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Abstract
Smartphones are becoming some of our most trusted
computing devices. People use them to store highly sen-
sitive information including email, passwords, financial
accounts, and medical records. These properties make
smartphones an essential platform for privacy-preserving
applications. To date, this area remains largely unex-
plored mainly because privacy-preserving computation
protocols were thought to be too heavyweight for practi-
cal applications, even for standard desktops. We propose
using smartphones to perform secure multi-party com-
putation. The limitations of smartphones provide a num-
ber of challenges for building such applications. In this
paper, we introduce the issues that make smartphones a
unique platform for secure computation, identify some
interesting potential applications, and describe our initial
experiences creating privacy-preserving applications on
Android devices.

1 Introduction

Secure computation enables two or more mutually dis-
trusting parties to collaboratively evaluate functions
without revealing their inputs to the other parties. It
eliminates the need for the distrusting parties to agree on
a fully trusted third party who can receive both party’s
data and perform the computation, instead allowing the
participants to collaboratively evaluate a function with-
out revealing their inputs to the others. In the 1980s, Yao
proposed a generic solution to secure function evalua-
tion using garbled circuits [22]. The basic idea is to im-
plement arbitrary truth tables by first representing every
bit with a κ-bit key (where κ is a security parameter),
then “simulating” the evaluation with encrypt and de-
crypt operations on those keys. Lindell and Pinkas [16]
provide a detailed description and security proof of the
technique. The secure computation starts by using an
oblivious transfer (OT) protocol [13, 18] to allow the cir-
cuit generator to send the initial keys representing the

evaluator’s private inputs to the evaluator without learn-
ing their private inputs.

The research community has historically viewed gar-
bled circuits as too inefficient for practical applications.
However, recent work (including the free-XOR tech-
nique [15], the Garbled Row Reduction technique [20],
and the scalable and efficient framework upon which this
work builds [9, 12]) has brought significant efficiency
improvements in generating and evaluating garbled cir-
cuits over previous implementations [12]. The main im-
pediment to practical applications of the garbled circuit
technique in previous works (most of which were built
on Fairplay [17]) was the need to generate and keep
in memory the entire circuit, which becomes huge for
any interesting problem. Our framework overcomes this
by pipelining circuit generation and evaluation. Secure
computation has reached the point where practical and
useful privacy-preserving applications can now be envi-
sioned and implemented even using smartphones.

Smartphones provide unique opportunities and chal-
lenges for secure computation. They are personal de-
vices, containing the most sensitive private information
including phone calls, emails, contacts, documents, and
financial and medical records. Moreover, mobile de-
vices are increasingly used in two-factor authentication
schemes and even payment systems. We can leverage
this to create privacy-preserving applications not feasi-
ble on traditional platforms. On the other hand, the pro-
cessing power and memory available on mobile devices
is still orders of magnitude less than what is available
on typical laptops, and the computation that can be done
on battery-powered mobile devices is severely limited by
the energy available.

Threat Models. In secure computation, a semi-honest
adversary is assumed to always follow the protocol speci-
fication but attempts to learn additional information from
observing the protocol execution. In contrast, a mali-
cious adversary can deviate arbitrarily from the protocol



specification in arbitrary ways such as providing faulty
garbled truth table entries for some execution paths.
In many scenarios, it suffices to assume covert adver-
saries [8], who can deviate from the protocol to cheat
but will be caught by a good probability (say 1

2 instead
of negligibly close to 1).

Contributions. In this work, we explore the design
space of secure computing applications on smartphones
and suggest various approaches to deal with both the effi-
ciency and security issues by leveraging the unique prop-
erties of the mobile computing platform. Section 2 high-
lights the potential for secure computing applications on
smartphones and summarizes our initial efforts develop-
ing secure two-party computing applications on Android
devices. We find that the limited processing power in-
stead of the bandwidth poses the biggest performance
hurdle. Section 3 discusses the technical and social chal-
lenges that must be addressed to make secure computa-
tion successful on the mobile platform.

