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Abstract

IP network traffic is commonly measured at multiple points
in order that all traffic passes at least one observation point.
The resulting measurements are subsequently joined for
network analysis.

Many network management applications use measured
traffic rates (differentiated into classes according to some
key) as their input data. But two factors complicate the
analysis. Traffic can be represented multiple times in the
data, and the increasing use of sampling during measure-
ment means some classes of traffic may be poorly repre-
sented.

In this paper, we show how to combine sampled traffic
measurements in way that addresses both of the above is-
sues. We construct traffic rate estimators that combine data
from different measurement datasets with minimal or close
to minimal variance. This is achieved by robust adaptation
to the estimated variance of each constituent. We motivate
the method with two applications: estimating the interface-
level traffic matrix in a router, and estimating network-level
flow rates from measurements taken at multiple routers.

1 Introduction

1.1 Background

The increasing speed of network links makes it infeasible to
collect complete data on all packets or network flows. This
is due to the costs and scale of the resources that would
be required to accommodate the data in the measurement
infrastructure. These resources are (i) processing cycles at
the observation point (OP) which are typically scarce in a
router; (ii) transmission bandwidth to a collector; and (iii)
storage capacity and processing cycles for querying and
analysis at the collector.

These constraints motivate reduction of the data.
Of three classical methods—filtering, aggregation and
sampling—the first two require knowing the traffic features
of interest in advance, whereas only sampling allows the re-

tention of arbitrary detail while at the same time reducing
data volumes. Sampling also has the desirable property of
being simple to implement and quick to execute, giving it
an advantage over recently developed methods for comput-
ing compact approximate aggregates such as sketches [14].

Sampling is used extensively in traffic measurement.
sFlow [17] sends packet samples directly to a collector. In
Trajectory Sampling, each packet is selected either at all
points on its path or none, depending on the result of apply-
ing a hash function to the packet content [3]. In Sampled
NetFlow [1], packets are sampled before the formation of
flow statistics, in order to reduce the speed requirements
for flow cache lookup. Several methods focus measure-
ments on the small proportion of longer traffic flows that
contain a majority of packets. An adaptive packet sam-
pling scheme for keeping flow statistics in routers which
includes a binning scheme to keep track of flows of differ-
ent lengths is proposed in [7]. Sample and Hold [8] samples
new flow cache instantiations, so preferentially sampling
longer flows. RATE [12] keeps statistics only on those
flows which present successive packets to the router, and
uses these to infer statistics of the original traffic. Packet
sampling methods are currently being standardized in the
Packet Sampling (PSAMP) Working Group of the Internet
Engineering Task Force [15]. Flow records can themselves
be sampled within the measurement infrastructure, either at
the collector, or at intermediate staging points. Flow-size
dependent sampling schemes have been proposed [4, 5, 6]
to avoid the high variance associated with uniform sam-
pling of flows with a heavy tailed length distribution.

1.2 Motivation

Multiple Traffic Measurements. This paper is motivated
by the need to combine multiple and possibly overlapping
samples of network traffic for estimation of the volumes or
rates of matrix elements and other traffic components. By a
traffic component we mean a (maximal) set of packets shar-
ing some common property (such as a flow key), present
in the network during a specified time frame. Traffic OPs
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can be different routers, or different interfaces on the same
router. Reasons for taking multiple measurements include:
(i) all traffic must pass at least one OP; (ii) measurements
must be taken at a specified set of OPs; and (iii) network
traffic paths must be directly measured.

Sampling and Heterogeneity. Traffic analysis often re-
quires joining the various measurement datasets, while at
the same time avoiding multiple counting. Sampling in-
troduces further complexity since quantities defined for the
original traffic (e.g. traffic matrix elements) can only be es-
timated from the samples. Estimation requires both renor-
malization of traffic volumes in order to take account of
sampling, and analysis of the inherent estimator variability
introduced through sampling.

Depending on the sampling algorithm used, the propor-
tion of traffic sampled from a given traffic component may
depend on (i) the sampling rate (e.g. when sampling uni-
formly) and/or (ii) the proportion of that component in the
underlying traffic (e.g. when taking a fixed number of sam-
ples from a traffic population). Spatial heterogeneity in
traffic rates and link speeds presents a challenge for esti-
mating traffic volumes, since a traffic component may not
be well represented in measurements all points, and sam-
pling rates can differ systematically across the network. For
example, the sampling rate at a lightly loaded access link
may be higher than at a heavily loaded core router. Changes
in background traffic rates (e.g. due to attacks or rerouting)
can cause temporal heterogeneity in the proportion of traf-
fic sampled.

Combining Estimates. This paper investigates how best
to combine multiple estimates of a given traffic component.
Our aim is to minimize the variability of the combined es-
timate. We do this by taking a weighted average of the
component estimates that takes account of their variances.
Naturally, this approach requires that the variance of each
component is known, or can at least be estimated from the
measurements themselves. A major challenge in this ap-
proach is that inaccurate estimates of the variance of the
components can severely impair the accuracy of the combi-
nation. We propose robust solutions that adapt to estimated
variances while bounding the impact of their inaccuracies.

What are the advantages of adapting to estimated vari-
ances, and combining multiple estimates? Why not simply
use the estimate with lowest variance? The point of adapta-
tion is that the lowest variance estimate cannot generally be
identified in advance, while combining multiple estimates
gains significant reduction in variance.

The component estimators are aggregates of individual
measurements. Their variances can be estimated provided
the sampling parameters in force at the time of measure-
ment are known. This is possible when sampling parame-
ters are reported together the measurements, e.g., as is done
by Cisco Sampled NetFlow [2]. The estimated variance is
additive over the measurements. This follows from a sub-

tle but important point: we treat the underlying traffic as
a single fixed sample path rather than a statistical process.
The only variance is due to sampling, which can be imple-
mented to be independent over each packet or flow record.
Consequently, variance estimates can be aggregated along
with the estimates themselves, even if the underlying sam-
pling parameters change during the period of aggregation.

We now describe two scenarios in which multiple over-
lapping traffic measurement datasets are produced, in
which our methodology can be usefully applied. We also
mention a potential third application, although we do not
pursue it in this paper.

