
Garm: Cross Application Data Provenance and Policy
Enforcement

Brian Demsky
University of California, Irvine

Abstract
We present Garm, a new tool for tracing data provenance
and enforcing data access policies with arbitrary binaries.
Users can use Garm to attach access policies to data and
Garm ensures that all accesses to the data (and derived
data) across all applications and executions are consistent
with the policy. Garm uses a staged analysis that com-
bines a static analysis with a dynamic analysis to trace
the provenance of an application’s state and the policies
that apply to this state. The implementation monitors the
interactions of the application with the underlying op-
erating system to enforce policies. Conceptually, Garm
combines trusted computing support from the underly-
ing operating system with a stream cipher to ensure that
data protected by an access policy cannot be accessed
outside of Garm’s policy enforcement mechanisms. We
have evaluated Garm with several common Linux appli-
cations. We found that Garm can successfully trace the
provenance of data across executions of multiple appli-
cations and enforce data access policies on the applica-
tion’s executions.

1. Introduction
Today’s computing systems typically do not store infor-
mation about the provenance (i.e. history) of files. In par-
ticular, users cannot query about the information sources
or the chain of people and programs that contributed to a
file’s creation. The lack of information about files’ prove-
nance profoundly affects computing. For example, it can
be difficult to detect malicious tampering of files in to-
day’s systems. It can also be difficult to verify the ori-
gin of digital works — for example, auditing whether an
application’s source code contains code misappropriated
from other projects is generally challenging. Knowledge
of data provenance can be useful even in the absence of
malicious actions. For example, if one discovers a soft-
ware bug that causes cryptographically weak keys to be
generated, data provenance can help determine which
keys are affected.

With current computing systems once information is
released to others, there is no control over or knowledge
about how that information is used. For example, pro-
viding personal information to any entity comes with the
risk of accidental release on the Internet. Indeed, numer-
ous news stories document accidental releases of the per-
sonal information of millions by companies and govern-
ment agencies. There have been limited efforts to create
systems that enforce policies on how data is used — the
entertainment industries have created digital right man-

agement (DRM) systems with the primary goal of pre-
venting protected media files from being pirated. These
current systems impose draconian limitations on how
consumers use the media files — they often only sup-
port playing the protected media. Moreover, these sys-
tems typically restrict consumers to a very limited set of
applications. The reason for these restrictions is that once
protected data leaves the small number of trusted appli-
cations, there is no mechanism to continue enforcing the
data policies.

This paper presents Garm, a tool that uses binary-
rewriting to track the provenance of the data applica-
tions process and to enforce access policies on this data.
Garm provides a framework that allows users to spec-
ify policies for their data and Garm ensures that all ap-
plications respect these policies. Unlike previous work,
Garm’s data access policies follow the protected data
across execution, application, and machine boundaries.

Garm allows off-the-shelf binaries to process pro-
tected data while a dynamic analysis tracks both the
provenance of an application’s data and which policies
apply to the data. The rewriting system enforces the poli-
cies, thereby allowing policy-protected data to be used
with arbitrary applications while still enforcing the poli-
cies. The ability to enforce policies across a wide range
of applications has potential benefits ranging from the se-
curity of personal data to more user-friendly and flexible
digital rights management.

Previous work on information flow required access
policies to specify which locations trusted data can be
stored and then assumed all data from these sources is
trusted. Garm supports a more flexible model — appli-
cations can write policy protected data to any location.
Garm tracks the policies that apply to a program’s out-
put files through the use of provenance shadow files and
uses fine-grained encryption to prevent accesses to the
data that circumvent the policies.
1.1 Basic Approach
Garm uses binary rewriting to instrument binaries to
trace the provenance of an application’s state during its
execution. The binary rewriter uses a static provenance
analysis to generate an optimized dynamic instrumen-
tation. When the guest application accesses new data,
Garm creates a base provenance record to describe the
source of the data. If Garm had previously monitored
the program execution that produced the data, the base
provenance will reference the provenance record from
the previous execution. When the monitored program
performs operations that depend on data with different



provenance, Garm labels the bytes produced by the op-
eration with a composite provenance that lists the base
provenance values that contributed to the current value.
In this fashion, Garm computes the shadow composite
provenance for all bytes that the application writes.

When an application writes data to a file, Garm gener-
ates a shadow file that describes the provenance of every
byte in the file. Garm also stores a provenance record
that describes the source for each base provenance and
lists the base provenance records that contribute to each
composite provenance.

