
Rethinking Deduplication Scalability

Petros Efstathopoulos Fanglu Guo

Petros Efstathopoulos@symantec.com Fanglu Guo@symantec.com

Symantec Research Labs
Symantec Corporation, Culver City, CA, USA

1 ABSTRACT
Deduplication, a form of compression aiming to eliminate
duplicates in data, has become an important feature of most
commercial and research backup systems. Since the ad-
vent of deduplication, most research efforts have focused on
maximizing deduplication efficiency—i.e., the offered com-
pression ratio—and have achieved near-optimal usage of
raw storage. However, the capacity goals of next-generation
Petabyte systems requires a highly scalable design, able to
overcome the current scalability limitations of deduplication.
We advocate a shift towards scalability-centric design prin-
ciples for deduplication systems, and present some of the
mechanisms used in our prototype, aiming at high scalabil-
ity, good deduplication efficiency, and high throughput.

2 INTRODUCTION
Enterprise storage is rapidly shifting to disk-based backup,
loading deduplication systems with the burden of dealing
with the uncontrolled explosion of data that corporations are
required to keep. Research [1, 2] and commercial systems,
such as Symantec PureDisk [3], have utilized a number of
different variations of techniques and deduplication princi-
ples: file segmentation methods, index optimizations, vari-
ous forms of caching, and many other mechanisms have been
heavily optimized in order to maximize duplicate detection
and deduplication efficiency.

Despite achieving very high deduplication efficiency,
commercial systems today still suffer from limited scala-
bility, and have difficulties scaling to Petabyte-level capac-
ities. Once a system reaches its scalability limits, admin-
istrators can do very little to increase system capacity and
avoid significant performance degradation. Scalability plans
based on adding more nodes, introduce serious system man-
agement and performance problems. We believe that an opti-
mized deduplication engine is insufficient, if the system can-
not scale to high capacities. Therefore, we are attempting
to design a next-generation deduplication system, from the
ground up, setting scalability as one of our top goals—even
at the cost of less than optimal deduplication efficiency.

2.1 Hitting the Memory Wall
The core of any deduplication system, performs two basic
tasks: itdetectsand sharesduplicate data blocks—instead

Item Scale Remarks
Physical capacityC C = 400 TB
Segment sizeB B = 4 KB
Number of segmentsN N = 100 Gsegs N = C/B
Block fingerprint sizeF F = 20 B
Block index sizeI I = 2000 GB I = N∗F
Disk speedZ Z = 300 MB/sec
Block lookup speed goal 75 Kops/sec Z/B

Table 1: An example system configuration, illustrating some of the chal-
lenges involved.

of storing multiple copies. When operating in small scale,
we can easily maintain a block index in memory to quickly
check if a block already exists in the system, and use meth-
ods similar to object reference sharing within operating sys-
tems to keep track of data sharing. Challenges arise when the
deduplication system needs to scale to high capacities—and
billions of objects.

When a deduplication server is presented with a piece of
data it needs to answer the following questions: “Have I seen
this data before? And if I have, where is it stored?” This
kind of lookup operation is served using an indexing data
structure–often referred to as “the index”. A hash is calcu-
lated for each unique chunk of data stored in the system
(MD5, SHA-1/2, etc), and stored in the index as the chunks
fingerprint, along with the chunk’s location on disk.

During a backup on a typical block-level deduplication
system, all files are partitioned to segments. Segment size
can vary between a few hundred bytes to multiple KB. For
each segment, a fingerprint FP is calculated, and if FP does
not exist in the index, a copy of the data is stored in the sys-
tem, and the index is updated. This process might have to be
performed for millions of segments during a backup.

Table 1 presents an example which gives a sense of the
target scale and the challenges of a large scale system. In
this example, the performance requirements dictate that we
need to maintain the segment fingerprint index in main mem-
ory, but its size is simply too large (2000 GB) to fit1. Storing
the index on disk is not a viable solution, because disk ran-
dom access speed can not support 75 Kops/sec. Additionally,

1Notice that the 20 bytes do not include additional block metadata (loca-
tion, flags, etc). For a 20-byte fingerprint we would require atotal of at least
25 bytes per block entry.



segment fingerprints are cryptographic hashes, randomly dis-
tributed in the index, and adjacent index entries share no lo-
cality among them. Therefore, segment read-ahead and sim-
ple caching cannot make up for low disk performance.