1.3 Router Matrix Estimation

Router Measurements and Matrix Elements. Appli-
cations such as traffic engineering often entail determin-
ing traffic matrices, either between ingress-egress interface
pairs of a router, or at finer spatial scales, e.g., at the routing
prefix level or subnet level matrices for traffic forwarded
through a given ingress-egress interface pair. A common
approach to traffic matrix estimation is for routers to trans-
mit reports (e.g. packet samples or NetFlow statistics) to
a remote collector, where aggregation into matrix elements
(MEs) is performed.

Observation Points and Sampling Within a Router.
The choice of OPs within the router can have a great effect
on the accuracy of traffic matrices estimated from samples.
Consider the following alternatives:

• Router-level Sampling: all traffic at the router is
treated as a single stream to be sampled. We assume
ingress and egress interface can be attributed to the
measure traffic, e.g., as reported by NetFlow.

• Unidirectional Interface-level Sampling: traffic is
sampled independently in one direction (incoming or
outgoing) of each interface.

• Bidirectional Interface-level Sampling: traffic is sam-
pled independently in both interface directions.

Comparing Sampling at the Observation Points. Ac-
curate estimation of an ME requires sufficiently many flows
to be sampled from it. For example, in uniform sampling
with probability p, the relative standard deviation for un-
biased estimation of the total bytes of n flows behaves
roughly as ∼ 1/

√
np. We propose two classes of impor-

tant MEs:

(i) Large matrix elements: these form a significant propor-
tion of the total router traffic.

(ii) Relatively large matrix elements: these form a signif-
icant proportion of the traffic on either or both of their
ingress or egress router interfaces. (We use the terms small
and relatively small in an obvious way).
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Gravity Model Example. In this case the ME mxy from
interface x to interface y is proportional to M in

x Mout
y where

M in and Mout denote the interface input and output totals;
see [13, 18]. The large MEs mxy are those for which both
M in

x and Mout
y are large. The relatively large MEs are those

for which either M in
x or Mout

y (or both) are large.

Router level sampling is good for estimating large MEs,
but not those that are only relatively large at the router
level. This is because the sampling rate is independent of its
ingress and egress interfaces. In the gravity model, router
sampling is good for estimating the “large-to-large” MEs,
(i.e. those mxy for which both M in

x and Mout
y are large)

but not good for estimating “large-to-small” and “small-to-
large” (and “small-to-small”) MEs.

Unidirectional interface-level sampling offers some im-
provement, since one can use a higher sampling rate on
interfaces that carry less traffic. However, unidirectional
sampling, say on the ingress direction, will not help in get-
ting sufficient samples from a small interface-to-interface
traffic ME whose ingress is on an interface that carries a
high volume of traffic. In the gravity model, “large-to-
small” (and “small-to-small”) MEs would be problematic
with ingress sampling.

Only bidirectional interface-level sampling can give a
representative sample of small but relatively large MEs.
Two different estimates of the MEs could be formed, one
by selecting from an ingress interface all samples destined
for a given egress interface, and one by selecting from an
egress interface all samples from a given input interface.
The two estimates are then combined using the method pro-
posed in this paper.

The effectiveness of router or interface level sampling
for estimating large or relatively large MEs depends on the
sampling rates employed and/or the resources available for
storing the samples in each case. If router level and in-
terface level sampling are employed, three estimates (from
router, ingress and egress sampling) can be combined. In
both the three-way and two-way combinations, no prior
knowledge is required of sampling parameters or the sizes
of the MEs or their sizes relative to the traffic streams from
which they are sampled.

Resources and Realization. The total number of sam-
ples taken is a direct measure of the memory resources em-
ployed. We envisage two realizations in which our analysis
is useful. Firstly, for router based resources, the question
is how to allocate a given amount of total router memory
between router based and interface based sampling. The
second realization is for data collection and analysis. Al-
though storage is far cheaper than in the router case, there
is still a premium on query execution speed. Record sam-
pling reduces query execution time. The question becomes
how many samples of each type (interface or router) should
be used by queries.

1.4 Network Matrix Estimation Problem

The second problem that we consider is combining mea-
surements taken at multiple routers across a network. One
approach is to measure at all edge interfaces, i.e., access
routers and peering points. Except for traffic destined
to routers themselves, traffic is sampled at both ingress
and egress to the network. Estimating traffic matrices be-
tween edges is then analogous to the problem of estimating
ingress-egress MEs in a single router from bidirectional in-
terface samples.

Once measurement and packet sampling capabilities be-
come standardized through the PSAMP and Internet Proto-
col Flow Information eXport (IPFIX) [11] Working Groups
of the IETF, measurements could be ubiquitously available
across network routers. Each traffic flow would potentially
be measured at all routers on its path. With today’s path
lengths, this might entail up to 30 routers [16]. However,
control of the total volume of data traffic may demand that
the sampling rate at each OP be quite low; estimates from
a single OP may be quite noisy. The problem for analysis
is how to combine these noisy estimates to form a reliable
one.

1.5 Parallel Samples

Multiple sampling methods may be used to match differ-
ent applications to the statistical features of the traffic. For
example, the distribution of bytes and packet per flow has
been found to be heavy-tailed; see [10]. For this reason,
sampling flow records with a non-uniform probability that
is higher for longer flows leads to more accurate estimation
of the total traffic bytes than uniform sampling; see [4]. On
the other hand, estimates of the number of flows are more
accurate with uniform sampling. When multiple sampling
methods are used, it is desirable to exploit all samples gen-
erated by both methods if this reduces estimator variance.

1.6 Outline

Section 2 describes the basic model for traffic sampling,
then describes a class of minimum variance convex com-
bination estimators. The pathologies that arise when using
these with estimated variance are discussed. Section 3 pro-
poses two regularized estimators that avoid these patholo-
gies. Section 4 recapitulates two closely related sam-
ple designs for size dependent sampling of flow records,
and applies the general form of the regularized estimators
from Section 3 in each case. The remainder of the pa-
per is concerned with experimental evaluation of the reg-
ularized size-dependent estimators for combining samples
of flow records. Section 5 evaluates their performance in
the router interface-level traffic matrix estimation problem
of Section 1.3, and demonstrates the benefits of including
interface-level samples in the combination. Section 6 eval-
uates performance of the regularized estimators in the net-
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work matrix estimation problem of Section 1.4 and shows
how they provide a robust combination estimates under
wide spatial variation in the underlying sampling rate. We
conclude in Section 7.

