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Abstract

We discuss an axiomatic description of a sim-
ple abstract machine similar to the Java Virtual
Machine (JVM). Our model supports classes,
with fields and bytecoded methods, and a rep-
resentative sampling of JVM bytecodes for ba-
sic operations for both data and control. The
GETFIELD and PUTFIELD instructions accu-
rately model inheritance, as does theINVOKE-
VIRTUAL instruction. Our model supports mul-
tiple threads, synchronized methods, and moni-
tors. Our current model is inadequate or inaccu-
rate in many respects (e.g., we do not formalize
the JVM’s finite arithmetic nor do we describe
class loading and initialization). But the model is
a useful tool for studying the application of for-
mal reasoning to the JVM and to Java programs.

We demonstrate two useful aspects of an op-
erational formal semantics. First, the model is
executable: bytecoded methods can be run on
the model. Second, the model allows us to
prove theorems about those methods or, more
generally, about the model. Because the JVM
provides a relatively clean semantics for Java,
our model can be thought of as a step towards
Java software verification. We illustrate these
points. We cite some theorems proved about our
model, including a theorem involving unbounded
multi-threading and mutual exclusion withMON-
ITORENTERand MONITOREXIT. Our proofs
are carried out with the ACL2 theorem prover.

Keywords: parallel, distributed computation,
mutual exclusion, operational semantics, verifi-
cation, JVM, bytecode verification

1 Formal Executable Models

“Formal Methods” is the name given to the
computer science research area devoted to the use
of formal mathematical logic to model and ana-
lyze the properties of computing systems. One
advantage of modeling a system formally is that
proofs about it can be checked by mechanical
proof checkers. This increases the odds that the
proofs are flawless. Automated mechanical theo-
rem provers can be used to help discover proofs,
which can significantly reduce the tedium of con-
structing formal proofs.

This is not pie-in-the-sky formal methods pro-
posal boilerplate. It is happening. At Ad-
vanced Micro Devices, Inc., formal models of
the hardware designs for the floating-point FDIV
instruction on the AMD AthlonTM have been
mechanically proved to be compliant with the
IEEE-754 standard. Indeed, all of the elemen-
tary floating-point operations on the Athlon (in-
cluding addition, subtraction, multiplication, di-
vision, and square root) have been so proved.
Important security properties of the IBM 4758
secure co-processor were mechanically verified
at IBM Yorktown. The correctness of an au-
ditor that checks the output of a compiler for



safety-critical trainborn real-time control soft-
ware for Union Switch and Signal was mechani-
cally proved. A bit- and cycle-accurate model of
a Motorola digital signal processor was mechani-
cally proved to conform to a higher-level sequen-
tial view in which the pipeline was abstracted
away – provided the microcode being executed
was free of a well-defined set of hazards. Several
microcoded DSP algorithms extracted from the
ROM of that microprocessor were mechanically
proved correct. These applications, and others,
are described in [12]. All were modeled and ver-
ified using one theorem proving system, ACL2.

ACL2 [13] stands for “A Computational Logic
for Applicative Common Lisp.” It is a func-
tional programming language, a first-order math-
ematical logic, and a mechanical theorem prover.
ACL2 was written by Matt Kaufmann and J
Strother Moore (an author of this paper) and is
the successor of the Boyer-Moore theorem prover
Nqthm [3, 5].

As a programming language, ACL2 is a ver-
sion of Common Lisp. It provides the famil-
iar Lisp data objects, including numbers, strings,
symbols and lists, along with if-then-else and
function application, including recursion. ACL2
is axiomatically described. For example, it is
an axiom that(IF x y z) is z if x is NIL ,
and isy otherwise. Another axiom is that(car
(cons x y)) is x . Theorems about ACL2
functions can be proved in this logic, most often
by case analysis, simplification, and mathemati-
cal induction. A mechanical tool has been built to
help the human user construct proofs. This inter-
active computer program combines term rewrit-
ing, decision procedures and a wide variety of
heuristic techniques to provide a symbolic ma-
nipulation system. The system has sophisticated
automatic search strategies for finding certain
kinds of proofs and those strategies can be in-
formed and guided by advice from the user, most
often in the form of key lemmas suggested by the
user and proved by the system. For details, see
[13] and the ACL2 Web sitehttp://www.-
cs.utexas.edu/users/moore/acl2 . In
this paper we avoid ACL2 syntax and knowledge
of ACL2 insofar as possible.

