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Abstract
Crunching large graphs is the basis of many emerging appli-
cations, such as social network analysis and bioinformatics.
Graph analytics algorithms exhibit little locality and therefore
present significant performance challenges. Hardware multi-
threading systems (e.g., Cray XMT) show that with enough
concurrency, we can tolerate long latencies. Unfortunately,
this solution is not available with commodity parts.

Our goal is to develop a latency-tolerant system built out of
commodity parts and mostly in software. The proposed system
includes a runtime that supports a large number of lightweight
contexts, full-bit synchronization and a memory manager that
provides a high-latency but high-bandwidth global shared
memory. This paper lays out the vision for our system and
justifies its feasibility with a performance analysis of the run-
time for latency tolerance.

1. Introduction
Many important emerging applications such as social network
analysis, bioinformatics, and sensor networks rely on crunch-
ing very large graphs. Unfortunately, the computational cost of
these applications gets quickly out of hand. While tools to an-
alyze social networks and query semantic graphs with billions
of vertices and edges exist today [6, 10, 17, 18, 24], graphs of
interest to defense applications are expected to have trillions of
vertices and edges [15, 19]. Speeding up these applications at
a low cost would have a significant impact in how we analyze
large data-sets and make them even more valuable.

The most interesting computational challenge comes from
large, low-diameter, power law graphs: this combination
makes extracting performance difficult. They do not fit in a
single commodity machine’s memory. They are difficult to
lay out with locality, since every vertex needs to be near ev-
ery other vertex. They are difficult to partition in a balanced
way [21, 22], leading to hotspots and load imbalance. Conse-
quently, high-latency inter-node communication becomes an
important limiting factor in scalability [35].

Multithreading is a technique that has been used success-
fully to implement efficient computations for these graphs [4].
The Cray XMT is an example of such an approach: it solves
the memory latency problem through concurrency rather than
caching. Each XMT processor supports 128 hardware contexts
and 1024 outstanding memory operations, and is able to switch
contexts every cycle [3, 13]. This ability comes at a cost:
the XMT is an expensive, non-commodity machine with low
single-thread performance.

We believe we can build a system based mostly on com-
modity parts that can attain XMT-like performance with a fa-
miliar, XMT-like, programming model, but at a fraction of the
cost. Therefore, our goal is to build a system that has good per-
formance on low-locality graph codes but is implemented us-
ing cheap commodity processors with the possible additional
support of an FPGA. This approach has the added benefit of
not sacrificing general-purpose performance.

Figure 1 shows an overview of our proposal. It is composed
of multiple nodes built with commodity processors, communi-
cating over an Infiniband network. We add two components: a
runtime system, responsible for executing and managing user
threads, and a global memory manager, responsible for facil-
itating memory requests to the global memory space shared
across the nodes. We are exploring a mix of hardware (FPGA)
and software implementations of the memory manager.

This paper describes the vision of our system and explores
the feasibility of our ideas using a single-node implementation
of a lightweight threading runtime. We use prefetch instruc-
tions together with lightweight threads to tolerate the latency
of DRAM access on the local node. We use worst-case pointer
chasing benchmarks to verify our runtime’s overhead is ac-
ceptable. We also model the effects of pointer chasing with a
remote node by artificially increasing latencies to several mi-
croseconds.

The rest of the paper is organized as follows. We briefly
describe our programming model in section 2. We describe
the implementation of our latency-tolerant runtime and plans
for extending to multiple nodes in section 3. We evaluate our
runtime in section 4. We present related work in section 5 and
conclude in section 6.

2. Programming model
Our goal is to preserve the XMT programming model: large
shared global address space, explicit concurrency with a large
number of threads, and full-bit synchronization. We partition
the overall address space into a global shared address space
and per node private address spaces. Locality may be exploited
directly by the programmer in the node private address spaces,
just as in a conventional cache-coherent multiprocessor node.
In contrast, locality cannot be exploited in the global space:
its value is in providing high bandwidth random access to any
word in a shared data structure by any processor.