2 Combining Estimators

2.1 Models for Traffic and Sampling

Consider n traffic flows labelled by i = 1, 2, . . . , n, with
byte sizes xi. We aim to estimate the byte total X =∑n

i=1 xi. Each flow i can be sampled at one of m OPs,
giving rise to estimators X̂1, . . . X̂m of X as follows. Let
pij > 0 be the probability that flow i is selected at OP j. In
general pij will be a function of the size xi, while its depen-
dence on j reflects the possible inhomogeneity of sampling
parameters across routers.

Let χij be the indicator of selection, i.e., χij = 1 when
the flow i is selected in measurement j, and 0 otherwise.
Then each x̂ij = χijxi/pij is an unbiased estimator of xi,
i.e., E[x̂ij ] = xi for all measurements j. Renormalization
by pij compensates for the fact that the flow may not be
selected. Clearly X̂j =

∑n
i=1 x̂ij is an unbiased estimator

of X . Note the xi are considered deterministic quantities;
the randomness in the X̂i arises only from sampling. We
assume that the sampling decisions (the χij) for each flow
i at each of the m OPs are independent; it follows that the
X̂j are independent.

2.2 Variance of Combined Estimators

In order to use all the information available concerning X ,
we form estimators of X that depend jointly on the m esti-
mators X̂1, . . . , X̂m. We focus on convex combinations of
the X̂j , i.e., estimators of the form

X̂ =
m∑

j=1

λjX̂j , with λj ∈ [0, 1],
m∑

j=1

λj = 1. (1)

We allow the coefficients λj to be random variables than
can depend on the x̂ij . This class of models is reasonably
amenable to analysis, and the statistical properties of its
members are relatively easy to understand.

Each choice of the coefficients λ = {λj : j =
1, . . . , m} gives rise to an estimator X̂ . Which λ should
be used? To evaluate the statistical properties of the esti-
mators (1), we focus on two properties: bias and variance.
We now describe these for several cases of the estimator
(1). Let vj denote the variance Var(X̂j), i.e,

vj = Var(X̂j) =
n∑

i=1

Var(x̂ij) =
n∑

i=1

x2
ij(1 − pij)

pij
(2)

2.3 Average Combination Estimator

Here λj = 1/m hence X̂ = m−1
∑m

j=1 X̂j . This
estimator is unbiased since the λj are independent :
E[X̂] =

∑m
j=1 λjE[X̂j ] = X . It has variance Var(X̂) =

m−2
∑m

j=1 vj . This estimator is very simple to compute.

However, it suffers from sensitivity of Var(X̂) to one con-
stituent estimator X̂j having large variance vj , due to. e.g.,
a small sampling rate. The average estimator is special case
of the following class of estimator.

2.4 Independent {λj} and {X̂j}.

When λj is independent of X̂j , X̂ is unbiased, since

E[X̂] = E[E[X̂|λ]] = XE[
m∑

j=1

λj ] = X (3)

Furthermore, elementary algebra shows that

Var(X̂) =
m∑

j=1

E[λ2
j ]vj (4)

The RHS of (4) can be rewritten as

m∑

j=1

E[λ2
i ]vj =

m∑

j=1

E[(λj − Λj(v))2]vj + V0(v) (5)

where

Λj(v) =
1/vj∑m

j′=1 1/vj′
, V0(v) = 1/

m∑

j=1

v−1
j (6)

Eq. (5) shows that the variance of X̂ is minimized by min-
imizing the total mean square error in estimating the Λj

by λj . Then V0(v) is the minimum variance that can be
attained. The form of Λj says that the more reliable esti-
mates, i.e., those with smaller variance, have a greater im-
pact on the final estimator.

2.5 Estimators of Known Variance

For known variances vj , Var(X̂) is minimized by

λj = Λj(v) (7)

We do not expect the vi will be known a priori. For general
pij it is necessary to know all xi in order to determine vi.
However, in many applications, only the sizes xi of those
flows actually selected during sampling will be known. We
now mention two special cases in which the variance is at
least implicitly known.
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2.6 Spatially Homogeneous Sampling

Each flow is sampled with the same probability at each OP,
which may differ between flows: pij = pi for some pi and
all j. Then the vi are equal and we take λj = Λj(v) =
1/m. Hence for homogeneous sampling, the average es-
timator from Section 2.3 is the minimum variance convex
combination of the X̂j .

2.7 Pointwise Uniform Sampling

Flows are sampled uniformly at each OP, although the
sampling probability may vary between points: pij = qj

for some qj and all i. Then vj = (
∑n

i=1 x2
i )uj where

uj = (1 − qj)/qj . The dependence of each vj in the {xi}
is a common multiplier which cancels out upon taking the
minimum variance convex combination X̂ using

λj = Λj(v) = Λj(u) (8)

2.8 Using Estimated Variance

When variances are not know a priori, they may sometimes
be estimated from the data. For each OP j, and each flow
i, the random quantity

v̂ij = χijx
2
i (1 − pij)/p2

ij (9)

is an unbiased estimator of the variance vij = Var(x̂ij) in
estimating xi by x̂ij . Hence

V̂j =
n∑

i=1

v̂ij (10)

is an unbiased estimator of vj . Put another way, we add an
amount x2

i (1 − pij)/p2
ij to the estimator V̂j whenever flow

i is selected at observation point j.
Note that V̂j and X̂j are dependent. This takes us out of

the class of estimators with independent {λj} and {X̂j},
and there is no general simple form for the Var(X̂) analo-
gous to (4). An alternative is to estimate the variance from
an independent set of samples at each OP j. This amounts
to replacing χij by an independent identically distributed
sampling indicator {χ′

ij} in (9). With this change, we know
from Section 2.4 that using

λj = Λj(V̂ ) (11)

will result in an unbiased estimator X̂ in (1). But the esti-
mator will not in general have minimum possible variance
V0(v) since λj is not necessarily an unbiased estimator of
Λj(v).