2.2 Resource Reclamation

Contrary to traditional backup systems, where each file con-
sists of its own data blocks, a deduplication system shares
data blocks by default. Whenever a file is deleted, we need
to determine whether each of its data blocks is still in use. If
not, we can reclaim the segment and reuse the space.

The simplest method to solve this problem is reference
counting for segments: a segment’s reference count is incre-
mented every time it is used by a file, and decremented when
the data segment is released—eventually reclaiming the seg-
ment when the count drops to zero.

Reference counting is less suitable for deduplication for
several reasons. First, if we want to build a multi-node large
scale deduplication system, reference counting will need to
be transactional—in order to support references to remote
data segments—leading to serious performance degradation.
Second, even in a single-node system, it is not trivial to
make a simple reference count work correctly: any lost or
repeated update will incorrectly change the count. Logging
is necessary to recover from these error conditions. If a data
object becomes corrupted, however, it is desirable to know
which files are using it, so as to request new copies of those
files, and recover the corrupted data. Unfortunately, refer-
ence counting cannot help us determine which files are using
a particular data segment.

Maintaining a reference list is a better solution, since it
is immune to repeated reference updates, since a reference
list can determine whether the reference add/remove oper-
ation in question has been performed already. Furthermore,
reference lists have the capability to identify which files are
using each data segment. However, although reference lists
are immune to repeated operations, they cannot deal with lost
operations and transactions, and some kind of logging is still
necessary to ensure correctness. Additionally, maintaining a
variable-length reference list has heavy space and computa-
tional overhead, since we need to persistently store it on disk.
Also, managing individual reference lists for each of the bil-
lions of data segments, is simply too costly, while managing
a single reference list for all data segments would require to
allocate space for new entries on every addition, or rewrite
the whole list. In either case, there is no simple solution.

Another alternative is the mark-and-sweep approach. Dur-
ing the mark phase, we need to go through all files and mark
all data segments that are in use. Then, in the sweep phase,
we sweep the data segment lists, reclaiming all unmarked
segments. The main advantage of mark-and-sweep is that it
is very resilient to errors. If anything goes wrong, we can
simply restart the process, and all operations can be repeated
without side effects. The main downside, however, is that it
is not scalable: going back to the example of Table 1, we

would need to deal withN = 100 Gsegments. If a file uses
fingerprints (F = 20 bytes) to reference data segments, we
are going to read at leastN * F = 2,000 GB of data in order to
mark all files once, assuming each data segment is used once.
In a typical system, where each data segment will be used
an average of 10 times (deduplication factor), marking once
would require reading 20,000 GB of data. Assuming disk
speed of 300 MB/sec, marking alone will take 18.5 hours.
Since mark-and-sweep needs to touch all files in the system,
the larger the system, the slower the process becomes.

3 TOWARD A SCALABLE DESIGN
When considering a scalable deduplication server design,
we have to take into consideration the following intertwined
metrics: speed, scale, and space. In order to reduce space us-
age, we do extra work for data segment lookup and sharing.
This impacts backup speed. Which, in turn, can be especially
difficult to achieve when the system reaches a larger scale.
Keeping these three metrics in mind, we define the follow-
ing as our goals:

• Scalability: support hundreds of billions of segments.
Ideally, we would like to support an unlimited number
of data segments.

• Capacity: perform best effort deduplication. If re-
sources are scarce, we are willing to sacrifice some
space for speed and scale.

• Speed: near raw disk throughput for backup, restore,
and data removal.

