
Retroactive Detection of Malware
With Applications to Mobile Platforms

Markus Jakobsson Karl-Anders Johansson
FatSkunk Inc

Mountain View, CA 94041

Abstract. We introduce a practical software-based attes-
tation approach. Our new method enables detection of any
active malware (e.g., malware that executes or is activated
by interrupts) – even if the infection occurred before our
security measure was loaded. It works independently of
computing platform, and is eminently suited to address the
threat of mobile malware, for which the current Anti-Virus
paradigm is poorly suited.

Our approach is based on memory-printing of client
devices. Memory-printing is a novel and light-weight cryp-
tographic construction whose core property is that it takes
notably longer to compute a function if given less RAM
than for which it was configured. This makes it impossible
for a malware agent to remain active (e.g., in RAM) with-
out being detected, when the function is configured to use
all space that should be free after all active applications are
swapped out.

Our approach is based on inherent timing differences
for random access of RAM, flash, and other storage; and
the time to communicate with external devices. We do not
rely on heuristics when arguing our scheme’s security. Ac-
cordingly, our approach represents a step towards greater
rigor and security assurance.

1 Introduction

Traditional Anti-Virus (AV) software offers no
guarantees of retroactive security – detection of past
infections – which is worrisome given increased rates
of malware evolution. The traditional model also
relies on constant screening. This is a liability for
mobile devices, which have limited power resources.
Mobile devices are expected to become seriously tar-
geted by malware [8] as they become the most com-
mon computing platform [6].

Software-based attestation (e.g., [3, 5, 7, 9, 10,
12–15]) promises to address this problem by allow-
ing retroactive detection of any unwanted process –
or rather, any process that remains active after the
operating system has attempted to deactivate all pro-
cesses but the attestation process. We introduce an
efficient software-based attestation method, suitable

for handsets, and prove it secure based on very sim-
ple physical assumptions. Our approach is based on
the new notion of device memory-printing – a form of
fingerprinting of device contents, whose security as-
surances are derived from the time it inherently takes
to access memory of various types. (Due to space
limitations, we refer to our extended version [9] for
the security analysis.)

Using the techniques described herein, we en-
able the detection of any active malware. Once this
has been done, a variety of methods can be used to de-
tect inactive malware. Detection of inactive malware
(which is not the focus of this paper) is easier than de-
tection of active malware since the detection process
cannot be interfered with. Many approaches are pos-
sible. For example, one can synchronize the device
with a central repository, which can use whitelisting
and blacklisting approaches to screen memory im-
ages. (To make sure that malware cannot hide by
modifying the logs used for synchronization, one can
explicitly clear any space claimed to be empty. If we
know that there is no active malware, we also know
that this deletion will occur.)

Our contribution. In contrast to the traditional
software-centric approach to malware defense, we
leverage knowledge of the hardware specifics to
achieve our security guarantees. Supported by
knowledge of bounds of how long it takes to read
from and write to memory, we describe an algorithm
that transforms the memory contents to a state that is
then reported to a verifier. This computation is care-
fully timed by this verifier, who knows how long it
should maximally take, since it knows the hardware
configuration of the verified device.

In order to remain on the device, a malware
agent either has to be active in RAM or reside in an
inactive program. Doing the former, we show, in-
troduces significant delays to generate the output ex-
pected from our algorithm (thereby resulting in de-
tection); doing the latter is detected when secondary



storage is screened. Thus, we detect infection, but do
not block it from occurring in the first place.