2.9 Some Ad Hoc Approaches

A problem with the foregoing is that an estimated variance
V̂j could be zero, causing Λj(V̂ ) to be undefined. On the

other hand, the average estimator is susceptible to the effect
of high variances. Some ad hoc fixes include:
AH1: Use λj = Λj(V̂ ) on the subset of sample sets j with
non-zero estimated variance. If all estimated variances are
zero, use the average estimator.
AH2: Use the non-zero estimate of lowest estimated vari-
ance. But these estimators still suffer from a potentially far
more serious pitfall: the impact of statistical fluctuations
in small estimated variances. This is discussed further in
Section 2.10.

2.10 Discussion

Absence of Uniformity and Homogeneity. We have seen
in Section 2.6 that the average estimator is the minimum
variance convex combination only when sampling is ho-
mogeneous across OPs. In Section 2.7 we saw that we can
form a minimum variance estimator without direct knowl-
edge of estimator variance only when sampling is uniform.
In practice, we expect neither of these conditions to hold
for network flow measurements.

Firstly, sampling rates are likely to vary according to
monitored link speed, and may be dynamically altered in
response to changes in traffic load, such as those gener-
ated by rerouting or during network attacks. In one pro-
posal, [7], the sampling rate may be routinely changed on
short time scales during measurement, while the emerging
PSAMP standard is designed to facilitate automated recon-
figuration of sampling rates. Secondly, the recognition of
the concentration of traffic in heavy flows has led to sam-
pling schemes in which the sampling probability of a flow
(either of the packets that constitute it, or the complete flow
records), depends on the flow’s byte size rather than being
uniform; see [4, 5, 6, 8, 12]. Finally, in some sampling
schemes, the effective sampling rate for an item is a ran-
dom quantity that depends on the whole set of items from
which it is sampled, and hence varies when different sets
are sampled from. Priority sampling is an example; see
Section 4.

Pathologies of Small Estimated Variances. Using es-
timated variances brings serious pitfalls. The most prob-
lematic of these is that samples taken with a low sampling
rate may have estimate variance close to or even equal to
zero. Even if the zero case is excluded in ad hoc man-
ner, e.g. as described in Section 2.9, a small and unreliable
sample may spuriously dominate the estimate because its
estimated variance happens to be small. Some form of reg-
ularization is required in order to alleviate this problem. A
secondary issue for independent variance estimation is the
requirement to maintain a second set of samples, so dou-
bling resource requirements.

In the next sections we propose a regularization for
variance estimation in a recently proposed flow sampling
scheme that controls the effect of small estimated vari-
ances, even in the dependent case.
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3 Regularized Estimators

We propose two convex combination estimators of the type
(1) using random coefficients {λj} of the form (11) but
regularizing or bounding the variances to control the impact
of small estimated variances. Both estimators take the form∑

j λjX̂j with λj = Λj(Û) for some estimated variances

Û , while they differ in which Û is used.
Both estimators are characterized by the set of quantities

τ , where for each OP j:

τj = max
i: pij<1

(xi/pij) (12)

The τj may be known a priori from a given functional de-
pendence of pij on xi, or it may only be known from the
measurements themselves.

3.1 Regularized Variance Estimator

The first estimator ameliorates the impact of small underes-
timated variances, while still allowing combination to take
account of different but well-estimated variances. Note that
the estimated variance v̂ij obeys the bound

v̂ij ≤ χijτ
2
j (13)

This suggests that we can ameliorate the effects of random
exclusion of a flow from a sample by adding a small mul-
tiple s of τ2

j to each variance estimator V̂j . This represents
the scale of uncertainty in variance estimation. The ad-
dition has little effect when the estimated variance arises
from a large number of samples, but tempers the effect of a
small sample for which the variance happens to be small or
even zero. With this motivation, the regularized variance
estimator is X̂ =

∑
j λjX̂j with

λj = Λj(V̂
′
) where V̂ ′

j = V̂j + sτ2
j (14)

The corresponding variance estimate for this convex com-
bination is V̂ =

∑m
j=1 λ2

j V̂j . The special case s = 0 is just
the estimator from Section 2.8.

3.2 Bounded Variance Estimator

The second estimator uses a similar approach on the actual
variance vij , which obeys the bound:

vij ≤ xiτj (15)

If this bound were equality, we would then have Vj = Xτj ,
in which case, the minimum variance estimator would be
the bounded variance estimator, namely, X̂ =

∑
j λjX̂j

with λj = Λj(Xτ) = Λ(τ). The corresponding variance
estimate for this convex combination is V̂ =

∑m
j=1 λ2

j V̂j .
The strength of this approach is that the variance estimate
can take account of knowledge of inhomogeneity in the

sample rates (as reflected by inhomogeneity in the τj) while
not being subject to statistical fluctuations in variance esti-
mates.

Uniform and Homogeneous Sampling. Note that uni-
form and homogeneous sampling fall into this framework
already (with equality in (15)), since in both cases the de-
pendence of the variances vj on the objects xi to be sam-
pled is a common factor over all OPs j, which is hence
eliminated from the coefficients λj .

Small Sampling Probabilities. The tightness of the
bound (15) depends on the functional form of pij . One par-
ticular case is when sampling probabilities are small. For
this case we propose a linear approximation:

pij = xi/τj + O((xi/τj)2) (16)

This yields approximate equality in (15), provided all xi are
small compared with τj . We give an example of a sample
design with this property in Section 4.

3.3 Confidence Intervals

We form approximate conservative confidence intervals for
X̂ by applying a regularization of the type (14). Thus the
upper and lower confidence intervals are

X̂± = X̂ ± s(V̂ + sτ2) (17)

where s is the target number of standard deviations away
from the mean.

4 Size Dependent Flow Sampling

The remainder of the work in this paper will focus on
two closely related schemes for sampling completed flow
records. These are threshold sampling [4] and priority
sampling [6]. We briefly recapitulate these now.