Even though space savings is deduplication’s primary pur-
pose, it is not the only goal. Speed (i.e., high throughput) is
also important, because a system that is too slow to finish a
backup within a backup window, is useless. Scalability is im-
portant, since a highly scalable system can greatly decrease
the management cost, by reducing the number of computers
involved. Thus speed and scalability are more a usability is-
sue. We aim at making our system usable, and then try our
best to save space under the resource constraints.

3.1 Indexing: Beyond Memory Bounds
Notice that successfully locating a fingerprint in the index
during backup only affects the deduplication efficiency of
the server. For example, if a lookup fails, even though the
segment in question is already stored in the system, a dupli-
cate copy of the segment will be stored, but correctness will
be preserved. Using this kind of flexibility, we apply sam-
pling techniques and maintain only a subset of fingerprints
in the memory index.

For our sampled index we assume a sampling periodT,
signifying that we insert in the index only “1 outT” new
fingerprints. We define a sampling rateRas follows:

R= 1/T = (S∗M)/(E ∗C) (1)

whereM is the amount of memory available for indexing (in
GB), S is the deduplication segment size (in KB),E is the



memory entry size (in bytes), andC is the total supported
storage (in TB). For instance, in the example of Table 1, us-
ing a generous 32 bytes per index entry (20 bytes for the fin-
gerprint + 12 bytes of entry metadata), with 4 KB segments
and 32 GB of memory available for indexing, we can support
4 TB of data with a sampling rate of 1 (i.e., no entries are
dropped). Scaling to 400 TB, would require a sampling rate
of 0.01—i.e., insert in the index one out of 100 fingerprints.
Using an 8 KB segment size, the sampling rate doubles to
0.02 (one out of 50 segments), sacrificing some index ac-
curacy (deduplication efficiency) for higher scalability.This
sampling scheme allows us to scale to a theoretically “infi-
nite” capacity: expanding the system’s storage capacity with-
out upgrading its indexing capacity (i.e., amount of RAM),
comes at the cost of lower sampling rates (i.e., lower dedupli-
cation efficiency). Investing in indexing capacity (by adding
more RAM), is rewarded with higher sampling rates.

3.1.1 Spatial Locality and Pre-fetching

Using sampled indexing we are able to scale to higher stor-
age capacity, but the index hit-rate—and, consequently, the
deduplication efficiency—would beT times lower. To ad-
dress this problem, we are relying on the spatial locality
among data segments: during backup, adjacent segments are
stored in the same disk container—even if some of the rele-
vant fingerprints are not sampled for insertion in the index.
Upon an index hit, we locate the container pointed by the in-
dex entry, and temporarily pre-fetch that container’s internal
fingerprint index into memory. The likelihood of subsequent
lookups hitting on these temporary index entries is very high,
due to spatial locality properties of data streams—previously
observed and taken advantage of in many deduplication sys-
tems (e.g., [4]). Using part of main memory to implement
this type of container index caching is significantly improves
the deduplication efficiency, even when relatively low sam-
pling rates are utilized.

3.1.2 Progressive Sampling

Sampled indexing and container index pre-fetching provide
us with a scalable, well performing indexing solution with
reasonable deduplication efficiency. We can further improve
the deduplication efficiency, by observing that formula 1
calculates the minimum rate required to support the total
amount of available storage. Alternatively, we can calculate
a progressive sampling rate, by using the amount of stor-
age currentlyused—as opposed to the total capacity. For in-
stance, in the previous example, if the system is equipped
with 400 TB of storage, but only 500 GB are being used,
there is no reason to utilize the rate R = 0.01, since we can
easily index all 500 GB of data stored in the system. As the
amount of used storage increases, we can adjust the sampling
rate and easily re-sample the index, by dropping the extra
entries. For instance, we can start with R = 1 (all FPs are in-
serted in the index), and once the amount of utilized storage
approaches 8 TB, we can switch to R = 0.5, by dropping half
the entries in the index (e.g., use “mod T” sampling).

3.1.3 Solid State Drives for Solid Scalable Indexing

Using sampled indexing, we are able to scale to higher ca-
pacities, but main memory size remains a limiting factor for
scalability. Additionally, we need to maintain a disk copy
of the memory index, in order to provide persistence and
crash recovery. Maintaining and querying the index directly
on hard drives is not considered a viable alternative, for per-
formance reasons, but Solid State Drives (SSDs) provide an
alternative that may prove a valuable indexing tool.

