
HyperFlow
A Distributed Control Plane for OpenFlow

Amin Tootoonchian
Yashar Ganjali

System and Networking Group

Department of Computer Science

University of Toronto



Brief Overview of OpenFlow

• Root cause of network mgmt. & control complexity:

– Tight coupling of control and data planes.

• separates the data and control planes:

– Abstracts switches as programmable flow tables.

– A logically centralized controller programs them.

• But current setups do not scale well.

April 27, 2010 HyperFlow - University of Toronto 2

OpenFlow extremely simplifies network control & mgmt.



A Network with a Single 
Centralized Controller 
Does Not Scale.

• Flow setup time for 
switches farther from 
controller is larger.

• Single controller can 
handle a limited number 
of datapath requests.

• End-to-end control 
bandwidth is limited.

April 27, 2010 HyperFlow - University of Toronto 3

Network operators need to deploy multiple controllers.



Distributed Control Plane 
Must Not Sacrifice 
Simplicity for Scalability!

• Key to OpenFlow’s
simplicity:

• Network control logic 
centralization.

• Trade-off:

• Scalability (complete 
distribution)

• Simplicity

• Distributed cp should be 
scalable, yet transparent 
to the control logic.

April 27, 2010 HyperFlow - University of Toronto 4

A distributed cp must keep network control logic centralized.



Our Approach:
Push All State to All Controllers

• Make each controller think it is the only controller.

• Passively synchronize state among controllers.

– With minor modifications to applications.

• How to synchronize state with minimal modification?

– Capture controller events which affect controller state.
• Controller events: e.g., OpenFlow messages (Packet_in_event, …).

• The number of such events is very small.

– Replay these events on all other controllers.

April 27, 2010 HyperFlow - University of Toronto 5



HyperFlow Design

• HyperFlow has two components:

– Controller component:
• An event logger, player, and OpenFlow command proxy.

• Implemented as a C++ NOX application.

– Event propagation system:
• A publish/subscribe system.

• Switches are connected to close controllers.

• Upon controller failure:

– Switches are reconfigured to connect to another controller.

April 27, 2010 HyperFlow - University of Toronto 6



Overview of HyperFlow

April 27, 2010 HyperFlow - University of Toronto 7



HyperFlow Controller Component

• Event logger captures & serializes some ctrl events.

– Only captures events which alter the controller state.

– Serializes and publishes the events to the pub/sub.

• Event player deserializes & replays captured events.

– As if they occurred locally.

• Command proxy sends cmds to appropriate switch.

– Sends the replies back to the original sender.

April 27, 2010 HyperFlow - University of Toronto 8



Event Propagation System

• The pub/sub system has a network-wide scope.

• It has three channel types:

– Control channel: controllers advertise themselves there.

– Data channel: events of general interest published here.

– Individual controllers’ channels: send commands and 
replies to a specific controller.

• Implemented using WheelFS, because:

– WheelFS facilitates rapid prototyping.

– WheelFS is resilient against network partitioning.

April 27, 2010 HyperFlow - University of Toronto 9



Are Controllers in Sync?

• How rapidly can network changes occur in HF?

– Yet guarantee a bounded inconsistency window.

• The bottleneck could be either:

– The control bandwidth.

– The publish/subscribe system.

• The publish/subscribe system localizes the 
HyperFlow sync traffic.

– The control bandwidth problem could be alleviated.

April 27, 2010 HyperFlow - University of Toronto 10

How many events can HF exchange with pub/sub per sec?



How Frequent Can a Network Change?

• Benchmarked WheelFS:

– The number of 3KB-sized files HF can serialize & publish:
• 233 such events/sec  not a concern (multiple publishers)

– The number of 3KB-sized files HF can read & deserialize:

• 987 such events/sec.

• However, HF can handle far larger number of events.

– During spikes inconsistency window is not bounded.

April 27, 2010 HyperFlow - University of Toronto 11

No. of network changes on avg must be < 1000 events/sec.

Switch/Host/Link 
changes

10s of events/sec for 
thousands of hosts



Summary

• HyperFlow enables deploying multiple controllers.

– Keeps network control logic centralized.

– Yet, provides control plane scalability.

• It synchronizes network-wide view amongcontrollers.

– By capturing, propagating & playing a few ctrl events.

• It guarantees bounded window of inconsistency:

– If network changes occur at a rate < 1000 event/sec.

• It is resilient to network partitioning.

• It enables interconnection of OpenFlow islands.

April 27, 2010 HyperFlow - University of Toronto 12



Current/Future Work

• We designed OpenBoot to bootstrap controller state 
very quickly.

– Uses checkpoint/restart + event logging

– Enables rapid recovery from controller failures.

– Enables adaptive control plane scaling.

– Enables continuous control plane operation.

• Improvements to the publish/subscribe system.

• Evaluation on a large testbed with realistic data.

April 27, 2010 HyperFlow - University of Toronto 13



Thanks for your attention.

Questions?

amin@cs.toronto.edu