2 Applications

Secure computation can enable a wide range of privacy-
preserving mobile applications. Smartphones stay with
their owners all day and are filled with private informa-
tion. Secure computation techniques serve as the prefer-
able way to use the private data with minimal compro-
mise of users’ privacy. On the other hand, secure compu-
tation usually requires all participants to be online to run
the secure protocols, whereas naı̈vely keeping the agent
programs always online can lead to excessive leakage
of users private data due to repeated protocol execution.
With smartphones, the dilemma is alleviated since users
can either conveniently activate a protocol agent explic-
itly, or can employ a strategic automated procedure to
decide whether to join a secure computing protocol.

Two-Party Applications. There are many interesting
and useful privacy-preserving applications that are espe-
cially well-suited to smartphones because of their ubiq-
uity, mobility, and access to personal data. For exam-
ple, users could compute a joint function over their fre-
quent contacts, Facebook and LinkedIn acquaintances,
or the locations they have been. In another application,
business associates could easily use their phones to al-
locate a common slot on their timetables for a collabo-
rative meeting without leaking other information about
their private schedules. Moreover, with computations
on location data, people could be able to quickly dis-
cover nearby friends without otherwise sacrificing loca-
tion privacy. Retailers could implement targeted adver-
tising where merchants keep their special offers secret
while customers would not need to sacrifice their private

purchasing history or personal preferences.

Multi-Party Applications. Many privacy-preserving
applications such as private event scheduling are even
more useful in multi-party scenarios. Many clas-
sic multi-party secure computing applications such as
privacy-preserving voting, auctions, peer-ranking and
stable matching [7] would also be useful on smartphones.
While our prototype applications target two-party sce-
narios, garbled circuit protocols can be extended to sup-
port multiple parties [6]. Thus, our approach could be
extended to enable privacy-preserving computations in-
volving several participants. Many additional technical
and engineering challenges would need to be addressed
to support large multi-party computations. For example,
to pair the devices, we might want to use location prox-
imity metrics (based on GPS, or a communication chan-
nel like Bluetooth) to conveniently setup a multi-party
computation for a set of nearby devices.

For the rest of this paper, we focus on two-party appli-
cations. Next, we describe our experiences in developing
two prototype secure computations applications where
participants explicitly invoke and interact with the appli-
cations. The following subsection speculates on oppor-
tunities for latent secure computations that execute auto-
matically in the background.

2.1 Explicit Secure Computations
We have built two prototype privacy-preserving applica-
tions for Android devices, both of which involve explicit
interactions from both participants. The prototypes use
the garbled circuit framework from Huang et al. [12] in
a straightforward way, and use Wi-Fi for all communica-
tion. The Java framework and library allow a developer
to translate the secure components of the target applica-
tion into Boolean circuits from which the library facili-
tates the secure computation. They demonstrate the fea-
sibility of secure computation on smartphones, but are
only a first step towards exploring the full potential of
secure computation on smartphones.

Preliminary results show that the mobile devices are
roughly 1000 times slower than typical desktops. Run-
ning on Android Nexus One phones, the protocols exe-
cute at a speed of approximately 100 non-free gates per
second compared to 100,000 gates per second for desk-
tops [12]. Even this rate, however, is fast enough to en-
able some interesting secure applications. In Section 3
we discuss methods that will enable much faster secure
computations on current and future smartphones.

Private Set Intersection. Private set intersection en-
ables many interesting privacy-preserving applications.
For example, two people who meet at a conference
could securely discover mutual contacts without reveal-
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ing their address books, or two new acquaintances can
find their common friends, hobbies, or recently visited
places without exposing other information about their
unshared friends or details about their movement. To
investigate the feasibility of secure computation on mo-
bile devices, we developed an Android application to dis-
cover the common contacts of two users while preserving
the privacy of unshared contacts.