SSDs support high storage capacities, with unique
performance characteristics: SATA SSDs are able to
achieve sequential read/write throughput of around 250/170
MB/sec, and about 35,000/3,300 IOPS for random 4 KB
reads/writes [5]. High-end, PCIe SSDs [6] can achieve
read/write performance of 750/500 MB/sec and around
120,000/90,000 random IOPS, respectively. Our prototype
aims to leverage SSDs and provide an alternative to memory
indexing: the fingerprint index is stored on the SSD, and it
is possible to locate a fingerprint with at most one SSD read
operation. In order to amortize the cost of low SSD write per-
formance (dominated by long flash memory erase cycles),
index updates are logged, buffered and batched. Addition-
ally, container indexes are pre-fetched and cached, in order
to amortize some of the SSD read cost. By storing the pri-
mary index on the SSD, we achieve the following benefits:

• Better deduplication: sampling rate calculated using
SSD capacity.

• Memory benefits: large amounts of RAM no longer
needed—available RAM used primarily for caching.

• Full indexing: a large SSD can support a full index
• Index persistence: index persistently stored at all times

Notice that when using an SSD index, the memory would be
used primarily for caching purposes, as well as for storing a
Bloom filter large enough to summarize the SSD.

3.2 Grouped Mark-and-Sweep
In order to make mark-and-sweep a scalable solution, we
must reduce the number of files we need to touch during the
process. Based on the observation that the majority of files
in the system are not changed between backups—and there-
fore we do not need to include them in the mark phase over
and over again—we propose thegrouped mark-and-sweep
algorithm, presented in Figure 1.

Each backup, consists of a list of files, and one or more
backups form a group. We track changes to each group of
backups, and for each changed group we further track if files
are added to or deleted from it. In Figure 1, we assume that
some files were deleted from Group1 and some files were
added to Group3, while Group2 remained unchanged since
the last mark-and-sweep cycle. G1, G2, and G3 are the mark
results of each group’s containers, and can be thought of as
bitmaps showing which data blocks in the container are used
by the files in a particular group. For example, G1 over SO
container 1 shows which data blocks in container 1 are used



���������������������
���������������������
���������������������
���������������������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

����������
����������
����������
����������

����������
����������
����������
����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

����������
����������
����������
����������

����������
����������
����������
����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������

���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������

��������������������
��������������������
��������������������
��������������������

Some DOs deleted

G1

G2 G2G2G2

Group 2

Backup 3 Backup 4 Backup 5

Group 3

Backup 1 Backup 2

Group 1

Some DOs added

G1

G3 G3

SO container 1 SO container 2 SO container 3 SO container 4 SO container 5

Containers to sweep

Figure 1: Example illustrating the scalability of our grouped mark-and-sweep mechanism.

by files from Group1. In our prototype, one mark-and-sweep
cycle would involve the following steps:

• Go through all the changed groups and mark. Since
Group1 and Group3 have been changed, we clear their
old mark results, i.e., G1 and G3, for all containers. Go
through all the files in Group1 and Group3. Generate
new G1 and G3 for all containers that have data blocks
used by files in Group1 and Group3, respectively.

• During the mark phase, track all containers which are
marked from groups (Group1) that have files deleted.
Put the containers to the sweep list. Only containers in
the sweep list may have data blocks freed because only
these containers are used by groups that have deleted
files.

• After all files in changed groups (Group1 and Group3)
are marked, sweep containers in the sweep list. In our
example, it will be SO container 1 and SO container 2.
For each container in the sweep list, merge the mark
results of all groups for that container. If a data block is
not used, it can be reclaimed.

Generalizing the above example, our approach takes the fol-
lowing steps to make mark-and-sweep scalable:

• Divide files to groups. Track changes to each group.
Only mark the changed groups and avoid repeatedly
marking the unchanged groups. Store the mark results.
For unchanged groups, the old mark results can be
reused.

