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Abstract
Mean Time To Data Loss (MTTDL ) has been the stan-
dard reliability metric in storage systems for more than
20 years.MTTDL represents a simple formula that can be
used to compare the reliability of small disk arrays and
to perform comparative trending analyses. TheMTTDL

metric is often misused, with egregious examples rely-
ing on theMTTDL to generate reliability estimates that
span centuries or millennia. Moving forward, the stor-
age community needs to replaceMTTDL with a metric
that can be used to accurately compare the reliability of
systems in a way that reflects the impact of data loss in
the real world.

1 Introduction
“Essentially, all models are wrong, but some are useful”

– George E.P. Box
Since Gibson’s original work on RAID [3], the stan-

dard metric of storage system reliability has been the
Mean Time To Data Loss(MTTDL ). MTTDL is an esti-
mate of the expected time that it would take a given stor-
age system to exhibit enough failures such that at least
one block of data cannot be retrieved or reconstructed.

One of the reasons thatMTTDL is so appealing as a
metric is that it is easy to construct a Markov model
that yields an analytic closed-form equation forMTTDL .
Such formulae have been ubiquitous in research and
practice due to the ease of estimating reliability by plug-
ging a few numbers into an expression. Given simplistic
assumptions about the physical system, such as indepen-
dent exponential probability distributions for failure and
repair, a Markov model can be easily constructed result-
ing in a nice, closed-form expression.

There are three major problems with using theMTTDL

as a measure of storage system reliability. First, the
models on which the calculation depends rely on an ex-
tremely simplistic view of the storage system. Second,
the metric does not reflect the real world, but is often
interpreted as a real world estimate. For example, the

Pergamum archival storage system estimates aMTTDL

of 1400 years [13]. These estimates are based on the as-
sumptions of the underlying Markov models and are typ-
ically well beyond the life of any storage system. Finally,
MTTDL values tend to be incomparable because each is a
function of system scale and omits the (expected) mag-
nitude of data loss.

In this position paper, we argue thatMTTDL is a bad
reliability metric and that Markov models, the traditional
means of determiningMTTDL , do a poor job of modeling
modern storage system reliability. We then outline prop-
erties we believe a good storage system reliability metric
should have, and propose a new metric with these prop-
erties: NOrmalized Magnitude of Data Loss (NOMDL).
Finally, we provide example reliability results using var-
ious proposed metrics, includingNOMDL, for a simple
storage system.

2 The Canonical MTTDL Calculation
In the storage reliability community, theMTTDL is cal-
culated using Continuous-time Markov Chains (a.k.a.
Markov model). The canonical Markov model for stor-
age systems is based on RAID4, which tolerates exactly
one device failure. Figure 1 shows this model. There
are a total of three states. State0 is the state with alln
devices operational. State1 is the state with one failed
device. State2 is the state with two failed devices, i.e.,
the data loss state. The model in Figure 1 has two rate
parameters:λ, a failure rate andµ, a repair rate. It is
assumed that all devices fail at the same rate and repair
at the same rate.

At t = 0, the system starts pristinely in state0, and
remains in state0 for an average of(n · λ)−1 hours (n
device failures are exponentially distributed with failure
rateλ), when it transitions to state1. The system is then
in state1 for on average(((n−1)·λ))+µ)−1 hours. The
system transitions out of state1 to state2, which is the
data loss state, with probability (n−1)·λ

((n−1)·λ))+µ
. Otherwise,

the system transitions back to state0, where the system
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Figure 1: Canonical RAID4/RAID5 Markov model.

is fully operational and devoid of failures.
The canonical Markov model can be solved analyti-

cally for MTTDL , and simplified:

MTTDL =
µ+ (2n− 1)λ

n(n− 1)λ2
≈

µ

n(n− 1)λ2
.

Such an analytic result is appealing because reassuringly
largeMTTDL values follow from disk lifetimes measured
in hundreds of thousands of hours. Also, the relation-
ship between expected disk lifetime (1/λ), expected re-
pair time (1/µ), andMTTDL for RAID4 systems is ap-
parent.

3 The MTTDL: Meaningless Values
Siewiorek and Swarz [12] define reliability as follows:
“The reliability of a system as a function of time,R(t),
is the conditional probability that the system has survived
the interval[0, t], given that the system was operational
at timet = 0.” Implicit in the statement that the “sys-
tem has survived” is that the system is performing its in-
tended function under some operating conditions. For a
storage system, this means that the system does not lose
data during the expected system lifetime.