The model promises efficiency subject to the presence of
sufficient concurrency. Exactly how that concurrency is ex-
pressed by the programmer is language dependent. The goal
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Figure 1: Overview of our proposed system design. The base system is a cluster of commodity nodes and interconnect. We add a latency-
tolerant runtime and a global memory manager to obtain efficient access to the global address space. Only the shaded components may
require hardware design.

of our system is to support that concurrency and consequently
provide latency tolerance on a large address space. We do so
via software multithreading: computation that is about to ex-
ecute a long latency operation (e.g., a remote memory ref-
erence) initiates the operation and then yields to the sched-
uler, which quickly resumes execution of another computa-
tion. Concurrency beyond that required for latency tolerance
can also be used to make more efficient use of network band-
width: it enables aggregation of short memory requests into
coarser requests, leading to large network messages and con-
sequently better bandwidth utilization.

Synchronization on locations in the private address space of
a node works the same way as on conventional systems. Syn-
chronization on global addresses works differently: we pro-
vide atomic operations such as int fetch add as well as op-
erations using full-bits, as on the Cray XMT. As is true for
other long latency operations, synchronization latency is toler-
ated by yielding to the scheduler. Even non-blocking global
atomics yield so the core can switch to another computa-
tion while the synchronization is accomplished outside of the
pipeline. In addition, the system can also exploit aggregation
when concurrency is abundant to increase the throughput of
global synchronization.

3. Implementation
Our goal is to use multithreading to tolerate the latency of
random accesses to memory in a global address space spread
across multiple nodes. Our implementation must provide three
features:

Concurrency in global memory references We must sup-
port many outstanding references to our long-latency global
memory to fully utilize its bandwidth.

Lightweight multithreading We expect to need hundreds
of threads to tolerate a cluster’s network latency, so our
threading implementation must have low overhead.

Low-overhead synchronization Long-latency synchroniza-
tion operations should not block the processor’s pipeline,
so that other threads can proceed.

We discuss our approach to solving each of these challenges
in turn. For each one, we discuss both our current single-node
implementation and ideas for a multi-node implementation.

3.1 Concurrency in global memory references

To enable concurrency in memory references, we break each
read or write into two operations: the issue operation and
the complete operation. The read issue operation starts data
moving towards the processor and returns immediately, like
a prefetch. The read complete operation blocks until data is
available. The write issue operation takes data along with an
address, and starts an asynchronous write. The write complete
operation blocks until the write is committed.

A latency-tolerant read operation in threaded user code then
consists of three steps: a read issue, which causes the data
to start moving; a yield, which causes another thread to start
executing, overlapping the read latency; and, once the reading
thread has been rescheduled, a read complete blocks until the
data is available. A write operation follows the same pattern,
blocking until the data has been committed.

In our single-node implementation, we use prefetch instruc-
tions for the issue operation, and regular blocking reads and
writes for the complete operation. Writes use the prefetch in-
struction to gain cache line ownership before modification.

As we develop our multi-node implementation, we be-
lieve we will need hundreds of outstanding memory refer-
ences per processor to cover the latency of remote references
in a multi-node system. Unfortunately, commodity proces-
sors have much smaller limits on memory concurrency: sec-
tion 4.1.1 finds a limit of 36 concurrent loads. We will have to
manage memory concurrency on our own to bypass this limit.
We describe approaches in both software and hardware.

One approach is for user code to delegate global references
to a special global memory manager thread, running on an-
other core in the chip. This thread translates the global address
into a network destination, makes the request through the net-
work card to the remote node, checks for completion, and de-
livers the returned data to the requesting thread. On the remote
node, the remote memory manager thread performs the mem-
ory operation and return the data to the requesting node.

Another approach moves the global memory management
to a hardware device. We can add a coprocessor FPGA in a
processor socket, listening to coherence messages on the bus,
similar to [27]. Note that this accelerator is only a memory
proxy, not a compute coprocessor. The accelerator maps all
global shared memory into a segment of each node’s local



address space; when it detects a reference to memory on a
remote node, it does the address-to-node translation and issues
the request through the network controller, delivering the data
to the requesting thread when ready. We encode commands in
the upper bits of the address; a read from a location’s issue
address starts the remote request and returns immediately, and
a read from a location’s complete address blocks until the data
is available.

With either approach, the question of request aggregation
will be important. Each memory request we make is small—
perhaps 8 bytes—but most networks are optimized for bulk
transfers of a few thousand bytes. To improve network uti-
lization, we will explore the aggregation of multiple memory
operations to different addresses on the same remote node.