• Track the affected containers. Only containers storing
data blocks used from groups that have deleted files
are put to sweep list because only these containers may
have data blocks freed. During sweep, mark results are
merged to determine if a data block is still in use.

In the above process, the workload is proportional only to the
working set, as opposed to being proportional to the capac-
ity of the whole system, since we avoid touching unchanged
data, while still achieving the benefits of mark-and-sweep.

4 PRELIMINARY EVALUATION
We have implemented a full prototype of our scalable dedu-
plication system design for Linux. Although our prototype
implementation is still in progress, we are already able to
perform full backups and evaluate the effectiveness of our
scalability improvements.

4.1 Indexing
The current index implementation uses a split hash table de-
sign: one hash table (“the index”) is used to hold all sam-
pled entries, and a separate hash table (“the cache”) is used
to cache pre-fetched entries. Hash table buckets can be one
or a few KB in size, and different strategies can be used for
collision resolution: we want to avoid dropping colliding en-
tries in the index, therefore we use chaining for hash table
buckets—incurring a small performance penalty. However,
the cache does not have such strict requirements, but we aim
at high performance. When a particular bucket is full, we
clear the bucket and make room for new entries. We keep
track of already pre-fetched container indexes, in order to
avoid unnecessary pre-fetching.

A lot of effort was invested in optimizing memory usage:
index entry size has been reduced to sizes between 18 or
19 bytes, and all pointers have been substituted with offsets,
leading to memory savings, and making the index easily se-
rializable on disk.

Table 2 shows that index performance depends a lot on the
index state: when using chaining, index operations become
slower as the index fills up. However, even at high index load,
index performance is well within our performance goals: on
a 3 GHz Intel Xeon machine, we are able to achieve through-
put of 229, 394 and 178 Kops/sec for lookup, insert and
delete operations respectively—much faster than our goal of
75 Kops/sec. Assuming a 4 KB segment, this performance
corresponds to 1,576, 916 and 712 MB/sec, just for sam-
pled index entries. However, this high performance comes
at a small cost: a small percentage of entries may need to be
dropped, if the index runs out of buckets for colliding en-



X Load Insert Lookup Remove
1 M 0.7% 4,825 4,783 8,443

10 M 7% 5,411 5,320 8,923
100 M 70% 10,412 6,701 13,807
145 M 97% 13,101 7,620 16,836

Table 2: Average insert/lookup/remove cost, in CPU cycles, when the in-
dex is pre-populated withX entries. Index load calculated based on total
capacity of 149 Mentries.

SATA SSD ioDrive
Seek time 0.24 msec 0.06 msec
Throughput 90 MB/sec 454 MB/sec
Cycles per lookup 138,871 55,590
Ops per sec 17,323 53,646

Table 3: Unbuffered SSD performance. Ops/sec assume a 3 GHz CPU.

tries. Performance presented in Table 2 is using a configura-
tion guaranteed to suffer less than 2.3% of dropped entries.

The SSD index implementation was tested on a low-end
SATA SSD, as well as a 160 GB SLC PCIe ioDrive. Table 3
presents the results of our preliminary SSD tests for full fin-
gerprint lookup, demonstrating that our approach can be a
viable, well-performing solution—especially after we intro-
duce container caching.

4.2 Throughput and Dedup Performance

We have tested our prototype on a Linux server, using a 8
TB disk array with a raw read/write throughput of 305/330
MB/sec. Backup throughput was initially CPU-bound, due
to the overwhelmingly expensive hash calculations. After
implementing multi-threaded hash calculation, the backup
server is able to achieve 98% of raw-disk backup through-
put of for new backups (326 MB/sec). Deduplication backup
tests, with container pre-fetching enabled, and using sam-
pling rates of 10% and 14%, yielded perfect deduplication
for consecutive backups of identical files—even though only
a small subset of file fingerprints were sampled. With perfect
deduplication, we observed backup throughput of up to 663
MB/sec. At very high capacity and index loads (above 90%),
deduplicated backup throughput drops to a performance near
the disk read throughput. The exact reasons are being inves-
tigated, but we believe it is due to disk read limitations (for
container index pre-fetching) and a high number of cache
flushes. Recent, ongoing testing on better hardware (more
CPU cores, faster Fiber Channel arrays) showed that our
design is limited by I/O performance—and not by inherent
throughput limitations of our design.