To avoid detection, a malware agent would
have to quickly evaluate a given function of the en-
tire memory contents of the corrupted device. To
hide active code – which must take up space in RAM
– the malware agent either has to compute the ex-
pected contents of the cells it occupies, store these
values elsewhere, or have the function results – or
parts thereof – computed by an external device. Our
solution is designed in a way that guarantees that any
of these cheating strategies must take notably longer
to carry out than the “legitimate” evaluation of the
function. These guarantees are based on known phys-
ical limitations of the hardware used, and hold even
if as little as only one byte is corrupted. Note that
attackers can easily make computation take longer
(which corresponds to even more obvious detection),
but not make the computation to appear to take less
time than it really did. This is because the client de-
vice does not report how long the computation takes,
but the timing is done by the verifier. The attacker’s
only hope therefore becomes for the time increase
caused by its presence to be dwarfed by the latency
variance of process. We describe [9] how one can use
SIM cards to almost entirely remove this variance.

The estimated time for the software attestation
is on the order of a few minutes for the parametriza-
tion considered in the paper – a device with 128 MB
RAM and one core – e.g., an Android G1. This makes
it meaningful to run the detection a few times a day,
when the device is not in use. Our technique is rela-
tively stable with respect to developments in mobile
computing, as it is essentially only the size and speed
of the RAM that matters, and most devices use stan-
dard components. We have implemented a proof-of-
concept of a close variant of our technique on a 256
MB RAM Android Beagleboard.

2 Related Work

Seshadri et al. [13] propose a timing-based ap-
proach to heuristically assess the integrity of legacy
computers. They compute a keyed checksum of the
code that computes the checksum. (In contrast, we
compute a checksum on all but our checksum code.)
Their checksum is not only a function of the check-
sum code, but also of the program counter, the data
pointer, and of CPU condition codes. A verifier de-
termines whether the code was tampered with based
on the result of the checksum computation and the
time it took to perform it. After the checksum code
has been established not to have been tampered with,

control is handed over to a function that scans the
entire device. In contrast to our solution, their so-
lution does not protect against fast, external attack-
ers that help an infected device perform the verifi-
cation. Gardner et al. [4] found that their approach
takes more than 30 minutes on a desktop (and longer
on slower computers). In contrast, our solutions takes
on the order of a minute on a handset.

Seshadri et al. [14] also propose a timing-based
approach to scan embedded devices. Their solution
does not address devices that can communicate with
their surroundings (other than with the verifying de-
vice), and is therefore not suitable to address mal-
ware on typical mobile devices, such as smartphones.
Some vulnerabilities of their solution were recently
pointed out by Castelluccia et al. [1] (although some
of these findings are contested [11].)

Scandariato et al. [12] describe a general tech-
nique based on frequent updates of application tags,
whose validity can be externally audited. This ap-
proach is heuristic, and hinges on the cost of reverse-
engineering obfuscated code. Other obfuscation-
based approaches were proposed by Hohl [7] and
Shaneck et al. [15]. Garay and Huelsbergen [3] pro-
posed an approach based on receiving executables
from the verifier.

Memory-printing has structural similarities to
memory-bound functions [2], which is a class of
functions whose execution speed depends more on
the bus speed than on the processor speed. While
the two concepts have similarities, such as a built-in
awareness of relative access speeds, they may still be
more different than they are similar. The execution
time of a memory-printing function, for example, de-
pends critically on the amount of RAM available, and
whether secondary storage is used, whereas these is-
sues do not apply to memory-bound functions.

3 Overview

The security of our solution rests on two impor-
tant assumptions:

Assumption 1: Secure device communication. We
assume that the verifying party has some way of as-
certaining that the device to be audited is in fact the
device it interacts with1. We also assume that the ver-
ifying party can send data securely to the audited de-
vice, e.g., in a way that cannot be eavesdropped2.

1Note that we make no assumptions regarding whether an in-
fected client device outsources part of the task assigned to it by the
verifying party; this will be clarified onwards.

2This can be achieved using encryption/authentication using a

2



Assumption 2: Code optimality. We assume that
the memory-printing algorithm is written in a near-
optimal manner in terms of its footprint and execution
speed, and that any modifications of the algorithm
would make it notably slower to execute. For gen-
eral software, this is not a meaningful assumption to
make; however, given the simplicity of our memory-
printing algorithm, it is quite realistic.

