Implicit Authentication for Mobile Devices

Markus Jakobsson
Elaine Shi
Philippe Golle
Richard Chow

(Palo Alto Research Center)

Thanks to Yuan Niu (UC Davis)
Authentication trends

- Increased demand for authentication
 - Hosting of applications and services on the Web
 - Rapid growth of mobile commerce
 - Need to authenticate both users and devices

- Need for higher-assurance authentication
 - Limits of password authentication
 » Passwords are weak, re-used, shared, lost, ...
 - Mandates for two factor authentication
 - HIPAA legislation

- Growth of mobile Internet devices (MID)
 - Used to access personal, financial, medical data
 - Privacy and liability concerns if the device is lost or stolen
 - Password hard to type (limited input interface)
 - Need for authentication with no/limited user involvement
Conflicting requirements

We want authentication to be

More secure
More usable
Pain of authentication on MID

- Survey of 50 iPhone, BlackBerry and Android users recruited on mTurk
- Password use on mobile devices is *common*
 - 30% need a password to unlock device
 - 46% enter a password once or more / day
 - 24% enter a password 5 or more times / day
- Mobile device passwords are *weak*
 - 44% contain 4 characters or fewer
 - 88% contain only digits
- Mobile passwords are a *pain point*
 - 56% mistype a password 1 in 10 times or more
 - Harder to type passwords on a mobile device (5.0 on scale 1-7, δ=1.1)
Pain of authentication on MID

1. Lack of coverage
2. Small screen size
3. Difficulty entering passwords
4. Short battery life
5. Slow Web connection
6. Poor voice quality
7. Difficulty customizing settings
8. Difficulty typing messages

“It isn’t difficult as much as annoying”

“It really don’t like it when I have to put my passwords in”
Authentication technologies

- Two factor authentication
 - E.g.: password + token
 - Standard in the enterprise
 - Begins to penetrate high-value consumer markets
 - Concerns with usability and cost

- Proxy solutions
 - Examples
 » Browser-based password manager
 » Server-side “remember me” functionality
 » Single Sign-On (SSO)
 - Address problem of too-frequent authentication requirements
 - Vouch only for identity of device, not user
 » Do not defend against theft or compromise of device
 » Do not address voluntary account sharing
 - Poor implementations are insecure
Authentication technologies

- Graphical passwords
 - Higher entropy
 - Better retention
 - But not in widespread use

- Biometrics
 - Fingerprints, typing patterns, voice prints

- Heuristics to authenticate
 - Transactions (credit card companies, telcos)
 - Machines: OS, browser version, etc (the41.com)
Implicit Authentication: Our habits authenticate us!

- **Opportunity: Rich I/O on mobile devices**
 - Phone calls (date, time, duration)
 - Location
 - Calendar events
 - SMS in and out
 - New email detection
 - Opening/closing email messages
 - Adding/removing email messages to/from folders
 - Creation and sending of new email message
 - Types of email attachments
 - Accelerometer data
 - Adding, removing, editing contacts
 - Task list items and memo pad entries
 - Holster in/out
 - Alerts started/stopped
 - Battery level (high, medium, low)
 - Etc.
The case for implicit authentication

- Vision: authenticate users implicitly based on observed behavior

- According to [Furnell et al, 2008]
 - Users want a solution that “authenticates the user continuously/periodically throughout the day in order to maintain confidence in the identity of the user”
 - Receptive to biometrics and behavioral indicators
 - Not receptive to security tokens

- Greendstadt and Beale called for a multi-modal approach “in which many different low-fidelity streams of biometric information are combined to produce an ongoing positive recognition of a user.”
Implicit authentication on MID

- Data sources
- System architecture
- Learning framework
- Experiments
- Usage scenarios
Data for authentication

- Types of data
 - Location and co-location
 » GPS coordinates
 » WiFi, Bluetooth, USB connections
 - Application usage
 » Call, SMS and Web browsing patterns
 » Software installation
 - Biometric measurements
 » Typing patterns, voice,
 » Pulse, temperature, blood pressure
 - Contextual data
 » Calendar entries

- Data sources
 - Mobile device
 - Carrier
 - Cloud
System architecture

- Authentication score computed by device, network provider or other third party

- Score computed on device
 - Protects user privacy
 - Does not defend against theft or corruption of device

- Score computed by network provider
 - Established trust relationship with device
 - Natural ability to communicate with device
 - But privacy concerns!
 » Delete identifying information
 » Report pseudonymous information
 » Report coarse-grained or aggregated data

- Authentication score consumed by
 - Mobile device (e.g. to grant access to some resource)
 - A service provider (e.g. a bank)
Learning framework

- Independent feature model
 - User model is product of k probability density functions conditioned on time

- Scoring independent features
 - Score based on observed feature value and pdf

- Authentication score
 - Combination of feature scores
 - Learn combination weights with ML
Experiment

- Emails
- Calls
- SMSs
- Location
- Contacts
- Calendar
- Tasks
- Memos
- Alerts
- Battery level
- (Un)holstering
- USB connections
- Power on/off
- SD card removal/insertions
Experiment: phone calls

Cumulative distribution of time elapsed since last phone call
Experiment: location
Experiment: authentication score
Usage scenarios

- IA as a password replacement (better usability)
 - Access online email or calendar
 - Log on to online services (Facebook, etc)
 - Unlock phone / medical device
 - Small online purchases

- IA as a second factor (richer backend decisions)
 - Larger online purchases
 - Access of patient records

- Offline uses of IA
 - Paying for subway tolls, pay a vending machine
 - Banking (ATM use, credit card use)
Future work and conclusion

- Ongoing large scale experiment
 - Train scoring function
 - Model dependencies between features
 - Model adversarial behavior
 - Estimate false positive and false negative rates

- Download our app from the Android marketplace!

- Questions?