4.1 Threshold Sampling

For a threshold z > 0, a flow of size x is sampled with
probability pz(x) = min{1, x/z}. Thus flows of size
x ≥ z are always sampled, while flows of size x < z are
sampled with probability proportional to their size. This al-
leviates the problem of uniform sampling, that byte estima-
tion can have enormous variance due to random selection
or omission of large flows. In threshold sampling, all flows
of size at least z are always selected.

Starting with a set of flows with sizes {xi} as before,
we form an unbiased estimator X̂ of X =

∑n
i=1 xi using

the selection probabilities pi = pz(xi). (In this section we
suppress the index j of the OP). The estimator of X from a
single OP takes the form X̂ takes the specific form

X̂ =
n∑

i=1

χixi/pz(xi) =
n∑

i=1

χi max{xi, z} (18)
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Threshold sampling is optimal in the sense that it mini-
mizes the cost Cz = Var(X̂) + z2N where N =

∑n
i=1 pi

is the expected number of samples taken. This cost ex-
presses the balance between the opposing goals of reducing
the number of samples taken, and reducing the uncertainty
in estimating X . The value of z determines the relative
importance attached to these goals.

Applying the general formula (2), the variance of the es-
timate X̂ from a single OP is

Var(X̂) =
n∑

i=1

xi max{z − xi, 0} (19)

which has unbiased estimator

V̂ =
n∑

i=1

χiz max{z − xi, 0} (20)

In threshold sampling, inhomogeneity across OPs arises
through inhomogeneity of the threshold z.

4.2 Priority Sampling

Priority sampling provides a way to randomly select ex-
actly k of the n flows, weighted by flow bytes, and then
form an unbiased estimator of the total bytes X . The algo-
rithm is as follows. For each flow i, we generate a random
number αi uniformly distributed in (0, 1], and construct its
priorities ẑi = xi/αi. We select the k flows of highest
priority. Let ẑ′ denote the (k + 1)st highest priority. At a
single OP, we for the estimate

X̂ =
n∑

i−1

χi max{xi, ẑ
′} (21)

of the total bytes X . Here χi is the indicator that flow i is
amongst the k flows selected. X̂ is unbiased; see [6].

For priority sampling, the variance of X̂ takes a similar
form to that of threshold sampling:

Var(X̂) =
n∑

i=1

xiE[max{ẑ′ − xi, 0}] (22)

which has unbiased estimator

V̂ =
n∑

i=1

χiẑ
′ max{ẑ′ − xi, 0} (23)

Although sampling of flows is dependent, it turns out that
the unbiased estimates x̂i = χi max{ẑ, xi} of the bytes of
different flows have zero covariance.

In priority sampling, inhomogeneity between observa-
tion points arises not only through inhomogeneity of the
number of flows k selected, but also through the back-
ground traffic. Typically we want to estimate the total bytes

not of all sampled flows, but only of a selection of them that
share some property of interest, e.g., a specific source and
destination. The probability that a given interesting flow
will be amongst the k flows selected, depends also on the
sizes of all flows in the background traffic, which gener-
ally varies between different OPs. Threshold sampling is
independent between flows.

4.3 Threshold and Priority Compared

The estimator (21) appears quite similar to that for thresh-
old sampling (18), except that the role of the threshold z is
played by the random quantity ẑ′. In fact, the relationship
is deeper: one can show that, conditioned on the threshold
ẑ′, the selection probabilities for each flow minimize a cost
analogous to Cz .

For applications, we see that threshold sampling is well
suited to streaming applications when buffer space is ex-
pensive (e.g., at a router) since each object is sampled inde-
pendently. Priority sampling is able to constrain the num-
ber of samples taken, at the cost of maintaining a buffer
of k candidate samples during selection. It is well suited
to applications where buffering is less expensive (e.g., in a
data aggregator or database)

4.4 Regularized Variance Estimators

Threshold and priority sampling both give rise to regular-
ized estimators as described in Section 3. Consider first
threshold sampling and let zj be the sampling threshold
in force at OP j. Then the quantity τj in (12) is just zj .
Moreover, pij is approximately linear in xi, the sense of
(16), and hence the bounded variance estimator is expected
to perform reasonably for flows whose size xi are small
compared with the zj . For priority sampling, we use the
random thresholds z′j in place of the zj . Although this in-
troduces additional variability; in practice priority approxi-
mates threshold sampling closely for large number of sam-
ples. In the next sections we show this heuristic performs
well in experiments.

5 Experiments: Router Matrix

This section applies our method to traffic measurement at
routers. As discussed in Section 1.3, while router level
sampling captures large MEs accurately, interface level
sampling offers the opportunity to accurately sample not
just the relatively large ones MEs, i.e., the largest amongst
those seen at each interface. This is particularly impor-
tant for a method such as priority sampling where, in order
to provide a hard constraint on the use of measurement re-
sources, only a fixed number of samples are taken in a given
time period, There is a trade-off: if all resources were de-
ployed for interface sampling, then not all larger flows on
some heavily used interfaces might be sampled.
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1 2 3 4 5 6 7 8
0.0004 0.04 0.1 0.004 0.03 0.8 0.02 0

1 0 0 0 0 0 0 0 0 0
2 0.5 8e-05 0 0.0007 0 0 0.5 0.0001 0
3 0.01 7e-05 0.0002 0 0 0.001 0.01 0.0004 0
4 0 0 0 0 0 0 0 0 0
5 0.2 2e-05 0 0.05 0.003 3e-05 0.1 0.006 0
6 0.3 0.0002 0.04 0.08 0.001 0.02 0.2 0.01 0
7 0.01 2e-05 0.003 0.0004 5e-06 0.006 0.0007 3e-05 0
8 1e-06 1e-06 0 0 0 0 0 0 0

Table 1: Router matrix elements for CAMPUS, with row and column sums, normalized by total bytes

This motivates using a combined estimator. In this ap-
plication we explicitly want to take account of estimated
variance, so we use the regularized variance estimator of
Section 3. In experiments using real flow data taken at two
routers, we find that:
(i) For a given total number of samples, the regularized es-
timator is more accurate than its individual consistent esti-
mators or averages thereof.
(ii) The regularized estimator is more accurate than the ad
hoc estimator AH1 when estimation error is large.