3.2 Lightweight multithreading

Our approach to supporting many lightweight threads uses a
cooperative, user-level multitasking system built using corou-
tines. Much work has been done on similar user-level systems
[5, 26], but we have more stringent requirements: coroutines
must use little space so that many can be active without trash-
ing the cache; and context switches must be fast (a small frac-
tion of memory latency) so that we can overlap memory re-
quests and achieve concurrency.

We treat context switches as function calls, as in [36].
This allows us to depend on the compiler to save and restore
caller-save registers while we explicitly save and restore all
the callee-save registers. We minimize context switch time by
doing all switching and scheduling in user space.

In our single-node implementation, we implemented corou-
tines as described, with a round-robin scheduler.

As we develop our multi-node implementation, we will
modify our scheduler to reactivate threads only after their
long-latency operations have completed.

3.3 Low-overhead synchronization

Just as with reads and writes, we enable concurrency around
synchronization operations by splitting them into issue and
complete operations.

Implementing full-bit support efficiently on a platform not
designed for them is a challenge. Previous work [34] has en-
abled support for full-bit synchronization on arbitrary words
by allocating additional storage for the full-bits and imple-
menting atomic full-bit operations as library routines.

One potential optimization is to limit full-bit synchroniza-
tion to pointers to aligned data types, and reuse wasted space
in the low-order bits of the pointer for full-bit storage. These
bits would be masked out when the pointer is returned to the
user. This allows us to synchronize any data type through one
level of indirection.

In our single-node implementation, we prefetch and yield
before performing a synchronization operation. We support
only the synchronization operations supported by our devel-
opment platform; we have not yet implemented full-bits.

In a multi-node implementation, synchronization opera-
tions can be delegated to a memory manager thread or accel-
erator. Synchronization on remote data would be performed
by the remote memory manager. This may simplify the imple-
mentation: if only a single core (or single accelerator) is ac-
cessing the data being synchronized, the use of memory fences
may be reduced or eliminated.

4. Evaluation
Our goal is to evaluate the feasibility of our proposed run-
time. We want to determine two things: whether coroutines
can generate memory concurrency while incurring minimal
performance overhead, and whether the system can support
the level of concurrency required to tolerate the latency that
will be present in a multi-node system.

We focused the evaluation on one component of the run-
time: lightweight context switching. We ran pointer-chasing
benchmarks on a single-node implementation of our runtime.
These pointer chasing experiments are intended to model
a particular “worst-case” behavior of irregular applications,
where each memory reference causes a cache miss.

We ran these experiments on a Dell PowerEdge R410
with two Xeon X5650 (Nehalem microarchitecture) chips and
24GB of RAM, with hyperthreading disabled. These chips
use a NUMA memory architecture, where each chip has its
own integrated memory controller and DIMMs; references to
other chips’ memory are carried over Intel’s cache-coherent
QuickPath Interconnect (QPI) [16].

Our evaluation consists of two parts. First, we demonstrate
that the runtime system can achieve the same performance as
when explicit memory concurrency is available. Second, we
look at the runtime within the multi-node picture and show
that it can tolerate large latencies. In each part, we begin by
studying relevant aspects of our test machine’s memory system
so we can interpret our runtime results.

4.1 Single-node performance
4.1.1 Base memory system performance

We measured two parameters: the maximum random reference
rate that can be issued by the cores in one chip and the maxi-
mum random reference rate that can be serviced by one chip’s
memory controller.

To find the maximum random reference rate that one chip’s
cores can issue, we ran pointer chasing code following the
model of Figure 2a. Each core issues n list traversals in a
loop; we call n ∗ number of cores the number of concurrent
offered references since the memory system may not be able to
satisfy them all in parallel. Since our goal is to find a baseline
for evaluating our coroutine library, we depend on the cores’
exploitation of ILP for memory concurrency, rather than our
coroutine library.

The lists were laid out randomly with pointers spaced at
a cache line granularity, maximizing the probability of each
reference being a miss. We allocated the lists on 1 GB huge
pages to minimize overhead due to TLB refills.



while (count-- > 0) {
list1 = list1->next;
list2 = list2->next;
...
listn = listn->next;

}
(a)

while (count-- > 0) {
readIssue(&(list->next));
yield();
list = readComplete(&(list->next));

}
(b)

while (count-- > 0) {
readIssue(&(remoteList->next));
yield();
remoteList = readComplete(&(remoteList->next));
for( i in 1 to num_local_updates ) {

localList->data++;
localList = localList->next;

} }
(c)

Figure 2: Pseudocode for: (a) pointer chasing without coroutines, (b) pointer chasing using coroutines, (c) pointer chasing with local updates.
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Figure 3: Pointer chasing throughput versus total number of con-
current references offered by the cores. Total concurrent references
offered is number of lists per core * number of cores.