Garm supports data access policies by allowing users
to attach a data access policy to a provenance. Before
allowing an application to output data, Garm checks
whether the output operation is permitted by the data’s
access policies. The access policies can either 1) allow
outputting unprotected data in the location (i.e. audio
device, screen, etc), 2) allow outputting encrypted data
along with the policy and provenance information, or
3) prohibit outputting the data in any form to the lo-
cation. The policy can depend on context (i.e. the date,
how many times the data has been accessed, etc). Garm
uses fine-grained encryption based on stream ciphers to
enable users to seamlessly share arbitrary files that con-
tain policy protected data between applications while en-
suring that programs cannot use policy-protected data in
ways that violate the access policy.
1.2 Contributions
This paper makes the following contributions:
• Data Protection Framework: It introduces a new

data protection framework. This framework encrypts
policy-protected data before it is passed to the oper-
ating system and decrypts policy-protected data be-
fore an authorized application reads it. Garm uses
the shadow provenance file to determine which pol-
icy server holds the keys to access the file. This mech-
anism allows Garm protected-data to be secure even
when stored in untrusted locations.

• Data Policy Enforcement: It presents a generic
mechanism that enforces data access policies on ar-
bitrary binary applications.

• Data Provenance Analysis: It presents an analysis
that can track the provenance of an application’s state.
The analysis combines a static and a dynamic analysis
together to determine which information sources were
used to derive each value in the execution.

• Cross Application Support: It presents a new run-
time mechanism that uses stream ciphers together with
provenance shadow files to prevent data accesses out-
side of Garm’s monitoring infrastructure. Garm in-
troduces support for tracking provenance information
across executions and application boundaries.

2. Provenance Analysis
Garm uses a staged provenance analysis that combines
a static and dynamic analysis and operates on an appli-

cation’s binary. Garm instruments the application’s bi-
nary through binary-rewriting using Valgrind. The sys-
tem rewrites the binary when the binary executed. The
code is rewritten on demand — only the parts of the pro-
gram that actually executed are rewritten. Garm’s analy-
sis and instrumentation operate on Valgrind’s intermedi-
ate representation, which abstracts many of the complex-
ities of the x86 instruction set.
2.1 State
Garm maintains shadow state of an application’s state.
The shadow stores a 32-bit provenance value that de-
scribes a byte’s current provenance. The application’s
state consist of its memory, the processor’s registers, and
any files that the application accesses:
• Shadow Memory: Garm contains a two-level table

to shadow an application’s memory: the first level is
indexed by the high 16-bits of a memory address and
the second level is indexed by the low 16-bits. When
the application writes to an address, it allocates the
second level table if necessary.

• Registers: Valgrind maintains the guest register val-
ues in a special memory region that serves as a regis-
ter file. There is a shadow register file that contains the
provenance of the current register values.

• Temporaries: Valgrind’s intermediate representation
introduces several temporary variables. Garm traces
the provenance of temporary variables using a single
shadow provenance regardless of the temporary’s ac-
tual length. Garm’s runtime instrumentation does not
explicitly shadow these temporaries. The temporaries
are analyzed by the static analysis, and the dynamic
instrumentation code simply updates the shadow reg-
ister file and memory.

• Files Garm maintains shadow files for all files that a
program accesses. The shadow files store the prove-
nance of each byte in the original file.

2.2 Optimizing Instrumentation
The algorithm uses a data flow analysis to compute the
static provenance of the registers and temporaries at
each instruction. A static provenance is a set of instruc-
tions, register locations, temporary variables, and static
list of instructions. The analysis uses this information
to remove redundant provenance computations (i.e. the
provenance computation for d in b=a+c; d=b+c; is
redundant and can simply copy the provenance of b), and
compute the provenance contribution from the execution
of code. This analysis is structured as a standard dataflow
analysis over static provenance.
2.3 Instrumenting Sources
We next describe how the instrumentation algorithm pro-
cesses statements that may be a source for a provenance
computation. When the instrumentation algorithm visits
a load statement that should be instrumented, it generates
a shadow load statement that loads the corresponding
provenance from the shadow memory. When the algo-



rithm processes a register load statement, it checks to see
if the register offset should be instrumented and has not
already been loaded. If the register load meets both cri-
teria, the instrumentation algorithm generates a shadow
register load that loads the register’s shadow provenance
into a temporary.
2.4 Computing Provenance
We next describe how the algorithm translates a static
provenance from the static analysis into code that com-
putes the corresponding dynamic provenance value. The
algorithm begins with the provenance contribution from
the program’s instructions. It represents this provenance
with a 32-bit provenance value. The algorithm then gen-
erates instructions to merge the provenance contributions
from the set of load instructions. These provenance will
already be stored in temporaries as the corresponding in-
structions will have already been instrumented. The al-
gorithm next generates instructions to merge the prove-
nance contributions from the set of shadow register val-
ues. These provenance will also already be stored in tem-
poraries as the corresponding register load operations
will have already been instrumented. Finally, the algo-
rithm generates instrumentation code that merges the
provenance contributions from the temporaries in the
shadow temporary set.