The techniques for modeling microprocessors
and programming languages in such a logic have
been developed over a long period of time in
the Boyer-Moore community. A tour de force

of the method is presented in the so-called CLI
Stack (produced by Computational Logic, Inc.)
[1, 8, 18] which is a hierarchy of verified compo-
nents including a microprocessor, loader, linker,
assembler, two compilers, an operating system
and some applications programs, all quite sim-
ple but also actually fabricated and practical, and
all of which have been formally specified and
mechanically proved correct. Another example
is the work of Yuan Yu, in which the Motorola
68020 microprocessor is formalized. Yu’s work
is sufficiently accurate that it is possible to com-
pile 21 of the 22 programs in the Berkeley C
String Library, usinggcc -o , and run the re-
sulting binaries on the formal model, comput-
ing the expected results. Furthermore, Yu for-
mally specified what these 21 programs were
supposed to do and used the Boyer-Moore the-
orem prover to prove mechanically that the bi-
naries met the specifications [6]. For an intro-
duction to the modeling and proof methods used
in these projects, see [4]. We merely hint at the
techniques as we briefly describe our model of
the JVM.

Of particular historical importance to the
present work is Rich Cohen’s ACL2 model of a
single-threaded JVM [7]. The so-called “defen-
sive JVM” is an accurate and complete model of
a subset of the JVM instruction set. As such, the
machine is more complicated than the one dis-
cussed here, but does not support threads. The
defensive JVM checks the dynamic conditions re-
quired to insure type safety and is an essential
step toward the specification and verification of
the Java bytecode verifier. Both Cohen’s model
and ours are based largely on the Sun Microsys-
tems documentation for Java and the JVM [14, 9],
informed by private conversations with experts
and experience with Java and the JVM.

Also of special interest is the fact that the
JEM1 microprocessor, the world’s first silicon
JVM, built by Rockwell Collins, was modeled
formally with ACL2 [19, 11]. Some proofs were
done with the model but its primary use was as
a simulator. The ACL2 model executes at about
90% of the speed of a carefully-written C sim-
ulator for the same model. The issues involved
in the efficient execution of ACL2 models are
discussed in the article by Greve, Wilding, and
Hardin (Chapter 8) of [12].

There is a large body of academic work on



Java modeling but relatively little that is truly for-
mal and still less that is supported by mechanized
tools. A wonderful exception is the work by Nel-
son, Leino and others at Compaq Systems Re-
search Center on the “Extended Static Checker”
for Java, which is formal, practical and mech-
anized. Seehttp://research.compaq.-
com/SRC/esc/ . The work of Borger and
Schulte [2] on Java exceptions is quite formal
and accurate, but not supported by mechanized
proofs. Mechanically checked proofs about sim-
ple Java programs have been constructed with
several theorem provers, including HOL, Is-
abelle, and PVS. See, for example, [17]. How-
ever, we are unaware of mechanically checked
proofs (other than those reported here) of Java
classes that use multi-threading. Our work is
distinguished primarily by being cast in a for-
mally defined operational (and executable) se-
mantics. Because we formalize the semantics
we can prove theorems about the model, not just
about particular Java methods or classes. We
know of no mechanically checked proofs (ours
included) of correctness properties of significant
Java applications; the field is still in its infancy.

2 Specification of the JVM

In ACL2, machines are formalized by adopt-
ing an explicit representation of the states and
then writing an interpreter for the machine lan-
guage. Another way of putting it is this: to for-
malize a machine language, implement a simu-
lator for it in functional Lisp. While this may
seem to be a mere programming exercise, it is
also a logic exercise if the simulator is written
in an axiomatically described programming lan-
guage like ACL2.