Definition: Free RAM. Our malware detection algo-
rithm is implemented as a kernel/algorithm monolith
that is stored in the instruction cache (where it fits in
its entirety). It has an associated working space that
is located in the data cache (and registers.) All other
RAM space is referred to as free RAM – whether it
actually is free or not.

What is done: The malware detection algorithm in-
volves the following steps on the client machine:

1. Setup I: Swap out the contents of free RAM
to flash, and perform a setup for the memory-
printing (detailed in section 6.)

2. Setup II: Receive a cryptographic seed from the
verifying party, and overwrite free RAM with
the output of a pseudo-random function using
this seed.

3. Memory-printing I: Receive a cryptographic
seed from the verifying party, and use this to
key a non-homomorphic function whose output
is written to all free RAM. We detail this step
in section 6. This process is timed by the veri-
fier, both in its entirety and for shorter intervals.
The verification is based on partial results that
are transmitted to the verifier, where they are
checked.

4. Memory-printing II: Receive a cryptographic
key from the verifying party, and compute a
keyed cryptographic hash of the entire mem-
ory contents, reporting the resulting value to the
verifying party. This process is also timed by
the verifier. The verifier compares the received
value to a locally computed keyed hash of the
expected contents.

5. Transact & Restore: Perform security-
sensitive action (such as establish SSL connec-
tion, scan flash for inactive malware, etc); then
restore RAM state by loading the contents that
were swapped out during setup I.

device-specific key, embedded in a SIM card. This key would be
used to decrypt incoming messages and authenticate outgoing traf-
fic, but cannot be read by malware.

In addition, the client machine will report state infor-
mation from its computation in steps (3) and (4) at
time intervals set by the verifying machine, and ob-
tain updates of the seed resp. key used to compute
these functions. These updates will be generated by
the verifying party, and communicated to the client
device on an as-needed basis.

The verifying machine will verify that the cor-
rect results – both final function value and partial re-
sults – are reported, and that these values are reported
within acceptable time bounds.

Why it is done: Step 1 enables the restoration of con-
text after the verification has completed. Step 2 sim-
plifies the synchronization of state between the client
and verifier at the same time as it provides random
content later to be accessed and modified.

In step 3, free RAM is filled with a pseudo-
random string that depends on keys obtained from
the verifier at regular intervals. This function takes
notably longer to execute if it is modified to use flash.

In step 4, the verifying party is given assurance
that steps 2 and 3 were performed correctly, based on
a function of the string computed in step 3, and the
time it takes to compute this function. (We describe a
method to avoid issues with latency variance in sec-
tion 6.2.)

If the verification (of both results and timings)
succeeds, then the verifier knows that there is no
active malware on the client. The periodic timing
checks bring assurance that the computation is per-
formed fast enough. In particular, it guarantees that
the pseudo-random string is truly stored in RAM (as
opposed to the slower flash), and that the reported re-
sults are not computed by an external fast computer.

The use of frequent re-keying incurs round-
trip communication delays for any externally sup-
ported communication. Namely, to make outsourcing
possible, the malware agent would have to forward
the seed / key updates to the external device, which
would introduce a measurable delay. The exact delay
depends on the latency of the network, but we will
pessimistically assume that the delays are as short as
they typically get on the given type of network.

We note that the techniques described above do
not guarantee that the correct monolith kernel is run.
Malware may, for example, suppress the entire ex-
ecution of the audit code. However, the associated
silence will be indicative of infection.

3



4 Adversarial Strategies

The malware agent needs to do one out of two
things to remain resident on an infected machine. It
either (a) has to remain active in RAM or swap space,
or (b) modify legitimate programs, data or configura-
tions of the client device to allow the malware agent
to gain control after the audit process has completed.

