way as Unix process hierarchy
 - Same system calls: wait for a job, send signals to a job
 - Processes in a job treated as threads in a Unix process

- **Files stored in XtreemFS Grid file system**
 - Posix interface and semantics to access files regardless of their location

- **Transparent fault tolerance to applications**

- **Clusters transparent to applications**
 - Single System Image
XtreemOS Services
XtreemOS
A VO-aware OS based on Linux

- XtreemFS
- Extensions to Linux for VO support & checkpointing
- Infrastructure for highly available & scalable services
- XtreemOS API (based on SAGA & Posix)
- AEM
- VOM

Security

INRIA
Virtual Organization Management

Objectives

- To allow secure interaction between users and resources
 - Authentication, authorization, accounting

Challenges

- Interoperability with diverse VO frameworks and security models
- Flexible administration of VOs
 - Flexibility of policy languages
 - Customizable isolation, access control and auditing
- Scalability of management of dynamic VOs
- Embedded support for VOs in the OS
- No compromise on efficiency, backward compatibility
Use Cases

VO Admin

- Manage VO lifecycle
- Manage users
- Manage resources
- Manage VO policies

Site admin

- Register resources
- Manage Node policies
- Manage relationships with VOs

VO user

- Register with a VO
- Manage user policies
- Logon to a VO
Security in XtreemOS

- **VO-centric security architecture**
 - Grid level security services
 - Global entities: VO, users, nodes (identified by public key certificates)
 - Node (OS) level services
 - Local entities: OS users (uid), OS resources (files (inode), process (pid))
 - Hierarchical policy management
 - Resource access control
 - Resource usage

- **Interoperability with third party security infrastructures**
 - Kerberos, LDAP, Shibboleth...

- **Single-Sign-On**
System-Level VO Support

- Policies specified by a VO finally checked & ensured at resource nodes by the local instance of the OS
 - Standard Linux unaware of VOs
 - Isolation & access control mainly rely on user accounts, process id, file permission bits
- What is needed for Linux OS to be able to enforce VO policies
 - OS kernel should deal with VO & VO users identities
 - Identity information should be exploited in standard access control mechanisms
 - Linux OS should supply identity information to Grid level services (XtreemFS, AEM)
- NO modification of Linux kernel
 - Mapping of VO level identities & policies into local ones fully recognized by Linux
System-Level VO Support

- **VO-customizable, dynamic mapping of Grid users onto local accounts**
 - Integration of Grid user management into Linux using
 - Pluggable Authentication Modules (PAM)
 - Multiple low level authentication technologies into a common high level API
 - Name Service Switch (NSS)

- **Interfacing with the Grid authentication services**
 - Development of PAM modules to accommodate multiple VO models
 - Authentication, authorization, session management

- **User space credential translation**
 - NS-Switch

- **Access control & logging**
 - Caching of authentication data related to a process within the kernel
VO-centric Security Architecture

- Credential Distribution Authority (CDA)
- Identity service (IS)
- Attribute service (AS)
- VO membership (X-VOMS)
- VO policy service (VOPS)
- Accounting Service (ACS)
- XOS-Cert

XtreemOS services:
- AEM
- XtreemFS

VO Admin

VO scope:
- Resource Certification Authority (RCA)
- Account Mapping Service (AMS)

Site scope:
- PAM module
- User & VO isolation enforcement
- Node policy service (NOPS)

Site admin

VO user

Resource scope
Key Contributions

- **Maximum transparency**
 - Grid unaware applications & tools can be used without being modified or recompiled

- **Integration of Grid level authentication with system level authentication**
 - Creation of dynamic on-the-fly mappings for Grid users in a clean & scalable way
 - No centralized Grid wide data base

- **Grid user mappings invisible to local users**

- **VO are easier to setup and manage**
 - No grid map file needed
 - User management does not necessitate any resource reconfiguration
XtreemOS
Application Execution Management

XtreemOS API (based on SAGA & Posix)
AEM VOM XtreemFS

Infrastructure for highly available & scalable services
Extensions to Linux for VO support & checkpointing
Application Execution Management

- **Objectives**
 - Start, monitor, control applications
 - Discover, select, allocate resources to applications

- **Challenges**
 - Deal with a large variety of resources with changing conditions over time
 - Cost to obtain system information and take appropriate decisions has to be orders of magnitude less than in Grid middleware-based systems
 - Take advantage of accurate information for better scheduling control
AEM Architecture

Client node

XOSD

Job Manager
Execution Manager
Resource Manager

VO scope

Job Directory
(JobID, @JobOwner...)

Resource Matching

Resource Selection Service

Distributed Services

Resource 1

Job Manager
Execution Manager
Resource Manager

Resource 2

Job Manager
Execution Manager
Resource Manager

Resource Description (GLUE)

Job Description (JSDL)

SEDA concept
Main Features

- No global job scheduler
- Distributed management of jobs
- No assumption on local node RMS
 - AEM can be used without any batch system
- Resource discovery based on overlay networks
 - Structured and unstructured
 - Multi-criteria and range of values queries
Advanced Features

- Flexible monitoring
- Accounting
- Reservation
 - Nodes with a local resource manager
 - Co-allocation of resources
- Checkpoint/restart mechanisms for grid jobs
- Migration of grid jobs when the user agreement cannot be met anymore
- Interactive applications support
- Support for external workflow engines
XtreemOS
Data Management

XtreemOS API (based on SAGA & Posix)

AEM VOM XtreemFS

Infrastructure for highly available & scalable services

Extensions to Linux for VO support & checkpointing
Data Management

- **Objectives**
 - Providing to users a global view of their files & transparent access to data through a Grid file system

- **Challenges**
 - Efficient location-independent access to data through standard Posix interface in a Grid environment
 - Grid users from multiple VO
 - Data storage in different administrative domains
 - Autonomous data management with self-organized replication and distribution
 - Consistent data sharing
 - Advanced meta data management
XtreemFS Grid File System

- Object-based
- Replicated
- Parallel
Conclusion

- **XtreemOS is not yet another Grid middleware**
 - **Operating system** for large scale wide-area platforms distributed over multiple administrative domains
 - Comprehensive set of cooperating services
 - Stable Posix interface
 - **Grid-aware Linux distribution**

- **Native Virtual Organization Support**
 - Flexible & scalable VO management
 - Multi-VO & short-term VO support

- **Secure, reliable, efficient** application/service execution & **ease of use and management**

- **Attractive in the context of the new emerging computing models**
Get Involved!

- Download the first XtreemOS public release in a few days (GPL/BSD)
 - http://www.xtreemos.eu

- Open development

- contact@xtreemos.eu to register in the pioneer user group
Acknowledgements

- XtreemOS consortium
 - http://www.xtreemos.eu

- PARIS project-team @ INRIA Rennes - Bretagne Atlantique
 - http://www.irisa.fr/paris
Thank you for your Attention

http://www.xtreemos.eu