5.1 Router Data and Traffic Matrices

The data from this experiment comprised sampled NetFlow
records gathered from two routers in a major ISP network.
These record the total bytes of the sampled flow packets,
and the router input and output interfaces traversed by the
flow. Thus, it is possible to map each flow onto the appro-
priate router to router traffic matrix.

The first dataset, CAMPUS comprises 16,259,841 Net-
Flow records collected from a backbone router in a corpo-
rate intranet during 24 hour period. The active flow timeout
was 30 minutes. The maximum size was 3.94 GB and av-
erage size 20.4 kB. The router had 8 interfaces. Table 1
shows the interface MEs for a 10 minute period, normal-
ized by total bytes. Note the non-zero MEs range over six
orders of magnitude.

The second dataset, DISTRIBUTION comprises
1,765,477 NetFlow records collected during 1 hour
from a distribution router in an ISP network. The active
flow timeout was 1 minute, with maximum flow size 3.97
MB and average 1.4 kB. The router had 236 interfaces
(and subinterfaces), whose line rates ranged from 622
MBps (OC-12) down to 1.5 Mbps (T1). Only 1971 MEs
are non-zero. We represent these in Figure 1, where
the interfaces have been sorted in decreasing order of
total input and output bytes in the 1 hour period. The
distribution of traffic per interface is highly skewed: the
busiest interface carries 46% of the bytes, while the 10
busiest together carry 94%.
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Figure 1: Matrix Elements of Dataset DISTRIBUTION. In-
terfaces are ordered by total bytes

5.2 Notation for Estimators

input and output denote the byte estimators de-
rived input and output interface samples respectively,
while router denote the estimator derived from all
flows through the router, undifferentiated by inter-
face. average i,o,r averages input, output and
router, while average i,o averages only input and
output. adhoc i,o,r combines the estimators input,
output and router as described in AH1 of Sec-
tion 2.9, while regular i,o,r is the corresponding reg-
ularized variance estimator from Section 3. bounded
is the bounded variance estimator. In priority sampling,
regular i,o,r(ki, ko, kr) denotes the regularized estimator
in which ki and ko priority samples were taken and each in-
put and output interface respectively, and kr were taken at
the router level.

A Sample Path Comparison. We compare the perfor-
mance of the various estimators on several of the CAMPUS

MEs from Table 1, as a function of the number of priority
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Figure 2: Estimator Comparison: input, output, router, average i,o,r and regular i,o,r, for 4 matrix elements
from Table 1 representing various relative volumes of the total bytes.

samples k per interface direction. The estimated MEs (nor-
malized through division by the true value) are displayed in
Figure 2 for k roughly log-uniformly distributed between 1
and 1000. Perfect estimation is represented by the value
1. In this evaluation we selected all flows contributing to
a given ME, then progressively accumulated the required
numbers k of samples from the selection. For this reason,
the variation with k is relatively smooth.

There are N = 8 interfaces. Each of the single esti-
mators was configured using the same number of sample
slots, i.e., input(k), output(k) and router(2Nk).
We compare these first; see Figure 2. For the smaller MEs
(8→1, 6→3 and 6→5), input and output are notice-
ably more accurate than router: the relatively large MEs
are better sampled at the interface level than at the router
level. average i,o,r(k, k, 2Nk) performs poorly because
of the contribution of router, and also because it driven
down by the zero estimation from input and output
when the number of samples k is small; see, e.g., the 8 → 1
ME. Only for a large ME (2→6, constituting about half
the traffic in the router) does router accuracy exceed the
worst of the interface methods. Consequently, the accuracy
of average i,o,r is better in this case too.

When there are noticeable differences between the three
single estimators, regular i,o,r(k, k, 2Nk) roughly fol-
lows the most accurate one. In the 2 → 6 ME,
regular i,o,r follows input most closely while in the
6 → 3 and 6 → 5 MEs, it follows output.

5.3 Confidence Intervals

Recall that each estimation method produces and estimate
of the variance of the ME estimator. This was used to form
upper and lower confidence intervals in Section 3.3. Fig-
ure 3 shows upper and lower confidence limits for estimat-
ing the MEs of CAMPUS using the same router interfaces
as in Figure 2. These use (17) with standard deviation pa-
rameter s = 2.

8→1 is a special case. input has no estimated error
when k ≥ 2. As can be seen from Table 1, 8→1 is the
only ME with ingress at interface 8. It comprises 2 flows,
so the estimated variance and sampling threshold are 0 for
k ≥ 2. The other methods perform poorly (their confi-
dence bounds are off the chart), since neither output nor
router samples this very small flow.
regular i,o,r displays the best overall performance in

Figure 2, i.e., it tends to have the smallest divergence from
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the true value. Figure 3 show that the estimated estima-
tor variance tends to be the smallest too, giving narrower
confidence intervals than the other methods.

Estimator Accuracy for Fixed Resources. Now we
perform a more detailed comparison of the estimators with
the DISTRIBUTION dataset, using constant total sampling
slots across comparisons. The router has N = 236 inter-
faces, each bidirectional. For a given number k of sampling
slots per interface direction, we compare router(4Nk),
input(4k), output(4k), average i,o,r(k, k, 2Nk),
average i,o(2k, 2k), adhoc i,o,r(k, k, 2Nk) and
regular i,o,r(k, k, 2Nk).