Figure 3 shows the result. Each point represents the maxi-
mum rate pointers are traversed for a given number of concur-
rent offered references. We see a maximum rate of 277 million
references per second (Mref/s), which agrees with the mea-
surements in [25]. This rate is achieved when the number of
offered references is 36. Note that a single core cannot support
this level of memory concurrency; the maximum reference rate
for a single core is 107 Mref/s. We believe this limit is due to
the core having only enough line fill buffers [32] to store 10
concurrent private cache misses.

The memory controller in the chip has more bandwidth than
its cores can saturate. To measure the memory controller’s
maximum random reference rate, we extended the previous
experiment so that cores in both chips traversed lists allo-
cated in the first chip’s memory. With this configuration, we
observed a maximum rate of 360 Mref/s. We believe this dif-
ference is due to the chip having only 32 buffers in its Global
Queue [23] for tracking concurrently-executing read misses
from all the cores’ private caches.
4.1.2 Coroutine performance

To evaluate the performance of our runtime, we investigated
two effects: the maximum reference rate using coroutines to
obtain memory concurrency and the effects of cache pressure
from the coroutines’ context storage.

To find the maximum reference rate obtainable using our
coroutine library, we modified our pointer chasing benchmark
as shown in Figure 2b. Recall that the baseline code in Fig-
ure 2a relied solely on ILP to achieve memory concurrency,
which may not be abundant in real applications. Using corou-
tines, there are two sources of offered concurrent references:
the ILP exploited by the processor, and the memory concur-
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Figure 4: Pointer chasing with coroutines, with one ref-
erence per coroutine. Number of coroutines per core is
total concurrent references/number of cores.

rency enabled by prefetching and switching to a new corou-
tine. As with our first experiment, we allocated the lists in the
same chip as the cores doing the traversal.

Figure 4 shows the result. For this experiment, the only
source of memory concurrency is the use of coroutines. We
are able to obtain a rate of 275 Mref/s with 48 concurrent
misses, or 8 coroutines per core. More concurrent requests are
required to saturate memory bandwidth than in the ILP-only
experiment.

We observe a gradual decrease in reference rate once the
number of concurrent references per core exceeds 10; we
believe this is due to later prefetches squashing earlier ones
in the line fill buffers. In the multi-node runtime, readIssue
will not be implemented with a prefetch instruction. We also
observe repeatable data points that are off the trend and fall
below the max. This effect is harder to explain, but we suspect
it may be due to resource contention in the cores’ pipelines
once the memory system is full of requests.

The stacks for the coroutines are stored in the data cache,
where they will compete for space with an application’s data.
To characterize the effects of this cache pressure, we modified
our list chasing benchmark to include random updates to a
per-coroutine local data structure that is small enough to fit
in cache. Figure 2c shows the general idea.

We varied the size of the per-coroutine local working set
from 64 B to 4 MB, and ran 0 to 32 local updates for each
remote pointer traversal. We measured the remote reference
rate (i.e., accesses to remoteList from Figure 2c).

Figure 5a shows the result for 8 coroutines per core. With
1, 2, and 4 updates per remote reference for smaller working
sets, the runtime is able to achieve near maximum throughput.



!"#$%&'()*+',-* !.#$%&/0)"1*-$)"1*'23
!
"
#
$

%
!
"
$

"
&
$

#
&
$

'
"
&
$

!
"
#
&
$

%
!
"
&
$

"
(
$

!
"
#
$

%
!
"
$

"
&
$

#
&
$

'
"
&
$

!
"
#
&
$

%
!
"
&
$

"
(
$

!"

#!"

$!"

%&!"

%'!"

&!!"

&#!"

&$!"

(
)
*
+
,)
-.
)
/)
.)
0
1
)
2
-3
-2
)
1
+
0
4

!"

#$

%

&

"

#

'

!"