4.3 Resource Reclamation
Table 4 shows time and throughput measurements for our
grouped mark-and-sweep. After adding or removing data,
our grouped mark-and-sweep thread runs to update the mark
results for new and/or deleted backups. If any files or back-
ups are deleted, it further checks whether any containers

Data Add Delete
Time (Throughput) Time (Throughput)

30 GB 4.29 sec (6.99 GB/sec) 21.77 sec (1.38 GB/sec)
300 GB 39.33 sec (7.63 GB/sec) 218.77 sec (1.37 GB/sec)
990 GB 163.02 sec (6.07 GB/sec) 690.29 sec (1.43 GB/sec)

Table 4: Grouped mark-and-sweep resource reclamation is scalable: pro-
cessing time is proportional to the size of the working set and throughput is
stable regardless of working set size and system capacity.

can be reclaimed. We performed three different backups (30
GB, 300 GB, and 990 GB), measuring grouped mark-and-
sweep performance after each backup. Then we removed
each backup one by one, measured the mark-and-sweep pro-
cessing time for each removal, and found it to be propor-
tional to the amount of data added or deleted. The through-
put is consistent—regardless of the size of the data added or
removed. We repeated these tests with our test system run-
ning near its capacity (8 TB, 2 billion data segments), and
got the same results, demonstrating that our resource recla-
mation method is indeed scalable.

5 CONCLUSIONS AND FUTURE WORK
Our work explores methods to overcome the scalability limi-
tations of deduplication servers. We have addressed two very
important scalability problems: sampled indexing can be
used to overcome memory limitations, while grouped mark-
and-sweep can significantly improve resource reclamation.

Our preliminary results have been encouraging, demon-
strating that our techniques can indeed help us achieve high
scalability, and very good throughput. We aim to investigate
these and other methods further, pursuing maximum scala-
bility for our prototype. In particular, among other things,
our future work will focus on improving index performance,
investigating the effectiveness of a full SSD index implemen-
tation, and introduce multi-threaded implementations of all
CPU-intensive operations that can be parallelized.

REFERENCES
[1] Sean Quinlan and Sean Dorward, “Venti: A new approach to

archival storage,” inFAST ’02: Proceedings of the Conference
on File and Storage Technologies, Berkeley, CA, USA, 2002,
pp. 89–101, USENIX Association.

[2] OpenDedup, “A userspace deduplication file system
(SDFS),” Mar. 2010, http://code.google.com/p/
opendedup/.

[3] Symantec, “Symantec NetBackup PureDisk,”http://www.
symantec.com/business/netbackup-puredisk.

[4] Benjamin Zhu, Kai Li, and R. Hugo Patterson, “Avoiding the
disk bottleneck in the data domain deduplication file system,”
in FAST ’08: Proceedings of the Conference on File and Stor-
age Technologies, 2008, pp. 269–282.

[5] Intel Corporation, “Intel X25-E Extreme SATA Solid-State
Drive,” May 2009, http://download.intel.com/
design/flash/nand/extreme/319984.pdf.

[6] Fusion-IO Corporation, “ioDrive,” 2010, http://www.
fusionio.com/products/iodrive/.


	Abstract
	Introduction
	Hitting the Memory Wall
	Resource Reclamation

	Toward a Scalable Design
	Indexing: Beyond Memory Bounds
	Spatial Locality and Pre-fetching
	Progressive Sampling
	Solid State Drives for Solid Scalable Indexing

	Grouped Mark-and-Sweep

	Preliminary Evaluation
	Indexing
	Throughput and Dedup Performance
	Resource Reclamation

	Conclusions and Future Work