For k values of 16 and 128, and each estimation method,
we sorted the relative errors for each ME in increasing
order, and plotted them as a function of rank in the left
hand column of Figure 4. (The average flow sampling
rates are approximately 1 in 234 for k = 16 and 1 in
30 for k = 128). The curves have the following qualita-
tive features. Moving from left to right, the first feature,
present only in some cases, is when the curves start only
at some positive rank, indicating all MEs up to that rank
have been estimated either with error smaller than the res-
olution 10−5. The second feature is a curved portion of
relative errors smaller than 1. The third feature is a flat
portion of relative errors, taking the value 1 for the indi-
vidual, adhoc i,o,r and regular i,o,r methods, and 1/2
and 1/3 for average i,o and average i,o,r respectively.
This happens when a ME has no flows sampled by one of
the individual estimators. The final feature at the right hand
side are points with relative errors ε > 1, indicating MEs
that have been overestimated by a factor ε + 1. We make
the following observations:
(i) Interface sampling (input and output) and
regular i,o,r and adhoc i,o,r are uniformly more accu-
rate that average i,o,r or router.
(ii) Interface sampling performs better than adhoc i,o,r or
regular i,o,r when errors are small. When an ME is
very well estimated on a given interface, any level infor-
mation from another interface makes the estimate worse.
But when the best interface has a large estimation error,
additional information can help reduce it: regular i,o,r

and adhoc i,o,r become more accurate.
(iii) The average-based methods perform poorly; we have
argued that they are hobbled by the worst performing com-
ponent. For example, average i,o performs worse than
input and output since typically only one of these
methods accurate for a relatively large ME.
(iv) regular i,o,r and adhoc i,o,r have similar perfor-
mance, but when there are larger errors, they are worse on
average for adhoc i,o,r.
(v) As expected, estimation accuracy increases with
the number of samples k, although average i,o and
average i,o,r are less responsive.

Although these graphs show that regular i,o,r and

adhoc i,o,r are more accurate than other estimators, is it
not immediately evident that this is due to the plausible
reasons stated earlier, namely, the more accurate inference
of relatively larger flows on smaller interfaces. Also it is
not clear the extent to which interface sampling can pro-
duce sufficiently accurate estimates at reasonable sampling
rates. For example, for k=128 (roughly 1 in 30 sampling of
flow records on average) about 25% of the MEs have rela-
tive errors 1 or greater. We need to understand which MEs
are inaccurately estimated.

To better make this attribution we calculate a scaled ver-
sion of a MEs as follows. Let Q denote the set of inter-
faces, and let mxy denote the generic ME from interface
x to interface y. Let M in and Mout denote the interface
input and output totals, so that M in

x =
∑

y∈Q mxy and
Mout

y =
∑

x∈Q mxy . If eyx is the relative error in estimat-
ing mxy then we write the scaled version as

e′xy = exy max{mxy/M in
x ,mxy/Mout

y } (24)

Here mxy/M in
x and mxy/Mout

y are the fractions of the to-
tal traffic that mxy constitutes on it input and output inter-
faces. Heuristically, e′xy deemphasizes errors in estimating
relatively small MEs.

We plot the corresponding ordered values of the errors
e′xy in the right hand column of Figure 4. Note:
(i) regular i,o,r and adhoc i,o,r are uniformly more ac-
curate than other methods, except for low sampling rates
and low estimation errors, in which case they perform about
the same as the best of the other methods;
(ii) the accuracy advantage of regular i,o,r and
adhoc i,o,r is more pronounced at larger sampling rates;
(iii) regular i,o,r and adhoc i,o,r display neither the
third nor fourth features described above, i.e., no flat por-
tion or errors greater than 1. This indicates that these meth-
ods are successful in avoiding larger estimation errors for
the relatively large MEs, while for the other methods some
noticeable fraction of the relatively large MEs are badly es-
timated.

We can also get a picture of the relative performance of
the methods by looking at the larger estimation errors of the
whole traffic matrix. As examples, we show in Figure 5 un-
scaled relative errors for k = 128 samples per interface di-
rection, for average i,o and regular i,o,r. Errors have
been truncated at 10 in order to retain detail for smaller er-
rors. Observe:
(i) average i,o is poor at estimating many MEs through
the largest interface (labeled 1) since smaller MEs are
poorly sampled at that interface. regular i,o,r performs
better because it uses primarily the estimates gathered at
the other interface traversed by these MEs.
(ii) regular i,o,r has a smaller number of large relative
errors than average i,o.

In order to get a broader statistical picture we repeated
the experiments reported in Figure 4 100 times, varying the
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Figure 3: Comparing Confidence Intervals by method, for 4 matrix elements from Table 1

seed for the pseudorandom number generator that governs
random selection in each repetition. The ranked root mean
square (RMS) of the relative errors shows broadly the same
form as Figure 4, but with smoother curves due to averag-
ing over many experiments.

6 Experiments: Network Matrix

In this section we shift the focus to combining a large num-
ber of estimates of a given traffic component. Each esti-
mate may individually be of low quality; the problem is to
combine them into a more reliable estimate. As mentioned
in Section 1.4, this problem is motivated by a scenario in
which routers or other network elements ubiquitously re-
port traffic measurements. A traffic component can gener-
ate multiple measurements as it transits the network.

A challenge in combining estimates is that they may be
formed from sample sets drawn with heterogeneous sam-
pling rates and hence the estimates themselves may have
differing and unpredictable accuracy, as described in Sec-
tion 2.10. For this reason, the approach of Section 3 is
appealing, since estimation requires no prior knowledge of
sampling rates; it only assumes reporting of the sampling
rate in force when the sample was taken.

6.1 Experimental Setup

We wished to evaluate the combined estimator from inde-
pendent samples of a traffic stream from multiple points.
Since we do not have traces taken from multiple locations,
we used instead multiple independent samples sets of the
CAMPUS flow trace, each set representing the measure-
ments that would be taken from a single OP. We took 30
sample sets in all, corresponding to the current maximum
typical hop counts in internet paths [16].

The experiments used threshold sampling, rather than
priority sampling, since this would have required the ad-
ditional complexity of simulating background traffic for
each observation point. Apart from packet loss or the pos-
sible effects of routing changes, the multiple independent
samples correspond with those obtained sampling the same
traffic stream at multiple points in the network.

Our evaluations used multiple experiments, each of
which represented sampling of a different set of flows in
the network. The flow sizes were taken from successive
portions of the CAMPUS trace (wrapping around if neces-
sary), changing the seed pseudorandom number generator
used for sampling in each experiment. The estimates based
on each set of independent samples were combined using
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Figure 4: Relative Errors of Matrix Elements for Different Estimators, Ranked by Size. Left: raw relative errors. Right:
scaled relative errors. Top: 16 slots per interface. Bottom: 128 slots per interface.

the following methods: average, adhoc, bounded and
regular. As a performance metric for each method, we
computed the root mean square (RMS) relative estimation
error over 100 experiments.