In our model of the JVM, a state consists of
three components: the thread table, the heap, and
the class table. We describe each in turn. When
we use the word “table” here we generally mean
a list of pairs in which “keys” (which might be
thought of as constituting the left-hand column
of the table) are paired with “values” (the right-
hand column of the table). Such a table is a map
from the keys to the corresponding values.

The thread table maps thread numbers to
threads. Each thread consists of three compo-

nents: a call stack, a flag indicating whether the
thread is scheduled, and the heap address of an
object of classThread in the heap uniquely as-
sociated with this thread. We discuss the heap
below.

The call stack is a list of frames treated as a
stack (the first element of the list is the topmost
frame). Each frame contains five components: a
program counter and the bytecoded method body,
a table associating variable names with values,
a stack, and a synchronization flag indicating
whether the method currently executing is syn-
chronized. Unlike the JVM, the local variables
of a method are referenced by symbolic names
rather than positions.

The heap is a table associating heap addresses
with instance objects. An instance object is a ta-
ble. The keys of an instance object are the suc-
cessive classes in the superclass chain of the ob-
ject. The value of each such key is another table,
mapping the immediate field names of the class
to their values. The structure of heap addresses is
unimportant but they can be distinguished from
integers and other data types. In our model a heap
address is a list of the form(REF i ) , wherei is
a natural number. One point where our model dif-
fers from the JVM is that in our model theNEW
instruction is completely responsible for the ob-
ject’s instantiation; all fields are initialized to0.
Classes in our model do not have separate con-
structors.

Finally, the class table is a table mapping class
names to class descriptions. A class description
contains a list of its superclass names, a list of its
immediate fields, and a list of its methods. We
do not model syntactic typing in our machine,
though we could. Thus, our list of fields is just
a simple list of field names (strings) rather than,
say, a table mapping field names to signatures. A
method is a list containing a method name, the
names of the formal parameters of the method,
a synchronization status flag, and a list of byte-
coded instructions. Our model omits signatures
and the access modes of methods.

Bytecoded instructions are represented ab-
stractly as lists consisting of a symbolic opcode
name followed by zero or more operands. For ex-
ample,(LOAD X) is the instruction that pushes
the value of local variableX onto the stack in
the current frame.(ADD) pops two items off



the stack in the current frame and pushes their
sum. (IFEQ 12) pops an item off the stack
and if it is 0, increments the program counter by
12 ; otherwise it increments it by1. The similar-
ity of these instructions to certain JVM instruc-
tions should be obvious, as should be the dif-
ferences: we ignore the different types ofLOAD
(e.g., ILOAD, DLOAD, etc.) andADD instruc-
tions, we ignore the finite range of integer data,
and we count program counter offsets in num-
ber of instructions rather than number of bytes.
These and most of the other discrepancies be-
tween the current model and the JVM are matters
of detail that would not change the basic structure
of the model to fix and do not impact our ability
to use the model to study proof techniques.

For those readers curious to see how we de-
fine the semantics of such operations in ACL2,
see Table 1. It contains the definition of the func-
tion execute-PUSH which we use to give se-
mantics to thePUSHinstruction. The instruction
(PUSH 3) is comparable toICONST 3 or BI-
PUSH 3on the JVM.

