

Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA

Embedded Firmware Diversity for Smart Electric Meters

Stephen McLaughlin, Dmitry Podkuiko, Adam Delozier, Sergei Miadzvezhanka, and Patrick McDaniel

Smart Meters

Electromechanical

Smart Meter

Systems and Internet Infrastructure Security Laboratory (SIIS)

Tuesday, August 10, 2010

Fraud - Hacking meters to reduce energy bill

Privacy - Using detailed load profiles to determine behavior

Blackout - Exploiting large numbers of meters and cutting power

PENNSTATE

PENNSTATE

PENNSTATE

PENNSTATE

Caveat: Uniqueness must depend on good randomness

PENNSTATE

Limitations of Embedded Systems

DiversityTechnique	Limitation	
Address Space Layout Randomization	No MMU	
Software Fault Isolation	No protected supervisor mode	
Non-Executable Stacks	No NX bit	
Stack Cookies	Check code not segmented	
Address Encryption	Works, but failed exploits can cause random errors	

Firmware Type	Processor Type	MMU	Privileged Mode	NX Bit	RAM
Repeater Controller	Renesas M16C	No	No	No	20KB
Wireless Mesh	Renesas H8S	No	No	No	N/A
Embedded TCP/IP	Lantronix DSTni-EX 186	No	No	No	$256 \mathrm{KB}$
Gateway Controller	Intel i386EX	Yes	Yes	No	8MB

- Diversity scheme hardness depends on secret size, which is related to machine word size.
- Smart meter components range from 32- down to 8-bit MCUs.
- This will affect the layout of some data structures in 8and 16-bit systems, where multiple machine words will be needed to store the diversified value.

Address Encryption

Normal Dereference

Exploit Dereference

Redundant Address Encryption

For three keys on

- a 16 bit MCU:
- 2⁴⁸ probes to compromise
- 2³² probes to random error

PENNSTATE

8 5 5

A 15,000 node deployment that is rate limited to 3 request/second for each meter requires approx. 10 years to fully compromise when using three keys.

Binary Instrumentation

- Feasible for embedded smart meters:
 - Statically linked code
 - Explicit call and return instructions
 - Loose performance constraints
- Code size must be minimized!

Original function call:

push	Α	;	Save address
jmp	В	;	Perform branch

Instrumented function call:

mov	D [key1_addr]	; $D = K_1$
mov	C A	; $C = A$
xor	C D	; $C = C XOR D$
push	С	; Save encrypted address
mov	D [key2_addr]	; $D = K_2$
mov	C A	;
xor	C D	; Second redundant encryption
push	C	;
mov	D [key3_addr]	; D = K_3
mov	C A	;
xor	C D	; Third redundant encryption
push	С	;
jmp	В	; Perform branch

Meter Configuration

SmartMeter[®]

Challenges / Updates

	Risks	Impact	
 Deployment – Endpoint Electric meter supply chain secured 138 curb meters set with incorrect programming Early indication that 900 MHz may trip customer GFI Bakersfield substation bank work is requiring meter redeployment of about 29,000 endpoints 	Implementation of new technology does not perform as intended. Key drivers: IT systems do not scale to meet volumes, Equipment fails at a higher rate than anticipated	Billing errors, customer complaints, inability to meet endpoint deployment goals	

The project has been using interfaces which have not completed testing (60, 50, 104, 66, 67) to enable AMS Ops to discover and initialize installed meters. The conversion approach for the MDMS needs to be revisited to determine if the right approach is to "initialize" the MEM go live weekend, or use ORT to enable "cut-over".

Summary

- Meter monocultures
 - Highly exposed nodes
 - Hard to configure
 - Same pandemic problem as other monocultures
- Diversity
 - Well understood exploit mitigation
 - Significantly slows large scale exploit attempts
 - Embedded diversity schemes will present their own challenges while facing less stringent performance requirements than traditional diversity techniques

Thank You

Seed Questions

• Are there suggestions for approaches besides diversity for mitigating large-scale meter exploitation?

• How could we reduce meter TCB, thus reducing the amount of code that needs to be diversified?

 Should we build redundant address encryption or explore additional diversity techniques?

> http://www.cse.psu.edu/~smclaugh http://siis.cse.psu.edu

Performance Considerations

PENNSTATE