An important aspect of the definition of reliability, that
is lost in many discussions about storage system reliabil-
ity, is the notion ofmission lifetime. MTTDL does not
measure reliability directly; it is an expectation based on
reliability: MTTDL =

∫
∞

0
R(t)dt. MTTDL literally mea-

sures the expected time to failure over an infinite inter-
val. This may make theMTTDL useful for quick, relative
comparisons, but the absolute measurements are essen-
tially meaningless. For example, anMTTDL measure-
ment of1400 years tells us very little about the probabil-
ity of failure during a realistic system mission time. A
system designer is most likely interested in the probabil-
ity and extent of data loss, every year for the first10 years
of a system. The aggregate nature of the MTTDL pro-
vides little useful information, and no insight into these
calculations.

4 The MTTDL: Unrealistic Models
While Markov Models are appealingly simple, the as-
sumptions that make them convenient also render them
inadequate for multi-disk systems In this section, we
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Figure 2: Illustrative multi-disk fault tolerant Markov
model with sector errors.

highlight three ways in which the assumptions signif-
icantly do not match modern systems. A more de-
tailed discussion that includes additional concerns may
be found in Chapter 4 of Greenan’s PhD thesis [4].

For illustration, in Figure 2 we present a Markov
Model based on one from [5] that models an-disk sys-
tem composed ofk disks of data andm disks of parity,
in the presence of disk failures and latent sector errors.

4.1 Exponential Distributions

Implicit in the use of Markov models for storage system
reliability analysis is the assumption that failure and re-
pair rates follow an exponential distribution and are con-
stant. The exponential distribution is a poor match to ob-
served disk failure rates, latent sector error rates, and disk
repairs. Empirical observations have shown that disks do
not fail according to independent exponential distribu-
tions [2, 6, 10], and that Weibull distributions are more
successful in modeling observed disk failure behavior.

Latent sector failures exhibit significant correlation
both temporally and spatially within a device [1, 11].
Beyond this, sector failures are highly usage dependent
and difficult to quantify [2, 9]. The most recent synthe-
sis of empirical data by Schroeder et al. suggests that
Pareto distributions can best capture the burstiness of la-
tent sector errors, as well as spatial and temporal corre-
lations [11].

Disk repair activities such as rebuild and scrubbing
tend to require some fixed minimal amount of time to
complete. Moreover, in well-engineered systems, there
tends to be some fixed upper bound on the time the re-
pair activity may take. Events with lower and upper time
bounds are poorly modeled by exponential distributions.
Again, Weibull distributions capture reality better [2].

4.2 Memorylessness, Failure & Repair

Exponential distributions and Markov Models are “mem-
oryless.” When the system modeled in Figure 2 transi-
tions into a new state, it is as if all the components in the
system are reset. Available components’ ages are reset to
0 (i.e., brand new), and any repair of failed components
is forgotten. Both cases are problematic.

2



When the system transitions to a new state, it is as if all
available disks are refreshed to a “good-as-new” state. In
particular, the transition from state 1 to state 0 models a
system where the repair of one disk converts all disks into
their pristine states. In reality, only the recently repaired
component is brand-new, while all the others have a non-
zero age.

Now, consider the system under repair in statei such
that1 ≤ i < m. If a failure occurs, moving the system
to statei + 1, any previous rebuilding is assumed to be
discarded, and the variableµ governs the transition back
to statei. It is as if themost recentfailure dictates the re-
pair transition. In reality, it is theearliestfailure, whose
rebuild is closest to completion, that governs repair tran-
sitions.

These two issues highlight the difficulty with the
memorylessness assumption: each transition “forgets”
about progress that has been made in a previous state
– neither component wear-out nor rebuild progress are
modeled. Correctly incorporating these time-dependent
properties into such a model is quite difficult. The dif-
ficulty lies in the distinction betweenabsolute timeand
relative time. Absolute time is the time since the system
was generated, while relative time applies to the indi-
vidual device lifetime and repair clocks. Analytic mod-
els operate in absolute time; therefore, there is no rea-
sonable way to determine the values of each individual
clock. Simulation methods can track relative time and
thus can effectively model reliability of a storage system
with time-dependent properties.