The function takes three arguments, named
inst , s , and th . The first is the list expres-
sion denoting the instruction. The first element
of inst will always be the symbolPUSHand
the second is the constant that is to be pushed on
the stack of the current frame. The second argu-
ment ofexecute-PUSH , s , is the JVM state,
consisting of a thread table, a heap and a class
table. The third argument,th , is the number of
the thread that is to be “stepped.”Execute-
PUSHreturns the state obtained by executing the
PUSHinstruction in the given thread ofs . It cre-
ates that state with the functionmake-state ,
which takes three arguments: the thread table,
the heap and the class table of the state to be re-
turned. The last two components of the new state
above are the same as those ins . The thread ta-
ble is modified by replacing the entry forth by
another entry. That entry’s call stack is obtained
by replacing the topmost frame of the current call
stack (notice we push a frame onto a stack ob-
tained by popping one off). In the new frame,
the program counter is advanced by 1, the locals
remain unchanged, the constant (extracted from
inst using the functionarg1 ) is pushed on the
stack, and the method program and synchroniza-
tion flag are unchanged.

The most complicated instruction formalized

in our model is INVOKEVIRTUAL. An ex-
ample INVOKEVIRTUAL instruction on our
machine is represented by the list struc-
ture (INVOKEVIRTUAL "ColoredPoint"
"move" 2) . Note that in place of the JVM’s
signature we provide only the number of param-
eters, since we consistently ignore type issues
in this model. We paraphrase the definition of
execute-INVOKEVIRTUAL by describing the
state it creates from an instruction of the form be-
low, a states, and a thread numberth.

(INVOKEVIRTUAL c name n) : Let ref be
the itemn deep in the stack. This is expected to
be a heap reference to an instance object,obj . Let
class be the class of this object (the first key in
the table, i.e., the name of the most specific class
in the object’s class hierarchy). Use the function
lookup-method to determine from the class-
table of s the closest method with namename
in class or its superclass chain. Letformals
andbody be the formal parameters and bytecoded
body of the closest method. Letformals ′ be
formals with the new symbolTHIS added to the
front.

Create a new call stack,cs ′, from the call stack
of threadth in s by replacing the topmost frame
by a new frame in which the program counter has
been incremented by one andn + 1 items have
been popped off the stack. Create another call
stack,cs ′′, by pushing a new frame ontocs ′. This
new frame should have a program counter of 0
and an empty stack. The locals of the new frame
should bindformals ′ to the topmostn + 1 items
removed from the stack ins (above), the deepest
of which is bound toTHIS . The bytecoded body
of the frame should bebody . We will usecs ′ and
cs ′′ in various cases below and we will not be
interested incs ′′ unless the closest method is non-
native. Consider the following cases.

• The closest method is native: We support
only two native methods,"start" and
"stop" from the"Object" class. We de-
scribe only the first here. In this case,obj
should include the class"Thread" in its
superclass chain. The new state constructed
by the"start" method has the same heap
and class table ass. The thread table is
changed in two ways. First, the call stack of
th is replaced bycs ′ above (stepping over
the INVOKEVIRTUAL). Second, the thread



(defun execute-PUSH (inst s th)
(make-state

(modify-tt th
(push (make-frame (+ 1 (pc (top-frame s th)))

(locals (top-frame s th))
(push (arg1 inst)

(stack (top-frame s th)))
(program (top-frame s th))
(sync-flg (top-frame s th)))

(pop (call-stack s th)))
’SCHEDULED
(thread-table s))

(heap s)
(class-table s)))

Table 1: execute-PUSH

th ′ uniquely associated withobj is changed
so that its scheduled flag isSCHEDULED.

• The closest method is a synchronized
method: Fetch the contents of the"mon-
itor" and"mcount" fields in the"Ob-
ject" class ofobj . If the mcount is 0
or the mcount is non-0 but the monitor is
th, then we sayobj is “available” toth. If
obj is available toth, then the new state is
obtained froms by replacing the call stack
with cs ′′ after setting thesync-flg com-
ponent of the top frame toLOCKED, and
by replacing the heap ofs with a heap in
which the"mcount" field of the object at
ref has been incremented by one and the
"monitor" field has been set toth. If,
on the other hand,obj is unavailable, then
the “new” state iss itself. Thus, the thread
hangs at theINVOKEVIRTUAL instruction
until obj becomes available. We do not
specify the scheduler; instead, our model al-
lows all possible interleavings of thread ex-
ecutions and some thread states (as the one
just described) make no change if stepped
before progress is possible.