The shadow temporaries provide a further opportunity
for optimization. The provenance of shadow temporaries
may be a subset of the current provenance. In this case,
the instrumentation code for these sources is elided in
the computation of the current temporary’s provenance.
This optimization computes the set of sources for the
temporaries (and their shadow temporaries) and elides
these sources from the current instrumentation.
2.5 Storing Provenance
The algorithm instruments statements that write values
to memory or write values to registers that may be visi-
ble outside of the superblock. The algorithm instruments
memory stores using the algorithm from Section 2.4
to generate code that computes the provenance for the
source and address temporaries. Then it generates code
that stores this provenance into the shadow memory.
2.6 Provenance Representation
This section presents Garm’s provenance representation.
2.6.1 Base Provenance
Garm uses base provenance records to track the sources
of incoming data. The first time that any application un-
der Garm accesses data from a given file, Garm records
a base provenance record that contains the file name, the
current execution number, and a flag that denotes that
this is the first time the Garm has seen this data. If an ap-
plication under Garm accesses data that was modified by
a previous application under Garm, Garm records 1) the
unique execution identifier1 for that previous execution,
2) the file name, 3) a reference to the 32-bit composite

1 Garm assigns every program execution a unique execution identifier.

provenance value from the previous execution, and 4) a
list of references to all access policies that apply. Garm
represents base provenance records as a 32-bit index into
the base provenance table. Each entry in the base prove-
nance table gives the complete description of the prove-
nance. Garm maintains the invariant that two identical
base provenance values have the same index.
2.6.2 Composite Provenance
An application’s execution performs operations that
combine data from multiple sources to produce derived
values. These operations produce data whose provenance
is derived from all of the relevant data sources’ prove-
nance. Garm uses composite provenance values to track
the provenance of a program’s state. A composite prove-
nance for a byte contains references to the base prove-
nance records that contributed to the creation of the byte.
Garm also records the list of references to the policies
that apply to the composite provenance for efficiency rea-
sons. Garm represents composite provenance as a 32-bit
index into the composite provenance table. Each entry in
the composite provenance table lists the component base
provenance and any applicable data policies. Garm main-
tains the invariant that two identical composite prove-
nance values must have the same index.

A byte’s provenance can be viewed as an acyclic
graph. Each composite provenance can reference several
base provenance records and each base provenance can
reference a composite provenance record from a previous
execution. Garm contains a query tool that allow users to
explore the provenance graph of an application’s output.
2.6.3 Merging Provenance
The primary operation that the instrumented code per-
forms is merging multiple source composite provenance
values into a single output composite provenance. We
next describe the basic algorithm for merging two prove-
nance values, we construct the procedure for merging
more than two provenance values from multiple invoca-
tions of two provenance values merge procedure:

1. Identity Check: The merge procedure first checks if
the input composite provenance indices are the same
and if so simply returns that index.

2. Merge Cache Lookup: The merge procedure next
performs a hash table lookup on the two input com-
posite provenance indices to see if the merge result
has been cached. If the result is stored in the cache, the
algorithm simply returns the cached composite prove-
nance index.

3. Base Merge Procedure: Otherwise, the base merge
procedure begins by looking up the two input indices
in the composite provenance table. As Garm stores
composite provenance as sorted lists of references to
base provenance values and policies, it can merge two
composite provenance records in a single pass. The al-
gorithm then looks up the merged composite prove-
nance in the composite provenance hash table. If the
composite provenance is not found, the algorithm adds



Policy Server
Binary-rewriting
Engine

Guest
Application

Provenance
Records

Data File

Provenance
Shadow FileOperating System

Trusted Platform Module

Figure 1. System Overview
the new composite provenance to the table and gener-
ates a new composite provenance index. Otherwise, it
uses the composite provenance index from the table.
Finally, it caches the results of the merge operation in
the merge cache — it stores the input composite prove-
nance indices and the output index.