Previous approaches to private set intersection either
use homomorphic encryption to evaluate a polynomial
that encodes the set elements [5] or employ a secure en-
cryption protocol. Huang et al. developed a series of
methods to compute set intersection more efficiently us-
ing garbled circuits [11]. For example, with the Bit-AND
scheme each set element is mapped to a bit in the bit-
vector, the set intersection is computed by simply using
garbled AND gates. Despite its simplicity, this is suit-
able and efficient for many real world applications where
the element space is relatively small (e.g. ≤ 216). Using
Bit-AND, computing the common elements from a set of
about 100 candidates can be finished almost instantly.

For the large element space of email addresses and
phone numbers, the Bit-AND-based scheme is imprac-
tical, and so we implemented a more complex private
set intersection scheme, called Sort-Compare-Shuffle
(SCS) [11] to perform the computation in Θ(n logn)
time, where n is the number of contacts to be compared.

Figure 1: Screenshot of CommonContacts Running In-
tersection Computation. The background video illus-
trates the computation phases such as the bitonic sorting
operation shown in the image, but reveals nothing about
the specific execution.

The CommonContacts application [10] can compute the
contact set intersection as long as participating devices
are running the software and connected to the same Wi-
Fi network. The unique identifier of each contact (the
email address or phone number) is hashed to a 24-bit
value, and the result is the intersection of the sets of hash
values. Each client will display the result by mapping
the hash values in the result back to the corresponding
contact’s identifier.

Figure 1 shows a screenshot of CommonContacts per-
forming the comparison. Table 1 shows the time cost.
Execution takes on the order of minutes, depending on
the speed of the devices and set sizes. Section 3 discusses
some of the reasons the performance on smartphones is
so much worse than on current desktops, and opportuni-
ties for improving it.

Similar to our common contacts application, De
Cristofaro et al. [3] recently studied the Private Contact
Discovery problem which focuses on enabling peer-to-
peer common certified contact discovery. Based upon
the RSA assumption on safe moduli in Random Ora-
cle Model, they develop a custom Contact Discovery
Scheme (CDS) that includes protocols to add, revoke,
and discover contacts. In contrast to our approach using
generic garbled circuits, customized cryptographic pro-
tocols require new security proofs and can be difficult to
adapt to other applications. On the other hand, custom
protocols could provide better performance for targeted
applications. De Cristofaro et al. report taking 5 seconds
to run the “discover” protocol with 100 contacts on an
ARMv7 processor. However, it is hard to compare the
results directly since their scheme incurs periodic extra
costs to execute the “add” and“revoke” protocols. Addi-
tionally, it is also unclear how expensive it is to retrieve
the public keys of all contacts involved in a discovery.

Personal Genetics. The cost of genome sequencing is
dropping to the point where it may soon be common for
individuals to store their own genome on their smart-
phones. This could enable secure computing applica-
tions that allow friends or even strangers to search for
kinship relationships (e.g., discovering you are likely to
be third cousins) or even genetic dating applications that
would allow two potential partners to estimate the risk
that their off-spring would have certain hereditary dis-
eases without otherwise exposing their genomes. Afford-
able services already exist to perform a computationally

Set size 32 64 128 256
Time (seconds) 68 134 285 598

Table 1: Total Execution Time for CommonContacts for
Different Input Sizes (running on Nexus One phones).
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insecure genomic analysis [14, 19] by signing legal con-
tracts. Many different methods exist to estimate the risks
of hereditary diseases, varying in the level of complexity.
In a simple model, genetic diseases are determined by re-
cessive alleles, meaning that if both parents are carriers
their children will suffer from that disease. This func-
tionality can obviously be computed by AND-ing both
parent’s carrier bit. Using a benchmark prototype im-
plementation on our Nexus One phones, it takes about 7
seconds to estimate the risk of 25 genetic diseases.

2.2 Background Secure Computations

Our demo applications target scenarios in which both
parties consent to the computation by deliberately run-
ning the process. These scenarios become more practi-
cal with mobile devices because users can spontaneously
run the computations on-demand. However, applications
can further leverage the ubiquitous and always-available
nature of mobile devices to perform computations peri-
odically or constantly on behalf of the owner.

