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Abstract Pergamum archival storage system estimatesrabL

of 1400 years [13]. These estimates are based on the as-

Mean Time To Data LossMTTDL) has been the stan- ) _
sumptions of the underlying Markov models and are typ-

dard reliability metric in storage systems for more than:

20 years.MTTDL represents a simple formula that can bec@!ly well beyond the life of any storage system. Finally,
used to compare the reliability of small disk arrays andVTTDL values tend to be incomparable because eachis a

to perform comparative trending analyses. TErDL fqnctlon of system scale and omits the (expected) mag-
nitude of data loss.

metric is often misused, with egregious examples rely- , ” )

ing on theMTTDL to generate reliability estimates that !N this position paper, we argue thatToL is a bad

span centuries or millennia. Moving forward, the stor- reliability metric and that Markov models, the traditional
means of determining TTDL, do a poor job of modeling

age community needs to replapgTbDL with a metric A )
that can be used to accurately compare the reliability of'0d€rn storage system reliability. We then outline prop-

systems in a way that reflects the impact of data loss iierties we believe a good storage system reliability metric
the real world. should have, and propose a new metric with these prop-

) erties: NOrmalized Magnitude of Data LogsqMDL).
1 Introduction Finally, we provide example reliability results using var-

“Essentially, all models are wrong, but some are useful” i0us proposed metrics, includingompt, for a simple
— George E.P. Box Storage system.

Since G_lbsons original work on _RA_ID [3], the stan- 2 The Canonical MTTDL Calculation
dard metric of storage system reliability has been the o _ )
Mean Time To Data LosgMTTDL). MTTDL is an esti- In the storage reliability community, theTTDL is cal-
mate of the expected time that it would take a given storculated using Continuous-time Markov Chains (a.k.a.
age system to exhibit enough failures such that at leagf!arkov model). The canonical Markov model for stor-
one block of data cannot be retrieved or reconstructed. age systems is based on RAID4, which tolerates exactly

One of the reasons thatTTDL is so appealing as a Oné device failure. Figure 1 shows this model. There
metric is that it is easy to construct a Markov model '€ a total of three states. Stakés the state with alh
that yields an analytic closed-form equation foTTDL. devices operational. Staleis the state with one failed
Such formulae have been ubiquitous in research angeV|Ce. State is the state W|th tWO fa||ed deV|CeS, l.e.,
practice due to the ease of estimating reliability by plug-the data loss state. The model in Figure 1 has two rate
ging a few numbers into an expression. Given simplisticParameters:\, a fallure rate angi, a repair rate. It is _
assumptions about the physical system, such as indepeﬁssumed that all devices fail at the same rate and repair
dent exponential probability distributions for failurecan at the same rate. o _
repair, a Markov model can be easily constructed result- At ¢ = 0, the system starts pristinely in stateand
ing in a nice, closed-form expression. remains in stat® for an average ofn - \)~! hours @

There are three major pr0b|ems with using theroL device failures are exponentially distributed with fagdur
as a measure of storage system reliability. First, thdate)), when it transitions to state The s;l/stem is then
models on which the calculation depends rely on an exin statel for on averagé((n—1)-A))+u)~" hours. The
tremely simplistic view of the storage system. Secondsystem transitions out of stalet(() Stgtfl which is the
the metric does not reflect the real world, but is oftendata loss state, W_It_h probability" =757+ - Otherwise,
interpreted as a real world estimate. For example, théhe system transitions back to stétewhere the system



nA  (n-1)A Latent sector error

Figure 1: Canonical RAID4/RAIDS Markov model. Figure 2: lllustrative multi-disk fault tolerant Markov

model with sector errors.
is fully operational and devoid of failures.
The canonical Markov model can be solved analyti-

cally for MTTDL, and simplified: highlight three ways in which the assumptions signif-

icantly do not match modern systems. A more de-
[ +(@2n -1\ I tailed discussion that includes additional concerns may
B n(n — 1)\2 -~ n(n —1)A2" be found in Chapter 4 of Greenan’s PhD thesis [4].
. . . _ For illustration, in Figure 2 we present a Markov
Such an analytic result is appealing because reassunngMOdeI based on one from [5] that models.aisk sys-

!arEeMJT%L VTUES fOIIO\g frofmhdisk Iifetilmes rr?easlur_ed tem composed of disks of data andn disks of parity,
In hunadreads o thousan S Of hours. Also, the re ationy, the presence of disk failures and latent sector errors.
ship between expected disk lifetime/(\), expected re-

pair time (L/x), andmTTDL for RAID4 systems is ap- 4.1 Exponential Distributions

parent.