To remain undetected in RAM, the malware
agent needs to cause the verifier to accept the
memory-printing computation, which requires that
the correct responses are produced within the cor-
rect time bounds. Alternatively, to modify contents
of secondary storage without being detected, the mal-
ware agent could corrupt the transaction performed
after the scan (step 5 of the solution, as described in
section 3). This requires being active in RAM at the
time of step 5, whether as a unique process or as part
of a corrupted version of the detection monolith ker-
nel.

Therefore, both of the adversarial approaches
above – (a) and (b) – require the malware agent
to remain active in RAM and produce the right re-
sults within the right time bounds. The principal ap-
proaches a malware agent can take to achieve this are
as follows:

1. Outsource storage. The data that was intended
to be stored in the space where the malware
agent resides is sent to secondary storage. When
it is needed, it is transferred back3.

2. Compute missing data. When the space where
the malware agent resides is read, the malware
agent computes what those contents should have
been.

3. Outsource computation. The malware agent
forwards session-specific data to an external
computer, who computes the responses to be
sent to the external verifier, and sends these to
the malware agent.

4. Replace detection code. The malware agent in-
fects the detection code, potentially stopping it
from being executed.

3Most pessimistically, let’s assume that the malware only
changes one byte of the RAM contents. If the adversary uses the
Translation Lookaside Buffer (TLB) to reroute accesses to that cell
to flash, that will affect all words within the TLB block. Since
typical devices use TLBs with 1024 word size, that increases the
flash-bound delay for all of these words. If the adversary rewrites
the memory-printing code to “surgically” reroute some accesses,
that incurs (at least) the cost of one comparison per iteration of the
loop. For more details, see [9].

5 Hardware Characteristics

In this section, we will review the distinguish-
ing characteristics that describe the different memory
and network types of relevance; this is done in the
context of the algorithm described in the next section.

Memory access. We use the term chunk to refer to
the minimum amount of data that can be sent on the
memory bus. For the Android G1 phone and many
other computing devices, a chunk is 32 bits. We
may sometimes refer to the chunk as a 32-bit chunk
for clarity. We are concerned with the time it takes
to read and then write such a 32-bit chunk to var-
ious types of memory. Here, the locations for the
read/writes are selected in a manner that intentionally
does not allow an amortization of costs over consec-
utive operations.

On an Android G1, we have the following ac-
cess times: It takes 5ns to read or write a 32-bit chunk
it the data is in RAM cache, and 20ns to read or
write if in regular non-cached RAM. Reading from
on-board NAND flash using non-standard methods
could theoretically be performed in approximately 1
µs (50x RAM time) and a write an be performed
in approximately 2µs (100x RAM time). If a block
needs to be erased prior to writing the chunk, an
additional 2ms penalty is added, totally dominating
the write time. Faster external SD cards (30MB/s
read/write) could - again, theoretically - allow for a
chunk to be read/written in 133ns (6-7x RAM time)
while maintaining the 2ms penalty for block erase.

Thus, when accessed in the manner we do, we
see that access to RAM is dramatically faster than any
of the alternatives available to an adversary.

Radio usage. The one-way latency time to communi-
cate a basically empty UDP packet (header only) over
Bluetooth is 15ms; over a local WiFi network 7ms;
using 3G (WCDMA/HSDPA) 80ms. Note that out of
the typical 80ms latency for 3G, the Time Transmit
Interval (TTI) is about 2-10ms. This can be thought
of as the latency seen between the handset and the
cell tower. 4G/LTE is estimated to have total latency
of only 5ms. One can send a short UDP packet every
5-10ms over 3G. The shortest possible roundtrip time
for external wireless communication – given optimal
conditions – is currently 14ms for a small packet us-
ing WiFi on a local network. More detailed hardware
characteristics are available in [9].

4



6 Our Solution

In the following, we will describe how
memory-printing works. We will first focus on the
description of the memory-filling technique. We will
then describe how the periodic timing is performed.