For example, the genetic kinship application can con-
stantly run in the background and notify users when a
(possibly unknown) genetic relative is nearby. In a sim-
ilar scenario, a social application can ping nearby peo-
ple searching for shared interests or hobbies. Real-time
marketing offers utility to both consumers and retail, but
privacy concerns can limit recommendations and person-
alization. A privacy-preserving targeted advertising sys-
tem would leverage browsing and shopping history to
allow physical retail locations to make specialized dis-
counts directly to a customer’s device upon entering the
store. Consumers may not want to share their full inter-
ests and shopping history with the merchant, but may be
willing to accept personalized special offers based on a
secure computation using this information.

One issue with latent secure computations, is that each
protocol execution may leak some information about the
user’s private data. Hence, we need to cap the num-
ber of protocol executions to ensure the overall leakage
of the private information is acceptable. Depending on
the nature of application, a sophisticated strategy could
be employed to decide whether to participate in a pro-
tocol execution based on a number of metrics such as
the peer’s ID, time of last execution, or frequency and
results of previous executions. Since we are targeting
smartphones, it is also possible to enforce execution re-
quirements based on the current location.

An even more robust and interesting discretion rule
could use the wireless carrier, a jointly trusted entity,
to ensure only executing the protocol with “legitimate”
peers (e.g., peers in my phone book or peers I talked
to within last 3 months). Another approach is to use
application-specific self-auditing schemes to maintain

low information leakage. Privacy-preserving applica-
tions could include relatively simple logic (implemented
by garbled circuits) into the computation to roughly esti-
mate how much information about the user’s private in-
put can be leaked by the imminent output. As an exam-
ple, for private set intersection it is advisable to add logic
to the circuit that checks the size of the result. If that size
exceeds some prescribed threshold, the protocol termi-
nates without revealing the result since this result would
leak too much information about the owner’s data (and
may indicate that the peer is probing by misrepresenting
its own set).

3 Challenges

The main challenges in implementing privacy-preserving
applications on mobile devices stem from the limited re-
sources (including computation power, bandwidth, and
energy) available on these devices.

Performance. Our early prototypes indicate that the
main performance bottleneck on mobile devices is the
limited processing power rather than the network band-
width, which averages to about 3 KB/s (far less than the
capacity of any popular Wi-Fi network).

Our prototype implementation uses the MD5 hash
function for the encryption scheme. Due to the lack of
good hardware support for fast cryptographic operations
on today’s Android phones, the processing speed is about
1000 times slower than on current desktops. This perfor-
mance could be substantially improved either by access-
ing a cryptographic hardware module, or by finding a ci-
pher algorithm that is more efficient for mobile devices.

In addition, we also observe substantial footprint of
the JVM’s garbage collection thread. Our code uses
many BigInteger objects, which is an immutable datatype
provided by the Java API. Combined with the fact that
smartphones have very limited memory, this results in
very frequent halts to reclaim storage used by old BigIn-
teger objects. We anticipate improvements to our imple-
mentation that will avoid this problem by using a mutable
datatype and explicitly managing the memory needed to
represent the garbled table entries.

Circuit execution is inherently easy to parallelize so
that multiple cores, especially those on the GPU, can eas-
ily bring about a large speedup. Android 3.0 supports
multiple cores and several devices are now on the mar-
ket with dual-core processors. It may also be helpful to
leverage the Renderscript API available in Android 3.0,
which allows low-level, high performance execution on
the device CPU or GPU to increase both concurrent op-
erations and per instruction work [1].

Pairing. The way to establish network connections can
be an important design decision affecting application
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performance during the computation and user experience
in device pairing. As a fallback strategy, devices could be
paired through a third-party and communicate over the
Internet. For applications that are better run with peers
physically nearby, the best choice would be communi-
cating directly through Wi-Fi, though few devices on the
market support ad-hoc Wi-Fi networks and thus would
require an an existing access point. Bluetooth commu-
nication has sufficient bandwidth and is another alter-
native for peer-to-peer communication mechanism, but
pairing can be cumbersome and requires direct user ac-
tion on Android. To supplement other technologies and
smoother pairing of devices, users could utilize the Near
Field Communication (NFC) sensors included in newer
smartphones. Another strategy is to take advantage of
trusted relationships with carriers to either set up Wi-Fi
connections with known peers, or to make connections
directly using the cellular network.