#$

%

&
"

#

'

!"#$%&'(&)#"

4M
B

1M
B

25
6K

B

64
KB

16
KB4K

B

1K
B

25
6B64
B

4M
B

1M
B

25
6K

B

64
KB

16
KB4K

B

1K
B

25
6B64
B

!

! !" !"

! !!

Updates per remote reference Working set size per thread

Network rate

Figure 5: Cache pressure with coroutines, on six cores. The vertical
axis is remote reference rate, with (a) 8 coroutines per core, and (b)
48 coroutines per core, about the number required for the network
rate in the simulated delay experiments.

As the number of updates and the working set size increase,
the data of other coroutines is likely to be evicted from cache,
leading to decreased performance.

4.2 Performance with multiple nodes

To evaluate the potential for the lightweight contexts to per-
form in the multi-node case, we simulated a network delay to
see whether the runtime could tolerate the larger latency.

Any network communication must travel over the QPI link
in our test system. We estimated the bandwidth of this link by
allocating lists in the first chip’s memory and traversing those
lists on the second chip’s cores. We found that use of the QPI
link limits throughput to 175 Mref/s.

To simulate the performance of pointer chasing in a multi-
node system we referenced the first chip’s memory from the
second chip’s cores and modified our coroutine scheduler to
include a delay before a coroutine can be reactivated, imitating
the network transit delay. We assume 1.1 µs interface and 400
ns switch latencies in each direction [20, 31], and thus estimate
a 3 µs round-trip delay. In analyzing the results, we assume a
network issue rate of 100 Mref/s, based on modern network
interfaces [30].

The results of the experiment with six cores are shown
in Figure 6. The runtime can still reach a maximum rate of
173 Mref/s,1 saturating the QPI link. Little’s Law predicts that
300 concurrent references are required to achieve the esti-
mated network rate of 100 Mref/s when there is 3µs latency.
The results agree: 100 Mref/s is reached with about 53 corou-
tines per core. Although there will be other overheads in a full
runtime, this experiment suggests there is potential to tolerate
multi-node system latencies.

1 The throughput keeps increasing up to around 564 total concurrent refer-
ences offered (at which point QPI is saturated), far more than the 36 we know
the chip to support. This is because we have modeled the network latency by
forcing coroutines to wait the extra time before using the data, so the physical
miss buffers on our machine are not tied up any longer than usual.
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Figure 6: Pointer chasing across QPI link with simulated network
delay of 3µs, six cores. Using six cores, 53 coroutines per core are
required to reach the assumed network rate of 100 Mref/s.

Figure 5b shows the results of the cache pressure experi-
ment for supporting 48 coroutines per core, about the number
of contexts needed to tolerate latency in the network experi-
ment. We observe that when performing up to 16 local updates
per remote reference, smaller working sets still allow the de-
sired throughput. When performing 1 to 2 updates, the runtime
can maintain throughput for working sets of up to 32 KB.

5. Related work
Much work exists on using multithreading to tolerate latency.
Hardware implementations include the Tera MTA [3] and Cray
XMT [13], Simultaneous Multithreading [33], MIT Alewife
[1], Cyclops [2], and even GPUs [12]. Software-only ap-
proaches exist as well; the Software Controlled Multithreading
project [28], QThreads [34], MAESTRO [29], and Charm [36]
all use variants of this idea.

There has also been much work on user level threading,
including the First-Class User Level Threading project [26]
and Capriccio [5]. We have a different goal; we want many
lightweight contexts to tolerate memory latency.

Our goal of presenting a global view of distributed memory
to the programmer is shared by the PGAS community, and is
used in languages like Chapel [7], X10 [8], and UPC [11].
They obtain performance by minimizing references to remote
nodes, whereas we design for remote references.

The idea of processing large graphs on distributed machines
has been explored by projects such as Pregel [24], the Parallel
Boost Graph Library [14], and CGMLib [9]. Our goal is to de-
velop infrastructure to aid implementation of similar libraries.

6. Conclusion
We presented our plans for building a system for large graph
computation using commodity parts. We leverage decades-old
ideas on using a large amount of concurrency to tolerate laten-
cies, but we do so mostly in software. We developed a runtime
system for latency tolerance, and our results showed that it
supports enough concurrency to tolerate the long latencies of
our large high-bandwidth global memory system.
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