6.2 Homogeneous Sampling Thresholds

As a baseline we used a uniform sampling threshold at all
OPs. In this case that bounded reduces to average. In
7 separate experiments we use a sampling threshold of 10i

Bytes for i = 3, . . . , 9. This covers roughly the range of
flow sizes in the CAMPUS dataset, and hence includes the
range of z values that would likely be configured if flow
sizes generally conformed to the statistics of CAMPUS. The
corresponding sampling rate (i.e. the average proportion of
flows that would be selected) with threshold z is π(z) =∑

i min{1, xi/z}/N where {xi : i = 1, . . . , N} are the
sizes of the N flows in the set. For this dataset π(z) ranged
from π(103) = 0.018 to π(109) = 1.9 × 10−5.

We show a typical single path of the byte estimate (nor-
malized by the actual value) for a single experiment in Fig-
ure 6. This was for 10,000 flows sampled with threshold
10MB at 100 sites. There were typically a handful of flows
sampled at each OP. The bounded estimate relaxes slowly
towards the true value. regular also follows at a similar
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Figure 6: Combined estimators acting cumulatively over
100 independent estimates.

rate, but displays some bias. adhoc displays systematic
bias beyond 30 combinations. The bias strikingly shows
the need for robust estimation methods of the type proposed
in this paper.

Summary RMS error statistics over multiple experiment
are shown in Tables 2 and 3. Here we vary the number of
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threshold adhoc bounded regular
103 0.0017 0.0016 0.0017
104 0.0121 0.0066 0.0117
105 0.1297 0.0353 0.0883
106 0.4787 0.1293 0.3267
107 8.080 0.515 0.527
108 46.10 1.464 0.923
109 108.7 3.581 1.926

Table 2: Homogeneous Sampling. RMS relative error;
1000 flows, 30 sites

threshold adhoc bounded regular
103 0.00002 0.00002 0.00002
104 0.00012 0.00012 0.00012
105 0.00064 0.00063 0.00064
106 0.00340 0.00321 0.00339
107 0.01505 0.01110 0.01469
108 0.16664 0.05400 0.11781
109 0.78997 0.17387 0.37870

Table 3: Homogeneous Sampling. RMS relative error;
100,000 flows, 30 sites

flows in the underlying population (1000 or 100,000) for
30 measurement sites. (Results for 10 measurement sites
are not displayed due to space constraints). bounded has
somewhat better performance than regular and signif-
icantly better performance than adhoc. The differences
are generally more pronounced for 30 sites than for 10, i.e.,
bounded is able to take the greatest advantage (in accu-
racy) of the additional information. On the basis of exam-
ination of a number of individual experiments of the type
reported in Figure 6, this appears to be due to lower bias in
bounded.

6.3 Heterogeneous Sampling Thresholds

To model heterogeneous sampling rates we used 30 sam-
pling thresholds in a geometric progression from 100kB to
100MB, corresponding to average sampling rates of from
0.016 to 8.9 × 10−5. This range of z values was chosen to
encompass what we expect would be a range of likely op-
erational sampling rates, these being quite small in order to
achieve significant reduction in the volume of flow records
through sampling.

We arranged the thresholds in increasing order 105B =
z1 < . . . < zi < . . . < z30 = 108B, and for each m com-
puted the various combined estimators formed from the m

individual estimators obtained from samples drawn using
the m lowest thresholds {zi : i = 1, . . . ,m}. The perfor-
mance on traffic streams comprising 10,000 flows is shown
in Figure 7. Qualitatively similar results were found with
1,000 and 100,000 flows.

The RMS error of average initially decreases with
path length as it combines the estimators of lower vari-
ance (higher sampling rate). But it eventually increases as
it mixes in estimators or higher variance (lower sampling
rate). RMS errors for bounded and regular are es-
sentially decreasing with path length, with bounded hav-
ing slightly better accuracy. The minimum RMS errors
(over all path lengths) of the three methods a roughly the
same. Could average be adapted to select and include
only those estimates with low variance? This would re-
quire an additional decision of which estimates to include,
and the best trade-off between accuracy and path length
is not known a priori. On the other hand, bounded and
regular can be used with all available data, even with
constituent estimates of high variance, without apparent
degradation of accuracy.
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7 Conclusions

This paper combines multiple estimators of traffic volumes
formed from independent samples of network traffic. If the
variance of each constituent is known, a minimum vari-
ance convex combination can be formed. But spatial and
temporal variability of sampling parameters mean that vari-
ance is best estimated from the measurements themselves.
The convex combination suffers from pathologies if used
naively with estimated variances. This paper was devoted
to finding remedies to these pathologies.

We propose two regularized estimators that avoid the
pathologies of variance estimation. The regularized vari-
ance estimator adds a contribution to estimated variance
representing the likely sampling error, and hence amelio-
rates the pathologies of estimating small variances while at
the same time allowing more reliable estimates to be bal-
anced in the convex combination estimator. The bounded
variance estimator employs an upper bound to the variance
which avoids estimation pathologies when sampling prob-
abilities are very small.

We applied our methods to two networking estimation
problems: estimating interface level traffic matrices in
routers, and combining estimates from ubiquitous measure-
ments across a network. Experiments with real flow data
showed that the methods exhibit: (i) reduction in estima-
tor variance, compared with individual measurements; (ii)
reduction in bias and estimator variance, compared with
averaging or ad hoc combination methods; and (iii) appli-
cation across a wide range of inhomogeneous sampling pa-
rameters, without preselecting data for accuracy. Although
our experiments focused on sampling flow records, the ba-
sic method can be used to combine estimates derived from
a variety of sampling techniques, including, for example,
combining mixed estimates formed from uniform and non-

uniform sampling of the same population.
Further work in progress examines the properties of

combined estimators at an analytical level, and yields a
deeper understanding of their statistical behavior beyond
the mean and variance.
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