Developing Applications. Most developers are unaware
of secure computation. New industry education ef-
forts and the development of a wide-variety of tools can
support adoption of privacy-preserving applications for
smartphones.

The secure computation design process we envision
begins with the development team identifying secure and
insecure aspects of the application with manual inspec-
tion or the help of tools, possibly using taint-tracking
techniques to identify the security requirements of appli-
cations. Then to implement the secure functions, devel-
opers can use specific primitives found in the literature
or a general framework like the one we have developed.

Our Java-based generic secure-computation frame-
work requires developers to translate their desired func-
tion into a binary circuit from which we can execute. We
provide a series of basic gates and sub-circuits to serve
(AND, OR, XOR, adders, comparators, etc.) as building
blocks with more complex components being developed
and shared over time. This circuit-level approach enables
important optimizations that can dramatically reduce the
number of garbled gates that must be generated and eval-
uated [12], but a higher-level representation (such as the
Algol-like language used by Fairplay [17]) may be more
accessible to typical developers if compilers can be de-
veloped that produce sufficiently efficient circuits from
high-level representations. Eventually, we hope it will
be possible to develop tools that automatically produce
efficient secure computations from Java programs anno-
tated with information about what data is private.

Lastly, it is important to be aware of what can be in-
ferred about the private data from the output of a secure
computation. For example, a naı̈ve set intersection im-
plementation could allow one party to use the universal
set as the input, revealing the other participant’s entire
set. It may be possible for development tools to eventu-

ally include techniques for automatically generating au-
diting circuits that check the amount of information that
would be leaked before a result is revealed.

Stronger Adversaries. Our prototype applications as-
sume semi-honest adversaries, a very weak threat model.
However, efficient protocols against stronger adversaries
remain to be developed. In this sense, known tech-
niques (either traditional cut-and-choose or commit-and-
proof) to thwart malicious adversaries are too expensive
to be feasible on smartphones in the foreseeable future.
As an alternative, we could consider applying software-
based attestation techniques [21] to ensure each party
runs an expected implementation of the protocol. Be-
cause smartphones have more fixed hardware and soft-
ware than traditional desktops, software-based attesta-
tion may be more feasible for smartphones than more
complex platforms. In addition, it could also be a promis-
ing direction to develop protocols based on commodity-
based cryptography [2, 4] where a third party (such as
the wireless carrier) is trusted to providing private-data-
independent random strings that satisfy certain property
but does not receive any private data.

Users. Secure function evaluation is a difficult and some-
what paradoxical concept for typical smartphone users.
Wide acceptance depends on both careful user interface
design, integration with smartphone platforms, and sig-
nificant user education efforts to convince users how a
secure computation is different from providing their data
to a peer or third party. Even with good interfaces, users
will need to understand what it means to install and
execute a privacy-preserving application. Additionally,
running applications should offer clear (graphical) indi-
cations on what data is protected during the computa-
tion and differentiate themselves from other typical pro-
grams. Perhaps standard permissions could be extended
with new permissions that allow an application to access
particular private data, but to only use it in network proto-
cols that use secure computation to prevent leaking. We
also envision the emergence of a privacy-focused appli-
cation markets where a trusted party vouches for privacy
properties of applications built using a standard frame-
work.

4 Conclusion

Smartphones are becoming an essential computing plat-
form, and the devices that store many individual’s most
private data. Combined with the significant improve-
ments in the efficiency of garbled circuit execution,
this presents an exciting opportunity for a host of new
privacy-preserving applications that leverage the mobil-
ity, location-awareness, data accessibility, and the rela-
tionships people have with their smartphones.
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Availability
The secure computation framework is available at http:
//mightbeevil.org/framework/ under the MIT license. Our
sample Android applications are available at http://
mightbeevil.org/mobile/.
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