3. System Architecture
We next describe Garm’s basic architecture. Figure 1
presents an overview of Garm. The system is centered
around the binary rewriting engine. The rewriting engine
combines static and dynamic analyses to trace the prove-
nance of the data that the application manipulates.

The rewriting system intercepts the system calls that
the guest application performs. When the guest appli-
cation loads data from the operating system, the binary
rewriting engine loads the corresponding provenance in-
formation from the provenance shadow file and copies
the provenance information to the shadow memory.

Policy servers are managed by the party who origi-
nally protected the data or on their behalf. Policy servers
are responsible for authenticating Garm instances, de-
termining whether they have permission to obtain keys,
and transferring keys. If the provenance information in-
dicates that the data is protected by a policy, Garm sends
the encrypted policy information to the policy server
along with information about the application and the
user’s identity. Garm conceptually uses the remote attes-
tation capability of the trusted platform module to en-
able the policy server to verify that neither the underly-
ing operating system nor Garm have been tampered with.
The policy server verifies that Garm has not been tam-
pered by verifying the remote attestation. Then the pol-
icy server decrypts the policy information to obtain the
policy and the policy keys. The policy server checks the
policy against the information from Garm. If no policy
violations are detected, the policy server sends the pol-
icy along with the key to Garm. Garm stores the policy
and key in memory during the current execution. Garm
is then responsible for enforcing the policy on the appli-
cation’s execution.

When an application makes a write system call, Garm
intercepts the system call. It checks to see if the data
access policies apply to any of the data to be written.
If so, it encrypts the data at the byte granularity using
the policy keys for the policies that apply to the byte.
Then Garm performs the system call to write the data to

the application file. Garm then updates the corresponding
provenance shadow file with the provenance information
for the data that was written.
3.1 Trusted Computing
Garm assumes that the underlying operating system and
hardware supports trusted computing. Many trusted com-
puting systems provide support for remote attestation.
Remote attestation enables an application to prove both
its identity and that it has not been tampered with to
remote systems. Garm would use remote attestation to
prove to the policy server that Garm has not been tam-
pered with. Trusted computing also provides hardware
support for sealing data for a specific application. Seal-
ing allows the application to secure data that can only be
accessed when the application proves its identity. Garm
would use sealing to secure the private keys that it uses to
sign the provenance shadow files to secure them against
tampering as described in Section 3.3.
3.2 Protecting Data
Garm ensures that an application’s execution respects the
data policies of the data it accesses. When the applica-
tion writes policy-protected data to a file, Garm encrypts
the data to ensure that applications outside of the Garm
framework cannot access the protected data.
3.2.1 Cipher Choice
Making encryption transparent to the application and
enforcing access policies at a fine granularity constrains
our choice of ciphers. In particular, the cipher needs to
support fast random access to large files and the ability
to choose which bytes to encrypt at the byte granularity.
Garm uses the Salsa20 stream cipher as it satisfies both
requirements [1]. Salsa20 was one of the stream ciphers
selected by the ECRYPT Stream Cipher Project. Salsa20
operates on 512-bit blocks. It takes as input a 256-bit
key, a 64-bit nonce (unique message identifier), and a
64-bit block identifier. It generates as output a 512-bit
cryptographically strong pseudo-random string which is
xor’ed with the plaintext to encrypt the data or xor’ed
with the ciphertext to decrypt the data. Garm associates
a nonce with each file and policy pair. Notably, Salsa
supports decrypting or encrypting blocks in files without
requiring processing the previous blocks.
3.2.2 Encryption/Decryption
Garm associates a policy key with each data access pol-
icy. To write a byte, Garm lists all the policies that apply
to that byte. It then looks up the nonces for each pol-
icy. Garm then generates the byte in the pseudo-random
sequence that corresponds to the offset that the byte is
written to. Garm then xors the byte at the given location
in the keystreams for each policy with the byte to be en-
crypted. Finally, Garm writes the encrypted byte out to
the file. Garm optimizes for the common case that adja-
cent bytes are protected by the same policies. Decrypting
a byte uses the same algorithm.