• Otherwise, the new state is obtained froms
by replacing the call stack withcs ′′ after set-
ting the sync-flg component of the top
frame toUNLOCKED.

Givenexecute-PUSH , the reader can presum-
ably imagine how this description is coded in
ACL2.

We formalize a variety of instructions in this
style, includingPOP, LOAD, STORE, ADD, MUL,
GOTO, IFEQ, IFGT , RETURN, XRETURN, NEW,
GETFIELD, PUTFIELD, MONITORENTER, and
MONITOREXIT. For each such opcodeop we
define an ACL2 functionexecute- op that
takes the instruction, current state, and thread
number and returns the next state.

We then definestep to be the function that
takes a state and a thread number and executes
the next instruction in the given thread, provided
that thread exists and isSCHEDULED. Step is
essentially a “big switch” on the opcode of the
instruction indicated by the program counter and
method body in the top frame of the call stack of
the given thread.

Finally we definerun to take a “schedule” and
a state and return the result of stepping the state
according to the given schedule. A schedule is
just a list of numbers, indicating which thread is
to be stepped next. That is, our model puts no
constraints on the JVM thread scheduler; how-
ever stepping a non-existent,UNSCHEDULED, or
otherwise blocked thread is a no-op. We find it
convenient also to define(runn n schedule
s) to run the firstn steps ofschedule starting
in states .

The complete ACL2 source text for our
machine is available fromhttp://www.-
cs.utexas.edu/users/moore/-
publications/m4/index.html .

Our model omits many features of the JVM.



Among the more glaring omissions are accurate
support for the JVM primitive data types like
ints, doubles, arrays, etc., support for syntactic
typing both in the naming convention in the in-
struction set (e.g.,IADD versusDADD) and field
and method signatures, class loading and initial-
ization, INVOKESTATIC (with the concomitant
requirement that classes have representative in-
stance objects in the heap upon which synchro-
nization can be arranged), exception handling,
and errors. Experience with other commercial
microprocessor models leads us to believe that
these features could be added to our model with-
out fundamentally changing its basic structure.
There is no doubt that they greatly complicate the
model and would complicate proofs about pro-
grams that use the features in question. That is
one of the reasons we left them out. Our model
is adequate however as a vehicle for studying ba-
sic mechanized proof techniques for dealing with
Java programs, including multi-threaded applica-
tions.

3 Some Examples of Execution

Because our model,run , is an ACL2 program,
it can be executed on concrete data to produce
concrete results. To run our bytecode we create
a state, says0, containing the thread table, heap,
and class table we have in mind. An expression
constructing such a state is shown in Table 2. The
classAlpha contains a single instance method
fact which is just a recursive factorial program
written in our bytecode.1 The bytecode is similar
to that produced by compiling

public int fact(int n) {
if (n<=0) return 1;

else return n*fact(n-1);
}

except our arithmetic is not bounded. We show
the JVM bytecode for thisfact in Table 2, in
line-by-line correspondence with ours. The main
program of the only thread in the thread table of
s0 creates a new instance object of classAlpha
and invokes itsfact method after pushing5.
That is, it callsfact on5.

1We have not modeledINVOKESTATIC in this machine,
so we have chosen to makefact an instance method.

Call the state in Table 2s0. To runs0 we must
provide a schedule. Since the main program is
in thread0 (the only thread) and creates no other
threads, a suitable schedule is just a list of0’s.

The list constant shown in Table 3 is the state
created by evaluating(run (repeat 58 0)
s0) . Call that states58. Thus,s58 is the result of
stepping thread 0 fifty-eight times starting with
s0. The code elided away is just the definition of
our fact method. Inspection of thread0 reveals
that the program counter of the top frame is point-
ing to the last instruction, the(XRETURN), and
that120 is on the top of the stack. Stepping once
would pop the top frame and push the120 onto
the empty stack of the frame below. The new top
frame is poised to execute the(HALT) instruc-
tion. So steppings0 sixty times halts the machine
with 120 on top of the stack in the main frame.
Since120 is 5!, thefact method seems to have
worked.

