
Pre-Patched Software

Jianing Guo Jun Yuan Rob Johnson

Stony Brook University

http://www.splat.cs.sunysb.edu/

8/16/2009 Security, Programming Languages, and Theory Lab 2

Bugs in Deployed Software

 The problem with patches:
Slow and error-prone to develop

Long “window of vulnerability” that exposes users to a
possible “zero day exploit”

 The problem with run-time checks
High overhead

Compatibility issues

 Pre-Patched Software
Uses latent run-time checks

Low run-time overhead

Rapid response to new vulnerabilities

Backwards compatible

8/16/2009 Security, Programming Languages, and Theory Lab 3

Zero Day Exploit Problem

Deploying

…

Testing…
User

Testing…

Oy! Too Slow

& too late!

8/16/2009 Security, Programming Languages, and Theory Lab 4

Pre-Patched Software

Deploying…

Testing

…
User Testing…

Check

Check Check

Security

Checks

Whew! Good

thing that I have

the check on.

8/16/2009 Security, Programming Languages, and Theory Lab 5

Benefits

 Provides immediate response to

vulnerabilities

 Prevents “zero day exploit”

 Users don’t pay a visible overhead until it

becomes necessary

 Shipping instrumented binaries allows

users to test in advance

8/16/2009 Security, Programming Languages, and Theory Lab 6

Prototype: Memsafe

 Checks against bounds violations

 Based on Jones & Kelly’s [Jones 97]

approach to C bounds checking

 Implemented using CIL [Necula 02]

platform

s = a[0];

arr[0] = n;

void foo () {

int arr[5];

int n = 1;

n = bar(n, arr);

}

int bar (int n, int* a) {

int i, s = 0;

for(i = 0; i <= n; i++) {

a++;

}

return s;

}

8/16/2009 Security, Programming Languages, and Theory Lab 7

Memsafe Example

Check(arr+0,);B_arr

Check(a+0,);B_a

bar(int n, int*a, bounds) {B_a

Register(arr);B_arr =

Register only

necessary variables

Caching bounds info

Bounds passing

across functions.

Support manipulation

for OOB ptrs

bar(n, arr,);B_arr

Not a
Problem

LookUp(arr + 0);B_arr =

8/16/2009 Security, Programming Languages, and Theory Lab 8

Memsafe Optimizations

 Bounds caching

 Bounds passing

 Loop optimization

 Static check elimination

8/16/2009 Security, Programming Languages, and Theory Lab 9

Run-time Check Activation

 Selectively turn on checks – reduces patch

overhead

 Instrumentation dependency -- enables

metadata maintenance

 Fast path/Slow path – saves time on

branch checking

Not memsafe specific

8/16/2009 Security, Programming Languages, and Theory Lab 10

Selective Check Activation

void foo () {

int arr[5];

int n = 1;

arr[0] = n;

n = bar (arr,);

}

int bar (int n, int*a, bounds)

{

int i, s = 0;

s = a[0];

for(i = 0; i <= n; i++) {

a++;

}

return s;

}

Check(arr+0,);B_arr

Check(a+0,);B-a

B-a

B-a

Register(arr);B_arr =1

2

3

0 1 1 0 0 0 0 …

0 …1 2 3 4 5 6

 Checks can be activated

independently based on the

bit map.

8/16/2009 Security, Programming Languages, and Theory Lab 11

Dependencies

void foo () {

int arr[5];

int n = 1;

arr[0] = n;

n = bar (arr,);

}

int bar (int n, int*a, bounds)

{

int i, s = 0;

s = a[0];

for(i = 0; i <= n; i++) {

a++;

}

return s;

}

Check(arr+0,);B_arr

Check(a+0,);B-a

B-arr

B-a

Register(arr);B_arr =1

2

3

 Dependency within a

single function

 Dependency across

functions

How do we

determine the

bounds for the

activated

check?

8/16/2009 Security, Programming Languages, and Theory Lab

Fast-Path/Slow-Path

12

if (any active checks)
How to reduce

the number of

checks

performed at

run time?

{

int arr[5];

int n = 1;

arr[0] = n;

n = bar (arr,);

}

B-a

Fast Path

{

int arr[5];

int n = 1;

arr[0] = n;

n = bar (arr,);

}

Check(arr+0,);B_arr

B-a

Register(arr);B_arr =

Slow Path

8/16/2009 Security, Programming Languages, and Theory Lab 13

Performance Evaluation

 Three scenarios:

All checks off (common case)

One check on (occasional case)

All checks on (only for testing)

 Benchmark programs:

Gzip and Gunzip

Olden Benchmark [Rogers 95, Carlisle 95]

14

Results

Olden Benchmark Gzip

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

All Off

All Off

0

2

4

6

8

10

12

14

All On

All On
 All checks off:

Under 10% overhead

 All checks on:

About 12 times slower
R

a
ti
o

 t
o

 G
C

C
 c

o
m

p
ile

d
 v

e
rs

io
n

R
a

ti
o

 t
o

 G
C

C
 c

o
m

p
ile

d
 v

e
rs

io
n

8/16/2009 Security, Programming Languages, and Theory Lab

55.9 48.48

15

Results

Olden Benchmark

0

0.5

1

1.5

2

One Check

One Check

One Check
On

 One Check On:

About 33% overhead

8/16/2009 Security, Programming Languages, and Theory Lab

Performance

may vary

depending on

check locations

Overhead is

negligible in

comparison

to all checks

on

8/16/2009 Security, Programming Languages, and Theory Lab 16

Limitations

 Not as efficient & complete as patches

 Depends on compiler auto-generation

 Only applicable to low level security bugs

8/16/2009 Security, Programming Languages, and Theory Lab 17

Conclusion

 Pre-patched software provides immediate

response to vulnerabilities

 Latent run-time checks incur low overhead

while providing full coverage

 Pre-patched software makes code

transformations usable by reducing

overheads to a fraction

Q&A

Jianing Guo Jun Yuan Rob Johnson

Stony Brook University

http://www.splat.cs.sunysb.edu/

Pre-Patched Software