One potential problem is that an application can write
different bytes that are protected by the same policy



to the same file at the same location. If the attacker
observes both ciphertexts, the attacker has knowledge of
message1 ⊕ keystream and message2 ⊕ keystream.
If the attacker xors both ciphertexts, the attacker obtains
message1 ⊕ message2. If either message is known,
the attacker can obtain the other. Moreover, an attacker
can exploit redundancy in the messages to obtain both
plaintexts. It is therefore imperative that a given key
and nonce is used at most once to write to a given file
location. To address this weakness, Garm would monitor
the locations a given nonce has been used to encrypt. If a
location is repeated, Garm would generate a new nonce
for the given policy and file. Garm can either re-encrypt
the data that uses the current nonce, or it can assign a
special provenance value for a secondary nonce.

The algorithm as stated xors the keystreams. An al-
ternative strategy is to xor the keys. This strategy is
more efficient with multiple keys, but has the downside
that changing a policy’s nonce requires knowledge of all
other policy keys that encrypt the same data. If these
keys are not known, Garm could simply assign a special
provenance value for the new nonce. Garm maintains a
nonce shadow file that contains the nonces for each pol-
icy that applies to data in the primary file.
3.3 Authentication of Provenance Data
If Garm is used to trace provenance, it can be desirable to
detect tampering with the provenance records or changes
in the underlying files that are not reflected in the prove-
nance data. This can be done by using cryptographic hash
functions to compute a hash for the data file, including
this hash in the corresponding shadow provenance file,
computing a hash of the provenance file data, and then
using a private key to sign the hashes. Garm would secure
its private key by using the sealing functionality of the
trusted platform module. Other instances of Garm could
verify the signatures by looking up the public keys for
the Garm installation that created the file, then verifying
the signature with the public key.

4. Experience
We next discuss our experience using Garm to trace
provenance and enforce data access policies with sev-
eral applications. We have developed a prototype imple-
mentation of Garm. Our prototype implements the prove-
nance analysis, the stream cipher, the policy server, and
a limited set of policies. These policies are: access once,
unencrypted output to the audio device, unencrypted out-
put to the screen, unencrypted output to any source, and
encrypted only output. While it is straightforward, our
prototype does not interface with the operating system to
support remote attestation or sealing keys.
4.1 Data Provenance
We first discuss our experience using Garm to trace
provenance across the executions of several command
line utilities included with the Debian Linux distribution.
In particular, we used Garm to trace the provenance of
data across executions of gzip, tar, nano, vi, sort, and gcc.

After each execution, we used the provenance viewing
tool to examine the provenance of the output.

Text Editors: We first discuss our experiences using
vi and nano, two interactive text editors. We edited a sin-
gle file in several vi and nano sessions. Afterward, we
viewed the provenance of the characters in the text file
using the provenance viewing tool and verified its cor-
rectness. Garm was able to successfully trace the prove-
nance of each byte of our text file across the editing ses-
sions. In particular, Garm correctly identified for each
byte, the session that byte was entered and listed each
subsequent program execution that manipulated the text.

Gzip and Tar: We used gzip to compress and decom-
press the same text file. We then examined the prove-
nance of the decompressed file. We observed that they
were conservative. However, we did observe some im-
precision in the provenance introduced in the process —
the provenance of a few bytes included extra editing ses-
sions. We then used tar to archive several files and then
decompressed the archive. Garm was able to conserva-
tively and precisely trace provenance across the two tar
executions.

Sort: We used sort to sort a text file developed over
several sessions. The results were conservative. We also
observed mixing of provenance, but in this case the lo-
cation of a text line depends on the other lines and the
mixing of provenance simply reflects this dependence.

GCC: Finally, we used gcc to compile several source
files into a binary. One invocation of gcc runs several pro-
gram invocations including a compiler, an assembler, and
a linker. Garm was able to trace provenance across all of
these executions. We then examined the provenance for
text strings in the program’s binary and found that they
were accurate.

4.2 Policy Enforcement
Our Garm prototype supports a limited set of policies
including combinations of access once, allow viewing on
the terminal, and allow playing through the audio device.
We used Garm’s policy tool to protect text files, source
code, and MP3 files.

mpg123: We used Garm with mpg123, an MP3
player, to play a protected MP3 file. We explored data
policies that explored many combinations of the basic
access policies. For example, we explored MP3 files that
could be played once, MP3 files that could be played
but whose ID3 information could not be displayed to the
screen, and MP3 files whose ID3 information was dis-
played but that could not be played through the audio
device. We found that Garm successfully enforced these
policies and that Garm had sufficient performance to run
mpg123 in real-time.

Text Editor: We created text files with policies that
allowed viewing exactly once. We then viewed the file
with the nano editor and added new text. We attempted
to view the file a second time and observed that we could
view the new text but not the policy-protected text.