Also evident in Table 3 is the representation
of the instance object at heap address0, an ob-
ject of classAlpha (which has no fields) with
superclass"Object" (which has fields"mon-
itor" , "mcount" and "wait-set" ). Note
also the class table, which, in addition to ourAl-
pha class, contains two built in classes,Object
andThread . In our model, theObject class
has only the three fields listed, and theThread
class has only two (native) methods,"start"
and"stop" whose semantics are built intoIN-
VOKEVIRTUAL.

There are of course many schedules that run
thread0 in s0 for sixty instructions. Any sched-
ule containing sixty0’s would work, no matter
how many other thread numbers are interspersed
between them.

Because our model is expressed in a formal
mathematical logic, it is possible to reason about
it formally, using the ACL2 mechanical theo-
rem prover. Rather than just test that thefact
method works for5 and a few other numbers,
we can prove a theorem stating that thefact
method computes the factorial of its argument.



(make-state
(make-tt ; Thread table

(push ; call stack of thread 0
(make-frame 0 ; frame: pc

nil ; locals
nil ; stack
’((NEW "Alpha") ; method body

(STORE OBJ)
(LOAD OBJ)
(PUSH 5)
(INVOKEVIRTUAL "Alpha" "fact" 1)
(HALT))

’UNLOCKED) sync status
nil))

nil ; Heap
(make-class-def ; Class Table

(list
(make-class-decl

"Alpha" ; class name
’("Object") ; superclasses
NIL ; fields
’(("fact" (N) NIL ; Method int fact(int)

(LOAD N) ; 0 iload 1
(IFGT 3) ; 1 ifgt 6
(PUSH 1) ; 4 iconst 1
(XRETURN) ; 5 ireturn
(LOAD N) ; 6 iload 1
(LOAD THIS) ; 7 aload 0
(LOAD N) ; 8 iload 1
(PUSH 1) ; 9 iconst 1
(SUB) ; 10 isub
(INVOKEVIRTUAL "Alpha" "fact" 1) ; 11 invokevirtual #8 <Method int fact(int)>
(MUL) ; 14 imul
(XRETURN))))))) ; 15 ireturn

Table 2: A State for Computing Factorial



(((0 ; Thread 0
((11 ; call stack, top frame: pc

((THIS . (REF 0)) (N . 5)) ; locals
(120) ; stack (120 on top)
((LOAD N) ; method body

(IFGT 3)
(PUSH 1)
(XRETURN)
(LOAD N)
(LOAD THIS)
(LOAD N)
(PUSH 1)
(SUB)
(INVOKEVIRTUAL "Alpha" "fact" 1)
(MUL)
(XRETURN)) ; (pc points here)

UNLOCKED) ; sync status
(5 ; next frame: pc

((OBJ . (REF 0))) ; locals
() ; stack (empty)
((NEW "Alpha") ; method body

(STORE OBJ)
(LOAD OBJ)
(PUSH 5)
(INVOKEVIRTUAL "Alpha" "fact" 1)
(HALT)) ; (pc points here)

UNLOCKED)) ; sync status
SCHEDULED NIL))

((0 ; Heap address 0:
("Alpha") ; Alpha fields: none
("Object" ; Object fields:

("monitor" . 0)
("mcount" . 0)
("wait-set" . 0))))

; Class table
(("Object" ; Object class

() ; superclasses
("monitor" ; fields

"mcount"
"wait-set")

(("start" () NIL NIL) ; methods
("stop" () NIL NIL)))

("Thread" ; Thread class
("Object") ; superclasses
() ; fields (none)
(("run" () NIL (RETURN)))) ; methods

("Alpha" ; Alpha class
("Object") ; superclasses
() ; fields (none)
(("fact" (N) NIL (LOAD N) ... (XRETURN)))))) ; methods