MTTD

Implicit in the use of Markov models for storage system
3 TheMTTDL: Meaningless Values reliability analysis is the assumption that failure and re-

Siewiorek and Swarz [12] define reliability as follows: pair rates follow an exponential distribution and are con-
“The reliability of a system as a function of time(t) stant. The exponential distribution is a poor match to ob-
is the conditional probability that the system has surviveoe’erv_ed disk fa_ul_ure rates, Iat_ent sector error rates, askj di
the intervall0, ], given that the system was operational repairs. Empirical observations have shown that disks do
at imet — 0. Implicit in the statement that the “sys- not fail according to independent exponential distribu-
tem has survived” is that the system is performing its in-tions [2, 6, 10], and that Weibull distributions are more

tended function under some operating conditions. For asuccessful in modeling observed disk failure behavior.
storage system, this means that the system does not loselLatent sector failures exhibit significant correlation
data during the expected system lifetime. both temporally and spatially within a device [1, 11].

An important aspect of the definition of reliability, that Beyond this, sector failures are highly usage dependent
is lost in many discussions about storage system reliabif@nd difficult to quantify [2, 9]. The most recent synthe-
ity, is the notion ofmission lifetime MTTDL does not ~ Sis of empirical data by Schroeder et al. suggests that
measure reliability directly; it is an expectation based onPareto distributions can best captl_Jre the burstiness of la-
reliability: MTTDL = fooo R(t)dt. MTTDL literally mea- tent sector errors, as well as spatial and temporal corre-
sures the expected time to failure over an infinite inter-/@tions [11].
val. This may make theTToL useful for quick, relative Disk repair activities such as rebuild and scrubbing
comparisons, but the absolute measurements are essdfnd to require some fixed minimal amount of time to
tially meaningless. For example, aimTDL measure- complete. Moreover, in well-engineered systems, there
ment 0f1400 years tells us very little about the probabil- tends to be some fixed upper bound on the time the re-
ity of failure during a realistic system mission time. A Pair activity may take. Events with lower and upper time
system designer is most likely interested in the probabilounds are poorly modeled by exponential distributions.
ity and extent of data loss, every year for the fiyears Again, Weibull distributions capture reality better [2].

of a system. The aggregate nature of the MTTDL pro- essn ; ;
vides little useful information, and no insight into these 4.2 Memoryl ess, Fallure& Repalr

calculations. Exponential distributions and Markov Models are “mem-

) _ oryless.” When the system modeled in Figure 2 transi-
4 TheMTTDL: Unrealistic Models tions into a new state, itis as if all the components in the
While Markov Models are appealingly simple, the as-system are reset. Available components’ ages are reset to
sumptions that make them convenient also render therf (i.e., brand new), and any repair of failed components
inadequate for multi-disk systems In this section, weis forgotten. Both cases are problematic.



When the system transitions to a new state, itis as if all First disk fails m™ disk fails
available disks are refreshed to a “good-as-new” state. In 17 LS S

particular, the transition from state 1 to state 0 models a _

system where the repair of one disk converts all disks into < 5 First failed diskc s

their pristine states. In reality, only the recently repdir S’g disks fail

componentis brand-new, while all the others have anon- g § ‘

Zero age. ) o s&( | X7 } Critical region exposed
Now, consider the system under repair in staseich to latent sector errors

thatl < i < m. If a failure occurs, moving the system 0 time

to statei + 1, any previous rebuilding is assumed to be

discarded, and the variablegoverns the transition back

to statei. Itis as if themost recenfailure dictates the re-  Figure 3: Critical region of first failed disk susceptible to
pair transition. In reality, it is thearliestfailure, whose data loss due to latent sector errors.

rebuild is closest to completion, that governs repair tran-

sitions. )
These two issues highlight the difficulty with the Calculable. There must exist a reasonable method to

calculate the metric. For example, a software pack-
age based on well understood simulation or numer-
ical calculation principles can be used.

memorylessness assumption: each transition “forgets”
about progress that has been made in a previous state
— neither component wear-out nor rebuild progress are
modeled. Correctly incorporating these time-dependenM eaningful.
properties into such a model is quite difficult. The dif-
ficulty lies in the distinction betweeabsolute timeand
relative time Absolute time is the time since the system Under standable. The metric, and its units, must be

was generated, while relative time applies to the indi-  understandable to a broad audience that includes

vidual device lifetime and repair clocks. Analytic mod- developers, marketers, industry analysts, and re-
els operate in absolute time; therefore, there is no rea-  gsearchers.

sonable way to determine the values of each individual

clock. Simulation methods can track relative time andComparable. The metric must allow us to compare sys-
thus can effectively model reliability of a storage system  tems with different scales, architectures, and under-
with time-dependent properties. lying storage technologies (e.g. solid-state disk).