6.1 Filling Fast Memory

We will now describe a memory-printing func-
tion that satisfies the requirements needed to detect
the various forms of adversarial abuse. It will be used
to fill free RAM.

Chunk

Block
Page

Figure 1: The figure illustrates how memory-printing is
performed. A pseudo-random sequence is XORed in to
free RAM in a pseudo-random order; later, a keyed hash
of the entire contents of RAM is computed. Even though
RAM does not use blocks and pages, we can divide it into
“virtual” blocks and pages, corresponding to those of flash.
Note that we do not access consecutive chunks in a page or
block – this makes the access slow in flash, but still fast in
RAM.

Setup and Memory-printing. In order to fill free
RAM with a pseudo-random string, there are two
main steps:

1. First, a table of positions to access is created, us-
ing a pseudo-random selection of positions that
have not yet been visited (see [9] for more de-
tails.) The table is stored in flash.

2. Second, the memory-printing function is used to
fill all free RAM, in the order indicated by the
table of positions. The value stored in the indi-
cated position is the XOR of the old value and
the value state, where state is set to the contents
of the RAM chunk with location (state + seed)
mod number chunks, for the previous value of
state. The execution of this step execution is
timed, both from beginning to end and in shorter
intervals.

Machine code for the above two functions is available
in an extended version of this paper [9].

Parameters. Let number chunks be the number of
chunks in RAM, which is 225 (= 128 MB / 32 bits)
for the G1 phone. We assume that the micro-code and
its working space are located in the part of RAM with
highest-numbered addresses4. We let chunks taken
be the number of chunks they use. Moreover,
free chunks is the difference between number chunks
and chunks taken, i.e., the number of chunks that free
RAM consists of. Finally, chunks per block is the
number of chunks contained in a flash block, equal-
ing 32768 (=128kB/ 32 bits) for the G1 phone.

Note here that a given state or output cannot
be computed from an initial state using random ac-
cess. Instead, it requires iterated application of the
function.

Slow for flash. We note that the above memory ac-
cess structure causes hits to different pages for each
access. This will dramatically increase the cost of a
flash-bound computation in comparison to the RAM-
bound alternative available to the honest execution of
the algorithm.

Execution time. The inner loop of the memory-
printing constitutes approximately 32 CPU cycles,
therefore running one iteration in about 80ns out of
which 45ns are pure memory access. Based on this,
the time to perform memory-printing for a typical
smartphone (such as the G1) will be approximately
one minute. While this is significantly more demand-
ing that traditional AV approaches, it would only be
run occasionally (such as when the device is at rest,
potentially as it is being charged.) This would limit
the degree to which the detection would affect the
user experience.

6.2 Performing Timing

The verifying party times the execution of steps
3-4 of section 3. This is done to identify attempts
to: outsource storage; compute missing data; and out-
source computation.

The verifying party will obtain checkpoint state
information from the client device at frequent inter-
vals, whose starting and ending points are set by the
verifying party. As shown in figure 2, this is done
in a way that avoids having intentional flash accesses

4This is a simplification to simplify the description; in reality,
the working space would be in the data cache, and the code in the
instruction cache.

5



flash page load

loop iterations

end time begin timebegin time
new seed

Figure 2: For each round, a small number of RAM accesses
are made, but no flash accesses. At regular intervals, a new
page of RAM positions to modify is read from flash, replac-
ing the previous such page. These scheduled flash accesses
do not cause timing delays, as they are known by the veri-
fier, and the timing intervals can be set accordingly. How-
ever, “unwanted” flash accesses (i.e., those that are made
only by the malware agent) will be detected, as they make
the timely reporting impossible. See [9] for more details.

(to load new pages of position vector elements) be
counted as delays.

The seed values are generated by the external
verifier, and sent to and decrypted by the SIM card.
The SIM card reports checkpoint state information
and associated time stamps back to the verifier.