4.3 Memorylessness & Sector Errors

In am-disk fault tolerant system, the storage system en-
terscritical modeupon them-th disk failure. The tran-
sition in the Markov model in Figure 2 from them − 1
to them + 1 state is intended to model data loss due to
sector errors in critical mode. In this model, any sector
errors or bit errors encountered during rebuild in criti-
cal mode lead to data loss. Unfortunately, such a model
overestimates the system unreliability. A sector failure
only leads to data loss if it occurs in the portion of the
failed disk that is critically exposed. For example, in a
two-disk fault tolerant system, if the first disk to fail is
90% rebuilt when a second disk fails, only 10% of the
disk is critically exposed. Figure 3 illustrates this point
in general. This difficulty with Markov models again fol-
lows from the memorylessness assumption.

5 Metrics

Many alternatives have been proposed to replaceMTTDL

as a reliability metric (e.g., [2, 7, 8]). While these metrics
have some advantages, none have all the qualities that we
believe such a metric must. In our opinion, a storage sys-
tem reliability metric must have the following properties:
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Figure 3: Critical region of first failed disk susceptible to
data loss due to latent sector errors.

Calculable. There must exist a reasonable method to
calculate the metric. For example, a software pack-
age based on well understood simulation or numer-
ical calculation principles can be used.

Meaningful. The metric must relate directly to the reli-
ability of a deployed storage system.

Understandable. The metric, and its units, must be
understandable to a broad audience that includes
developers, marketers, industry analysts, and re-
searchers.

Comparable. The metric must allow us to compare sys-
tems with different scales, architectures, and under-
lying storage technologies (e.g. solid-state disk).

5.1 NOMDL: A Better Metric?
We start by creating a metric called Magnitude of Data
Loss (MDL ). Let MDL t be the expected amount of data
lost (in bytes) in a target system within mission timet.
There are two advantages toMDL t. First, like system
reliability, the metric deals with arbitrary time periods.
This means that a system architect can useMDL t to esti-
mate the expected number of bytes lost in the first year
of deployment, or first ten years of deployment. Second,
the units are understandable: bytes and years.

Unfortunately,MDL t is not a metric that compares
well across systems. Consider an8 disk RAID4 array
with intra-disk parity [11] and a24 disk RAID6 array,
both composed of the exact same1 TB drives. The
RAID6 array will result in a higherMDL t, but has more
than3 times the usable capacity of the RAID4 array.

The MDL can be made comparable by normalizing
to the system’s usable capacity; doing so yields the
NOrmalized Magnitude of Data Loss (NOMDL) metric.
NOMDLt measures expected amount of data lost per us-
able terabyte within mission timet. For example, the
NOMDLt of a system may be0.001 bytes lost per us-
able terabyte in the first5 years of deployment. Since
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NOMDLt is a normalized version ofMDL t, both metrics
can be output from the same base calculation.

5.2 Calculating NOMDLt

NOMDLt is calculable. Markov models can measure the
probability of being in a specific state within a mission
time. With care, the probabilities can be calculated for
all paths in a Markov model and used to derive the num-
ber of expected bytes lost. Unfortunately, as we have
described above, we do not believe that Markov models
accurately capture the behavior of contemporary storage
systems. Maybe other modeling paradigms such as Petri
Nets and such variants can be used to calculateNOMDLt

while addressing the deficiencies of Markov models.
Our recommendation is to use Monte Carlo simulation

to calculateNOMDLt. At a high level, such a simulation
can be accomplished as follows. Initially, all devices are
assigned failure and repair characteristics. Then, device
failures and their repair times are drawn from an appro-
priate statistical distribution (e.g., Exponential, Weibull,
Pareto) for each device. Devices are queued and pro-
cessed by failure time and the simulation stops at a pre-
defined mission time. Once a device is repaired, another
failure and repair time is drawn for that device. Each
time a failure occurs, the simulator analyzes the system
state to determine if data loss has occurred. Detail of
the techniques and overhead associated with simulation
is discussed in Greenan’s PhD thesis [4].