The metric must relate directly to the reli-
ability of a deployed storage system.

4.3 Memorylessness & Sector Errors 5.1 NomDL: A Better Metric?

In am-disk fault tolerant system, the storage system en\We start by creating a metric called Magnitude of Data

terscritical modeupon them-th disk failure. The tran- Loss (vDL). Let MDL, be the expected amount of data

sition in the Markov model in Figure 2 fromthe — 1 |ost (in bytes) in a target system within mission time

to them + 1 state is intended to model data loss due toThere are two advantages toL,. First, like system

sector errors in critical mode. In this model, any sectorreliability, the metric deals with arbitrary time periods.

errors or bit errors encountered during rebuild in criti- This means that a system architect canmube; to esti-

cal mode lead to data loss. Unfortunately, such a modemate the expected number of bytes lost in the first year

overestimates the system unreliability. A sector failureof deployment, or first ten years of deployment. Second,

only leads to data loss if it occurs in the portion of the the units are understandable: bytes and years.

failed disk that is critically exposed. For example, in a  Unfortunately, MbL, is not a metric that compares

two-disk fault tolerant system, if the first disk to fail is well across systems. Consider &rdisk RAID4 array

90% rebuilt when a second disk fails, only 10% of the with intra-disk parity [11] and &4 disk RAID6 array,

disk is critically exposed. Figure 3 illustrates this point both composed of the exact sarmeTB drives. The

in general. This difficulty with Markov models again fol- RAID6 array will result in a highembpL,, but has more

lows from the memorylessness assumption. than3 times the usable capacity of the RAID4 array.

5 Metri The mDL can be made comparable by normalizing
res to the system’s usable capacity; doing so yields the

Many alternatives have been proposed to repl&TebL NOrmalized Magnitude of Data LossiOMDL) metric.

as a reliability metric (e.g., [2, 7, 8]). While these metric NOMDL,; measures expected amount of data lost per us-

have some advantages, none have all the qualities that vable terabyte within mission time& For example, the

believe such a metric must. In our opinion, a storage sysNOMDL; of a system may b@.001 bytes lost per us-

tem reliability metric must have the following properties: able terabyte in the firsi years of deployment. Since



NOMDL, is a normalized version ofiDL, both metrics  in our opinion makesioMDL, a calculable, meaningful,
can be output from the same base calculation. understandable, and comparable metric.

5.2 Calculating NOMDL; 5.3 Comparison of Metrics

NOMDL, is calculable. Markov models can measure theTable 1 provides a high-level comparisonvofToL and
probability of being in a specific state within a mission other recently proposed storage reliability metrics. We
time. With care, the probabilities can be calculated forcompare the metrics qualitatively in terms of the afore-
all paths in a Markov model and used to derive the num-mentioned properties of a good metric. We also perform
ber of expected bytes lost. Unfortunately, as we haves sample calculation for each metric of a simple storage
described above, we do not believe that Markov modelsystem: ars-disk RAID4 array of terabyte hard drives
accurately capture the behavior of contemporary storaggith periodic scrubbing for 40 year mission time. The
systems. Maybe other modeling paradigms such as Petfilure/repair/scrub characteristics are taken fromaiter
Nets and such variants can be used to calcwat@DL;  and Pecht [2]. All calculations were performed using the
while addressing the deficiencies of Markov models.  HFRS reliability simulation suite (S&).