The computation can be timed by an external
entity, such as the external verifier, or a proxy thereof
– e.g., the base station that the handset interacts with.
To lower the impact of latency variance, the timing
can be performed by the SIM card. This can be
achieved by maintaining a counter on the SIM card,
increasing it by one in a loop while waiting for the
next value (so-called C-APDU) from the handset, and
recording the value of the counter for each such C-
APDU5. At the end of the computation, the entire
vector of checkpoint values and associated counter
values would be authenticated and sent to the exter-
nal verifier.

The execution time of our proposed system is
estimated to be on the order of a minute for typi-
cal smartphones. Ongoing work aimed at reducing
the computational effort offers hope that significantly
faster solutions are possible, which may eventually
allow for a continuous user experience.

Acknowledgments. We wish to thank Dan Boneh,
Herbert Bos, Ron Rivest and the HotSec program
committee for their feedback and suggestions.

5This cannot be done using standard Java Cards as they only let
SIM card applications remain active between a C-APDU and the
resulting response, or R-APDU. However, modified Java Cards and
proprietary operating system cards can perform this task.

References

[1] C. Castelluccia, A. Francillon, D. Perito, and C. Sori-
ente. On the difficulty of software-based attestation
of embedded devices. Proceedings of the 16th ACM
conference on Computer and Communications Secu-
rity (CCS), 2009.

[2] C. Dwork, A. Goldberg, and M. Naor. On memory-
bound functions for fighting spam. In In Crypto,
pages 426–444. Springer-Verlag, 2002.

[3] J. A. Garay and L. Huelsbergen. Software integrity
protection using timed executable agents. In ASI-
ACCS ’06: Proceedings of the 2006 ACM Sympo-
sium on Information, computer and communications
security, pages 189–200, New York, NY, USA, 2006.
ACM.

[4] R. Gardner, S. Garera, and A. D. Rubin. On the
difficulty of validating voting machine software with
software. In EVT’07: Proceedings of the USENIX
Workshop on Accurate Electronic Voting Technology,
pages 11–11, Berkeley, CA, USA, 2007. USENIX
Association.

[5] V. Gratzer and D. Naccache. Alien vs. quine. IEEE
Security and Privacy, 5(2):26–31, 2007.

[6] S. Havlin. Phone infections. Science,
324(5930):1023–1024, 2009.

[7] F. Hohl. Time limited blackbox security: Protecting
mobile agents from malicious hosts, 1998.

[8] M. Hypponen. Malware goes mobile. Scientific
American Magazine, pages 70–77, 2006.

[9] M. Jakobsson and K.-A. Johansson. Assured de-
tection of malware with applications to mobile plat-
forms, 2010.

[10] L. Martignoni, R. Paleari, and D. Bruschi. Con-
queror: tamper-proof code execution on legacy sys-
tems. In Proceedings of the 7th Conference on Detec-
tion of Intrusions and Malware and Vulnerability As-
sessment (DIMVA), Lecture Notes in Computer Sci-
ence. Springer, July 2010. Bonn, Germany. To appear.

[11] A. Perrig. Refutation of “on the difficulty of software-
based attestation of embedded devices”.

[12] R. Scandariato, Y. Ofek, P. Falcarin, and M. Baldi.
Application-oriented trust in distributed computing.
In Third International Conference on Availability, Re-
liability and Security, 2008 (ARES 08), pages 434–
439, 2008.

[13] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla. Pioneer: verifying code integrity and
enforcing untampered code execution on legacy sys-
tems. In SOSP ’05: Proceedings of the twentieth
ACM symposium on Operating systems principles,
pages 1–16, New York, NY, USA, 2005. ACM Press.

[14] A. Seshadri, A. Perrig, L. V. Doorn, and P. Khosla.
SWATT: SoftWare-based ATTestation for Embedded
Devices. In Proceedings of the IEEE Symposium on
Security and Privacy, 2004.

[15] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Re-
mote software-based attestation for wireless sensors.
In ESAS, pages 27–41, 2005.

6