Table 3: The Result of Stepping the Factorial State 58 Times



Theorem. fact is correct.
(implies (and (poised-to-invoke-fact s th n)

(natp n))
(equal (top

(stack
(top-frame

(run (fact-sched n th) s)
th)))

(factorial n)))

The hypotheses of the theorem assume thats is
a state poised (in threadth ) to invoke ourfact
method on the natural numbern. Becausefact
is an instance method, this requires inspecting the
top two objects on the stack to make sure that the
topmost is a natural number and that the resolu-
tion of the name"fact" in the class of the next
item is ourfact method. The conclusion is an
equality stating that a certain expression is equal
to (factorial n) . Here,factorial is the
mathematical function of that name, defined in
ACL2. The expression in question describes the
top item on the stack in the top frame of threadth
in the state obtained by executing states a certain
number of steps, as given by(fact-sched n
th) . Thus, this theorem establishes that by run-
ning threadth a certain number of steps, it com-
putes the factorial function.2

The proof of the factorial theorem can be con-
structed interactively with the ACL2 theorem
prover and the theorem prover is entirely respon-
sible for the correctness of the proof. In this
case, the user provides an inductive argument and
the machine carries out that argument, expanding
definitions, applying axioms and basic theorems
about the machine. For a discussion of such the-
orems see [15]. The proof thatfact computes
factorial takes about 30 seconds (on a 700 MHz
machine).

In Table 5 we show a more interesting state,
modeled after the JavaApprentice code
shown in Table 4. In this state the main pro-
gram creates an object of classContainer and
then loops forever creating and startingThread
objects of classJob . EachJob is in an infi-
nite loop using the methodincr to read, incre-
ment, and write into thecounter field of the
Container object. The critical section of the
incr method is protected byMONITORENTER
andMONITOREXIT.3

2Our machine has unbounded integer arithmetic. We
could, of course, model Java’s bounded arithmetic. The fac-
torial theorem would have to be restated to reflect that.

3Our byte code for"run" exploits the fact that"incr"

If we remove theMONITORENTERandMON-
ITOREXIT (and the correspondingLOAD) in-
structions from the bytecode (i.e., remove the
synchronization from the Java method) we can
exhibit a schedule that makes the counter de-
crease: run the main thread until it has started
two jobs, then run the first thread until it pushes
the value of the counter (which at this point will
be 0) onto its local stack, then run the other
thread many cycles to increment the counter sev-
eral times, and finally run the first job again so
that it increments its 0 and writes a 1 into the
counter field.

The ability to deal with schedules and states
abstractly makes it easier to explore such issues.
This illustrates the value of an executable abstract
model.

However, there is no schedule that makes the
state in Table 5 decrease the counter. This cannot
be demonstrated by testing. It can, however, be
proved by analyzing our model. Here is a theo-
rem proved with the ACL2 theorem prover about
the state shown in Table 5, here called*a0* .

Theorem. ApprenticeMonotonicity
(implies (and (natp n)

(natp m)
(<= n m))

(<= (counter
(runn n any-schedule *a0*))

(counter
(runn m any-schedule *a0*))))

The theorem compares the values of the
counter in two states, one obtained by running
*a0* n steps and the other obtained by running
msteps, both according to the same completely
unconstrained schedule. Ifn ≤ m, the counter
in the former state is less than or equal to that
in the latter state. This theorem is a statement
about an unbounded number of parallel threads
using the JVM synchronization primitives. The
proof requires careful (and rather global) analysis
of what is happening in the heap. (For example,
all threads writing to theContainer respect the
monitor and no thread changes theobjref field
of a running thread.) See, for example, Praxis 56
in [10], where Haggar writes “Do not reassign the
object reference of a locked object.” For details
of our proof see [16].

returns “this ” and is slightly different than the compiled
Java.



class Container {
public int counter;

}
class Job extends Thread {

Container objref;
Object x;
public Job incr () {

synchronized(objref) {
objref.counter = objref.counter + 1;