If the time of data loss isF and the mission time is
t, then the simulator implements the function,I(F <
t) = {0, 1} (0 is no data loss,1 is data loss). That is,
the system either had a data loss event within the mis-
sion time or not. Many iterations of the simulator are
required to get statistically meaningful results. The stan-
dard method of computing system reliability via simula-
tion is to runN iterations (typically chosen experimen-
tally) of the simulator and make the following calcula-
tion:

R(t) = 1−

N∑

i=1

I(Fi < t)

N

SinceI(Fi < t) evaluates to1 when there is data loss
in iterationi and0 otherwise, this directly calculates the
probability of no data loss in[0, t]. Given the magnitude
of data loss upon a data loss event,Ci, this standard cal-
culation can produce theMDL t:

MDL t =

N∑

i=1

I(Fi < t) · Ci

N
.

TheNOMDLt is theMDL t normalized to the usable ca-
pacity of the system,D: NOMDLt = MDL t/D. Using
simulation thus produces{R(t), MDL t, NOMDLt} which

in our opinion makesNOMDLt a calculable, meaningful,
understandable, and comparable metric.

5.3 Comparison of Metrics

Table 1 provides a high-level comparison ofMTTDL and
other recently proposed storage reliability metrics. We
compare the metrics qualitatively in terms of the afore-
mentioned properties of a good metric. We also perform
a sample calculation for each metric of a simple storage
system: an8-disk RAID4 array of terabyte hard drives
with periodic scrubbing for a10 year mission time. The
failure/repair/scrub characteristics are taken from Elerath
and Pecht [2]. All calculations were performed using the
HFRS reliability simulation suite (see§8).

Here we compareMTTDL , Bit Half-Life (BHL) [8],
Double-Disk Failures Per 1000 Reliability Groups
(DDF pKRG) [2], Data Loss events per Petabyte Year
(DALOPY) [5] and NOMDLt. MTTDL and DALOPY
are calculated via Markov models.BHL is calculated by
finding the time at which a bit has a0.50 probability of
failure, which is difficult to calculate via simulation and
can be estimated using a Markov model. ForBHL, this
time is calculated for the entire system instead of a single
bit. DDF pKRG andNOMDLt are computed using Monte
Carlo simulation.

Both calculations forMTTDL andBHL result in relia-
bility metrics that are essentially meaningless. Even in
a RAID4 system with the threat of sector errors (2.6%
chance when reading an entire disk) both metrics pro-
duce numbers that are well beyond the lifetime of most
existing systems. In addition, both metrics produce re-
sults that are not comparable between systems that differ
in terms of technology and scale.

DDF pKRG and DALOPY are interesting alternatives
to the originalMTTDL calculation. DDF pKRG is not
sensitive to technological change, but is bound architec-
turally to a specific RAID level or erasure-coding scheme
(double disk failure is specific to RAID4 or RAID5).
DALOPY has most of properties of a good metric, but
is not comparable. In particular, it is not comparable
across systems based on different technologies or archi-
tectures. While DALOPY normalizes the expected num-
ber of data loss events to the system size, it does not pro-
vide the magnitude of data loss. Without magnitude it
is hard to compare DALOPY between systems; data loss
event gives no information on what or how much data
was lost. In addition, the units of the metric are hard to
reason about.

NOMDLt is not sensitive to technological change, ar-
chitecture or scale. The metric is normalized to system
scale, is comparable between architectures and directly
measures the expected magnitude of data loss. As shown
in Table 1, the units ofNOMDLt—bytes lost per usable
TB—are easy to understand. Beyond this, the subscript
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Meaningful Understandable Calculable Comparable Result
MTTDL X 37.60 years

BHL X 26.06 years
DDF pKRG X X X 183 DDFs
DALOPY X X X 3.32 DL per (PB*Yr)
NOMDL10y X X X X 14.41 bytes lost per usable TB

Table 1: Qualitative comparison of different storage reliability metrics.

t = 10y, clearly indicates the mission lifetime and so
helps ensure that only numbers based on the same mis-
sion lifetime are actually compared.

6 Conclusions
We have argued thatMTTDL is essentially a meaningless
reliability metric for storage systems and that Markov
models, the normal method of calculatingMTTDL , is
flawed. We are not the first to make this argument
(see [2] and [8]) but hope to be the last. We believe
NOMDLt has the desirable features of a good reliability
metric, namely that it is calculable, meaningful, under-
standable, and comparable, and we exhort researchers to
exploit it for their future reliability measurements. Cur-
rently, we believe that Monte Carlo simulation is the best
way to calculateNOMDLt.
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8 HFRS Availability
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mand line tool written in Python and is available at

http://users.soe.ucsc.edu/ ˜ kmgreen/ .
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