GCC: We protected C source files with a policy that
does not allow viewing the code on the screen. We then
used gcc to compile the policy-protected C source code
into a binary and verified that the binary was similarly
protected. Finally, we instructed the policy server to re-
lease the policy from that binary and then verified that
the binary executed correctly.

5. Related Work
Taint analysis tracks whether an application’s data is
tainted. Tainting can be used to represent that the infor-
mation is secret or that the information is from an un-
trusted source. Researchers have developed many taint
analyses [8, 7]. Taint analyses are very coarse-grained
and typically allocate only 1 bit per value. Therefore
tainting often makes the implicit assumption that the
user knows a priori, which sources of values should be
tainted. Garm supports a rich set of provenance that de-
scribe the history of how the data was generated and
therefore does not require that the user identify tainted
sources ahead of time.

Most current taint frameworks enforce policies at the
boundary of the tainting framework [6]. The basic idea
is to write policies that partition output files as trusted
or untrusted and then only allow the application to write
tainted data to the trusted files. Garm’s cross applica-
tion provenance (and provenance-based encryption) al-
lows applications to write policy protected data to any
file while still tracking the data’s provenance and enforc-
ing the data’s access policy. This capability is key for
enabling information-flow based security in the modern
work environment as its widespread adoption may ulti-
mately depend on not burdening users with onerous re-
strictions on how they use data.

The HiStar operating system provides information
flow control capabilities [9]. It requires the user to an-
notate each application with a set of permissions and a
set of privileges. Garm’s policies instead focus on what
applications are allowed to do with the data at the inter-
face to the operating system.

PinUP can enforce policies on how applications use
files at the file granularity [3]. For example, a policy
might only allow Word to access documents. This ap-
proach can restrict normal processes such as emailing
documents and fails to differentiate between confidential
and public documents of the same type.

Researchers have studied the problem of tracking and
maintaining provenance in databases [2]. Garm presents
a technique that can track provenance on arbitrary bi-
naries at a level of abstraction that captures sufficient
information to easily track the source while simulta-
neously not incurring excessive overheads. Researchers
have developed automated provenance gathering frame-
works that operate at the file granularity [5] — for each
outputted file they record the application that created the
file, how it was invoked, and a list of all files it read. Re-
searchers have developed library level tools to produce

verifiable provenance records for files [4]. Our approach
is much more precise — Garm can determine which of
multiple inputs (at the byte granularity) contributed to a
given output byte.

6. Conclusion
Currently, it is difficult to discover the history of the cre-
ation of a file or to protect data in the files we send to
others. Garm uses a staged analysis to track the prove-
nance of data across applications. Garm provides a set of
tools to query the provenance of data. This information
can be useful for auditing purposes. For example, an or-
ganization might use the data to understand the scale of
the consequences of a software error.

Garm can also use the provenance analysis to la-
bel data with access policies. Garm can then enforce
these policies across application boundaries. These ac-
cess policies might ensure that personal health records
do not accidentally leave an insurance company’s office
computers while allowing the insurance company’s em-
ployees to use the medical data with the software appli-
cations required to do business.

References
[1] D. J. Bernstein. New Stream Cipher Designs: The

eSTREAM Finalists, chapter The Salsa20 Family of Stream
Ciphers, pages 84–97. Springer, 2008.

[2] P. Buneman, S. Khanna, and W. C. Tan. Why and where:
A characterization of data provenance. In Proceedings of
the International Conference on Database Theory, 2001.

[3] W. Enck, P. McDaniel, and T. Jaeger. PinUP: Pinning user
files to known applications. In Proceedings of the Annual
Computer Security Applications Conference, 2008.

[4] R. Hasan, R. Sion, and M. Winslett. The case of the
fake Picasso: Preventing history forgery with secure
provenance. In Proccedings of the 7th Conference on
File and Storage Technologies, 2009.

[5] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun,
and M. Seltzer. Provenance-aware storage systems. In
Proceedings of the Annual Conference on USENIX ’06
Annual Technical Conference, 2006.

[6] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software
Engingeering and Methodology, 9(4):410–442, 2000.

[7] N. Vachharajani et al. RIFLE: An architectural framework
for user-centric information-flow security. In the Annual
International Symposium on Microarchitecture, 2004.

[8] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation
of exploits on commidity software. In the Network and
Distributed System Security Symposium, 2005.

[9] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in HiS-
tar. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation, 2006.