}
return this;

}
public void setref(Container o) {

objref = o;
}
public void run() {

for (;;) {
incr();

}
}

}
class Apprentice {

public static void main(String[] args) {
Container container = new Container();
for (;;) {

Job job = new Job();
job.setref(container);
job.start();

}
}

}

Table 4: The Apprentice Class: Unbounded Parallelism



(make-state
(make-tt ; Thread Table

(push (make-frame 0 ; call stack, top frame: pc
’((CONTAINER . NIL) (JOB . NIL)) ; locals (uninitialized)
() ; stack (empty)
’((NEW "Container") ; main method

(STORE CONTAINER)
(NEW "Job")
(STORE JOB)
(LOAD JOB)
(LOAD CONTAINER)
(INVOKEVIRTUAL "Job" "setref" 1)
(LOAD JOB)
(INVOKEVIRTUAL "Job" "start" 0)
(GOTO -7))

’UNLOCKED)
nil))

nil ; Heap
(make-class-def ; Class Table

(list (make-class-decl "Container" ; Container class
’("Object") ; superclasses
’("counter") ; fields
’()) ; methods (none)

(make-class-decl "Job" ; Job class
’("Thread" "Object"); superclasses
’("x" "objref") ; fields
’(("incr" () nil ; methods

(LOAD THIS)
(GETFIELD "Job" "objref")
(STORE TEMP)
(LOAD TEMP)
(MONITORENTER)
(LOAD THIS)
(GETFIELD "Job" "objref")
(LOAD THIS)
(GETFIELD "Job" "objref")
(GETFIELD "Container" "counter")
(PUSH 1)
(ADD)
(PUTFIELD "Container" "counter")
(LOAD TEMP)
(MONITOREXIT)
(LOAD THIS)
(XRETURN))

("run" (N) nil
(LOAD THIS)
(INVOKEVIRTUAL "Job" "incr" 0)
(GOTO -1))

("setref" (R) nil
(LOAD THIS)
(LOAD R)
(PUTFIELD "Job" "objref")
(RETURN))

)))))

Table 5: Apprentice in Our Model



4 Conclusion

This paper is a first step at developing an ex-
ecutable abstract formal model of threading in
the JVM. We have explained how such a model
can be built, we have shown that the model can
be executed on concrete data to test the behavior
of methods and threads under various scheduling
regimes, and we have illustrated that it is possi-
ble to prove theorems about all possible behav-
iors. These proofs can be checked mechanically
by ACL2, a general-purpose theorem proving en-
gine. This engine was not designed with JVM
proofs in mind; indeed, all the engine “knows”
about the model is its formal definition. Our
proofs of the theorems cited were straightfor-
ward applications of general techniques under-
stood well by the ACL2 community. Further in-
vestigation of such theorems would undoubtedly
lead to the codification of JVM-specific proof
techniques and formal metatheorems, such as that
syntactically non-interfering threads can be ana-
lyzed separately.

The prover is sufficiently powerful to be of
use in verifying microprocessor architectures and
floating-point implementations. While our JVM
model is currently quite simple compared to the
implemented JVM, past experience with ACL2
supports the hope that ACL2 will be capable of
handling significantly more realistic models of
the JVM.

If our past experience is any guide, the formal-
ization of proof techniques for a realistic model
of the JVM will make it easier to reason formally
about the JVM and Java. In addition, such an
undertaking will most likely expose oversights or
ambiguities in existing informal understandings
of how to write correct and reliable Java pro-
grams.
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6 Availability

The ACL2 system is freely available from the
following website:

http://www.cs.utexas.edu/users/-
moore/acl2

ACL2 is Copyright (C) 2000 University of
Texas at Austin and distributed under the terms
of the GNU General Public License.

The ACL2 source code for our machine is
available from:

http://www.cs.utexas.edu/users/-
moore/publications/m4/index.html

The authors can be contacted at the e-mail ad-
dresses specified on the first page.
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