Our recommendation is to use Monte Carlo simulation Here we compare/TTDL, Bit Half-Life (BHL) [8],

to calculateNnomDL,. At a high level, such a simulation pouble-Disk Failures Per 1000 Reliability Groups
can be accomplished as follows. Initially, all devices are(ppr pkra) [2], Data Loss events per Petabyte Year
assigned failure and repair characteristics. Then, devicgpaLoPY) [5] and NomMDL,. MTTDL and DALOPY
failures and their repair times are drawn from an approgre calculated via Markov modelsHL is calculated by
priate statistical distribution (e.g., Exponential, Wb finding the time at which a bit has@®50 probability of
Pareto) for each device. Devices are queued and pr@aijlure, which is difficult to calculate via simulation and
cessed by failure time and the simulation stops at a precan be estimated using a Markov model. Bei, this
defined mission time. Once a device is repaired, anothefime is calculated for the entire system instead of a single

failure and repair time is drawn for that device. Eachpjt. ppr pkrG andnomDL, are computed using Monte
time a failure occurs, the simulator analyzes the systentarlo simulation.

state to determine if data loss has occurred. Detail of Bgin calculations foMTTDL andBHL result in relia-
the techniques and overhead associated with simulatiopjjity metrics that are essentially meaningless. Even in

is discussed in Greenan's PhD thesis [4]. a RAID4 system with the threat of sector erros6%

If the time of data loss ig" and the mission time is  chance when reading an entire disk) both metrics pro-
¢, then the simulator implements the functiaf{}" <  guce numbers that are well beyond the lifetime of most
t) = {0,1} (0 is no data loss] is data loss). Thatis, existing systems. In addition, both metrics produce re-
the system either had a data loss event within the misgy|ts that are not comparable between systems that differ
sion time or not. Many iterations of the simulator are jn terms of technology and scale.
required to get statistically meaningful results. The stan ¢ pKRG and DALOPY are interesting alternatives
o_Iard_ method of_computing sy§tem reliability via s_imula- to the originalMTTDL calculation. DDF pKRG is not
tion is to run} iterations (typically chosen experimen- sangitive to technological change, but is bound architec-
tally) of the simulator and make the following calcula- rqjly to a specific RAID level or erasure-coding scheme
tion: (double disk failure is specific to RADor RAID5).

DALOPY has most of properties of a good metric, but
R(t) — I(F; <) is not comparable. In particular, it is not comparable
H=1- —=——— : : .
N across systems based on different technologies or archi-
tectures. While BLOPY normalizes the expected num-

Sincel(F; < t) evaluates td when there is data l0Ss per of data loss events to the system size, it does not pro-
in iterationi and0 otherwise, this directly calculates the yjide the magnitude of data loss. Without magnitude it
probability of no data loss iff), ]. Given the magnitude s hard to compare BLOPY between systems; data loss
of data loss upon a data loss evefi, this standard cal-  eyent gives no information on what or how much data

=1

culation can produce thepL ;: was lost. In addition, the units of the metric are hard to
reason about.
N . . .
MDL, = Z I(F; <t)-C; NOMDL; iS not sensitive to technological change, ar-
N ' chitecture or scale. The metric is normalized to system

=1 . . f
' scale, is comparable between architectures and directly

TheNoMDL, is theMDL, normalized to the usable ca- measures the expected magnitude of data loss. As shown
pacity of the systemD: NOMDL; = MDL;/D. Using in Table 1, the units ohomDL,—bytes lost per usable
simulation thus producegk(t), MDL;, NOMDL,} which ~ TB—are easy to understand. Beyond this, the subscript



Meaningful | Understandable | Calculable | Comparable Result
MTTDL v 37.60 years
BHL v 26.06 years
DDF pPKRG v v v 183 DDFs
DALOPY v v v 3.32 DL per (PB*YT)
NOMDL 10y v v v v 14.41 bytes lost per usable TB

Table 1: Qualitative comparison of different storage tglity metrics.

t = 10y, clearly indicates the mission lifetime and so
helps ensure that only numbers based on the same mis-
sion lifetime are actually compared.

6 Conclusions

We have argued thatTTDL is essentially a meaningless
reliability metric for storage systems and that Markov
models, the normal method of calculatimgrToL, is
flawed. We are not the first to make this argument
(see [2] and [8]) but hope to be the last. We believe
NOMDL; has the desirable features of a good reliability [7]
metric, namely that it is calculable, meaningful, under-
standable, and comparable, and we exhort researchers to
exploit it for their future reliability measurements. Cur-
rently, we believe that Monte Carlo simulation is the best [g]
way to calculatevOMDL;.
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8 HFRS Availability
The High-Fidelity Reliability (HFR) Simulator is a com-

mand line tool written in Python and is available at [10]
http://users.soe.ucsc.edu/ ~kmgreen/ .
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